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Biomembranes

•Complex structures containing lipids, 
proteins, cholesterol, ions, etc

•Cell-boundary. Carrier vesicles.
Several nm thick. Surface area can be mm.

•Active role in locomotion, adhesion
solute/chemical transport, signal transduction, etc.

MorphologyStructure Biological function



Mechanisms of 
conformation

McMahon, Gallop. Nature (2005)

budding



Lipid shape affects curvature

Mukherjee and Maxfield, Ann. Rev. Cell Dev. Biol. (2004)



Multicomponent membranes

•Multiple lipid components

•Phase-separation/
domain formation

•Spinodal decomposition

Baumgart et al, Nature (2003).

•Morphology (e.g. curvature)
nonlinear coupled to surface
composition of phases

Veatch, Keller Biophys. J. (2003).



Effect of fluid flow
•Membranes/vesicles contain and are immersed in 

viscous liquid

High shear: Tumbling

Low shear: Tank-treading

•Effect on spinodal
decomposition/
phase-separation
of multicomponent
membranes??



Mathematical model
Generalized Helfrich model

Membrane energy:

f =mass concentration of component

Line tension:
g: Double-well potential

Surface energy:

Bending energy: ( )2
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(Zhong-can, Helfrich, Phys. Rev A 1989)
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Conservation of surface 
component

Local conservation (Eulerian):

( )s∇ = − ∇I nn

advection stretching generalized diffusion

u: fluid velocity

Note: ( )s = −u I nn u

•Determine constitutive relation for diffusion flux



Fluid flow: Stokes 
(low Reynolds number)

0,i∇ =Ti 0i∇ =ui i=d, m

( )T
i i i i ip η= − + ∇ +∇T I u uStess tensor

pressure viscosity

Interface boundary
conditions: [ ] ,nT TΣ = + sTn n

•Determine constitutive relation for forces: nT and

Far-field bc:

Ts



Energy variation gives 
constitutive conditions
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Take time derivative. Equivalent to variation (f and S varied independently).
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(thermodynamic consistency)



Constitutive equations
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surface tension

(omitted Gaussian bending, is easily included)



Thermodynamic consistency
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Surface tension: (2D for simplicity)

Bending: (2D for simplicity. Hausser will give 3D.)
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Energy dissipation:



Remarks

•Flow, morphology and phase-decomposition
are intimately coupled

•Phase-transformation on moving interface
e.g., 4th order nonlinear equation on a moving surface

•Highly challenging theoretically and numerically



Focus on a simple case
No bending forces: 0n Gb b= =
Surface energy depends on  f

Nondimensionalization:

= =

characteristic stress scale

characteristic surface tension scale

Nondimensional parameters:

Capillary number:

Cahn number:

characteristic chemical 
potential scale

Peclet number:

Mach number:



Nondimensional system
Stokes:

Interface BC:
(+ continuity)

surface tension:

Surface phase:

Chemical potential:

Interface: d
dt

=
x n u
� �i



Numerical approach

•Level-set method to capture interface

•Immersed interface method to solve the Stokes equations

•Non-stiff surface phase-field solver

Xu, Li, Lowengrub, Zhao. JCP (2006)

Lowengrub, Xu, Voigt  FDMP in review.



Numerical method
Popular numerical methods for surface-tension mediated interfacial
flows 
--front-tracking/boundary integral method (e.g. Hou, Lowengrub and Shelley, JCP, 2001 )
-- front-tracking/continuum surface force(CSF) method (e.g. Glimm etal, JCP, 2001 , 

Tryggvason etal, JCP, 2001 )
-- volume-of-fluid/CSF method (e.g. Scardovelli and Zaleski, Ann. Rev. Fluid Mech., 1999 )
-- level-set/CSF method (e.g. Osher and Fedkiw, JCP, 2001; Zheng, Lowenegrub, Anderson, 

Cristini , 2005)
-- phase field method ( e.g. Anderson, McFadden and Wheeler, Ann. Rev. Fluid. Mech., 

1988 )
-- other hybrid methods, such as volume-of-fluid/level-set method, particle level-set method

As opposed to the CSF methods, sharp interface flow solvers dealing with interface
jump conditions without  smoothing

-- immersed interface method (IIM) ( e.g. LeVeque and Li, SIAM J. Sci. Comp., 1997 )
-- ghost fluid method (e.g. Fedkiw et al, JCP, 1999 )
-- others (Mayo, Helenbrook, Martinelli and Law, JCP, 1999 )



