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Membranes, Cells, Tissues

Micro scale
•Cell: ~10 micron
•Sub cell (genes, large 
proteins): nanometer

Macro scale
Tissues: 

billion to 1000 billion cells
or

1—10 centimeter 

Processes at cell scale

Signals at sub-cell scale cell aggregation,
organ development

•complex micro-structured soft matter



Outline
Give examples of continuum methods applied
to various problems in the four workshop areas:

•Membrane and protein science
•Microfluidics
•Angiogenesis and neovascularization
•Systems biology

Today:
•Biomembranes (1st talk)

•Microfluidics    (2nd talk)

Focus: Different modeling approaches, advantages/disadvantages



Biomembranes

• Form interface between cell, and organelle 
structures with microenvironment

• Lipid bilayer containing
cholesterol, proteins

• main structural component complex 
architecture of biological systems

McMahon, Gallop. Nature 2005

• Membrane morphology changes during
cellular movement, division and vesicle
trafficking. Active role.

• Several nm thick, 
surface area can be
several mm

•Can be highly mobile
and fluid-like



Biomembranes Contd.
•Membrane subdomains with particular curvature may

have precise biological properties and function

Mechanisms to control membrane morphologies:

McMahon, Gallop. Nature 2005



Mathematical Modeling
Bending energy/Spontaneous curvature model:

( )
2

0H GE b H H b G dτ
Σ

= + − + Σ∫

surface energy normal bending
stiffness

spontaneous
curvature

Gaussian
bending
stiffness

1 2(1/ 1/ ) / 2H R R= + Mean curvature

1 21/( )G R R= Gaussian curvature

Lipowsky, Nature 1991.



Constraints

0A d A
Σ

= Σ =∫
•Area constraint 

(exchange of lipids with surrounding microenvironment is 
typically very slow)

•Volume constraint 

0( ) 1/ 3Vol d V
Σ

Σ = • Σ =∫ x n

(limited osmosis, can be controlled however)

Morphology: Minimization of E subject to above constraints.



Related Problems

•Willmore flow

•Surface diffusion in materials

•Image processing



Willmore flow

2E H d
Σ

= Σ∫

Normal velocity:

( )22EV H H H Kδµ
δ Σ= − = − = −∆ − −
Σ

•High order, nonlinear equation on moving boundary.

Germain, 1810
Willmore, Riemannian Geometry 1993.



Surface diffusion in materials

( ),E H dτ
Σ

= Σ∫ n

n Normal vector  (reflects crystalline anistropy)

( )
2

2, ( )
2

H Hδτ γ θ= +nExample (2D):

Then, chemical potential given by (2D)

( ) ( )2 3( ) ''( ) ss
E H H Hδµ γ θ γ θ δ
δ

= = − + + +
Σ

Normal velocity:
ssV µ=

DiCarlo, Gurtin, Podio-Duidugli, SIAM J. Appl. Math. (1992);Gurtin,
Jabbour, Arch. Rat. Mech. Anal. (2002); Spencer, Phys. Rev. E (2004)

6th order system!



Wulff Shapes for 4-fold 
Anisotropy

Wulff Shapes: 

Nonphysical
“ears” form for

(given enclosed area)

increasing

increasing



Willmore regularization

Willmore (α=1)

blow-up



Image processing

Clarenz, et al, 
C. A. Geom.
Design 2004

Xu, Pan, C.A.D. 2006



Difficulties

V HΣ−∆∼

Numerical stiffness:

4t s∆ ≤ ∆

•Surface diffusion V HΣ= −∆

Computational Methods

•Sharp interface/front-tracking

•Level-set methods/front capturing

•Phase-field methods/front capturing

with Willmore regularization
2V H
Σ

∆∼



Sharp interface methods

Implicit discretizations, marker-point redistribution

Mayer, Simonett. 2001

Bansch, Morin, Nochetto JCP 2005

•Small scale decomposition (2D, Axisymmetric). 
Hou, Lowengrub, Shelley JCP 1994

•To overcome stiffness:

Surface diffusion Axisymmetric Willmore

t



SSD for axisymmetric surfaces

Reformulation: and

Willmore flow/
Surface diffusion: sssV θ−∼ Dominant term at small spatial scales

Total curvature
sin2 sH

r
θθ= +



Special choice of Tangential 
velocity

•Marker-points equally spaced in arclength:
1

'0
' ( )s s d L tα α α= =∫

1

' '
0 0

( , ) (0, ) ' 'T t T t V d V d
α

α αα θ α α θ α= − +∫ ∫

•Linear, constant coefficient equation at leading order:

4

1 ( , )
( )t ssss N t

L t
θ θ α= − +

•Easy to apply implicit time integration algorithms



Extended form

Deviations from equal-arclength may arise. Can overcome by
requiring instead:

( ) ( )( ) ( )t s L t s L tα α∂ − = − −

This makes ( )s L tα = a stable manifold.

1

' ' '
0 0 0

( , ) (0, ) ' ' ' ( )T t T t V d V d s d L t
α α

α α αα θ α α θ α α α= − + − +∫ ∫ ∫

•Many other choices of tangential velocity possible.
(e.g., cluster points in regions of high curvature, etc.)

additional terms



3D

Finite element approach.

Update:

Bansch, Morin, Nochetto JCP 2005.

Solve:

By:

Using C0 elements.

Evaluated on current 
(time n) surface

Extension to Willmore flow
Burger, Voigt et al (2006) 



3D Surface diffusion

Bansch, Morin, Nochetto JCP 2005.

Mesh adaptivity
using a posteriori
error estimates

Implementation using
Albert
Schmidt, Sieberg,
Acta Math. 2000

•Leads to topology change



Level-set methods

{ }( ) | ( , ) 0t tφΣ = =x x

•Interface capturing.

| | 0t extVφ φ+ ∇ =

•Interface moves with speed V:

extVwhere is an extension of V off Σ

Osher, Sethian 1988

Droske, Rumpf 
IFB 2004

Willmore flow.

weighted mean
curvature •Semi-implicit discretization



Level-set results (sample)
Willmore
flow

Anisotropic
surface diffusion
with Willmore
regularization

Burger, JCP 2005.

Droske, Rumpf 
IFB 2004



Phase-field methods
c is a smooth order parameter

y

c = 0.5
(Γ)

y

x
x

y=const cross-section



Why Phase-field?

• Allows the easy capture of interface 
dynamics.

• Avoid explicit tracking.
• Easy to add more physics (e.g., elasticity, multiple 

phases).

• Downside: introduce finite thickness.
diffuse interface



Phase-field Willmore Problem

Qiang Du et al, A phase field formulation of the Willmore problem, Nonlinearity (2005).

Du et al. showed rigorous asymptotic convergence 
(            ) of solutions of   

to solutions of the classical Willmore problem



Evolution equations
Gradient flow approach:

( ), 2
3

2

1 ''( ) ,

'( )

WE
F c

c
F c c

εδ
µ ν ε ν

δ ε
ν ε

= = − ∆

= − ∆

Phase field equation:

( )2
3

2

1 ''( ) ,

'( )

tc F c

F c c

µ ν ε ν
ε

ν ε

= − = − − ∆

= − ∆
4th order nonlinear equation. (non conserved)



3D Anisotropic Diffuse Interface 
Model

• (α=0)  Wise, Lowengrub, Kim, Thornton, Voorhees, Johnson, Appl. Phys. Lett. (2005)

• (α=1) Ratz, Ribalta, Voigt, J. Comput. Phys. (2005)

• (α=0,1) Kim, Wise, Lowengrub (in preparation)

double well energy density

order parameter finite interfacial thickness corner rounding

anisotropy asymptotically like         for α=1



Evolution: 6th-order Cahn-Hilliard Eqn

Asymptotic convergence to the sharp interface surface 
diffusion model?

diagonal anisotropy
matrix

mass conservation:
M = 1, bulk diff.; M = c(1-c), surface diff.

linear biharmonic
for α = 0



Discretization of Cahn-Hilliard Eq.: 
α=0 case

Crank-Nicholson

center-differencing (compact stencils)

Solve nonlinear elliptic problem using adaptive full 
approximation scheme (AFAS) for each time step n.



Linearizations
local Picard-linearization: GS

local Newton-linearization: GS local Picard-linearization: Vcycle

anisotropy is fully implicit!



Details
• Mild solvability time-step restriction (being remedied)

• No time-step restriction owing to anisotropy

• Tests indicate 2nd order accuracy method (c, a posteriori in l2)

•J.S. Kim, K. Kang, and J.S. Lowengrub, Conservative multigrid methods for Cahn-Hilliard 
fluids, J. Comput. Phys., (2004)

•Wise et al., Appl. Phys. Lett. (2005) (QD self assembly)

•Kim, Wise, Lowengrub, Adaptive Method for Strong Anisotropy (in preparation)



30% volume fraction

Uniform mesh

Adaptive mesh

4107×

time

N
um

ber of m
esh points

7e+04

Isotropic Spinodal Decomposition (a=0, δ=0)

• base level = 642

• 2 levels of refinement
• effective 2562

1/6 cost (long times)



2D Mesh: 2 Levels of 
Refinement

Kim, Wise, Lowengrub, (in preparation).



3D Adaptive Computations

• ε = 1.8e-02, δ = 5.0e-04, a = 0.2

• base grid 323, 2 levels, h2 = 3.2/128 

• surface diffusion, M = c(1-c)

• c = 0.5 isosurfaces

interface thickness corner rounding

4-fold
anisotropy

h2~ ε



Anisotropic surface energy + 
Willmore regularization

•Evolution 
to Wulff shape



Adaptive Mesh



Phase-field formulation of 
membrane problem

Bending
energy

volume

Surface area

Du, Liu, Wang JCP 2004 and 2006.

Gradient flow:

1 2,λ λ Lagrange multipliers for volume and area conservation.



Numerical methods
•Implicit time discretization,

•Discrete energy law,

•Periodic BC, pseudo-spectral methods

•Evolution to a
discocyte

•Evolution
to a torus

Du, Liu, Wang
JCP 2006



Further directions
•Effects of fluid flow

Du et al. for single-component membranes (to appear)
Lowengrub et al for multicomponent membranes 

(in progress)

•Multicomponent membranes
More than one lipid component

Baumgart, Hess, Webb
Nature 2003

Du et al., phase-field models 
Lowengrub, Voigt et al., sharp interface models