Numerical method continued

Advantages of the level set method (Osher and Sethian, JCP, 
1988)
-- Accurate representation of interface geometry
-- capable of handling topological change 
-- relatively easy 3D implementation

Advantages of the IIM
-- no introduction of intermediate non-physical state near the interface
-- higher order accuracy as opposed to CSF method
-- fast Poisson solvers (e.g. FFT, multigrid) available for the discrete 
system



Numerical method continued

Relatively little work on surfactants. None on surface phase-decomposition on 
moving interface with flow

-- front-tracking/boundary integral method (e.g. Milliken,Stone and Leal, Phys. Fluids, 1993 )
-- volume-of-fluid/CSF method (e.g. Drumwrite-Clark and Renardy, Phys. Fluids, ; 2004, James and 

Lowengrub, JCP, 2005; Bothe and Alke 2006)
-- front-tracking/CSF method (e.g. Ceniceros, Phys. Fluids, 2003 )

-- level-set/immersed interface method LS/IIM 
(Xu, Li, Lowengrub and Zhao, JCP, 2006 ). 
Feature: a stable (large time step                  )  and second-order accurate surfactant solver ( Xu and Zhao, 
J. Sci. Comp. 2003 ) coupled with the second-order accurate IIM for flow solver in conjunction with the 
level-set method.

-- phase-decomposition on fixed, complex interfaces (Greer et al (2005), Voigt et al (2005))

-- phase-decomposition on moving interfaces (no flow). Wang and Du (2006); Ratz and Voigt (2006).

-- homogeneous membranes in flow: Siefert et al, Biben and Misbah (2003), Noguchi and Gompper (2005), 
Du et al. (2006)

)(hOt =∆

•Extend LS/IIM algorithm for surfactant
to case with surface phase-decomposition



Interface representation using a level set 
function

Convection of the level set function:

The interface 

Assume inside drops, 

Reinitialization of level set function:
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Reformulation of Stokes equations
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Numerical method continued: a brief 
introduction of IIM

The IIM (LeVeque and Li, SIAM J. Numer. Anal., 1994)  for 
Poisson equation 

fw =∆
with jump conditions

Σ∂
∂

Σ ][  ,][ n
ww given

All grid points divided into two groups: 
regular and irregular

-- standard centered difference scheme at regular points.
-- modified  centered difference scheme at irregular 

points by adding a correction term which involves jump
conditions at the interface. 

Second order accuracy in maximum norm achieved.

regular

irregular

,k kijk i i j j ij ij
k
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IIM



Numerical method continued: IIM for the 
Stokes equations

IIM for the pressure Poisson equation

IIM for the velocity Poisson equations

Discretization of the interface jump conditions: with the level set
extension methodology,                          are calculated at grid points, 
then interpolated at the interface
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Numerical method continued: evolution of 
the level sets: 
Advection and reinitialization

-- high order WENO scheme (e.g. Jiang and Peng, SIAM J. Sci. Comp. 
2000  ) for   spatial discretization

-- high order TVD Runge-Kutta method (e.g. Shu, SIAM J. Sci. Comp., 
1988 ) for time marching

-- smooth sign function used in the reinitialization

Remark: it is necessary to use high order schemes in order to accurately compute
the normal and curvature of the interface



Numerical method continued: evolution of 
surfactant concentration

)( xOt ∆=∆

implicit explicit

A semi-implicit backward Euler method for surface 
phase equation to remove the stiffness 

Extension of surface phase off the interface

Advantage: stable with large time step

1
1

1 1 2 1

1n n
n n

n n n n

f f F
t Pe
a f C f G

µ

µ

+
+

+ + +

−
− ∆ =

∆
− + ∆ =

(could do 2nd order)



Numerical method continued: local level 
set  technique, and enforcing area and 
surface mass conservation
Local level set method:

computation for the level set function  and surfactant concentration
are only performed in small tubes around the interface.

Enforcing area conservation: a slightly modified velocity is used for the  
advection  of the level sets to assure total mass flux across the interface is 0

Enforcing surfactant conservation: to compensate small numerical  diffusion
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Numerical results

Applied shear flow:

Double well potential: f =0, f =1 preferred
phases.

Surface tension: x measures reduction in 
surface tension of f =1 phase

Corresponding surface energy:

in chem. pot., we take:



Initial condition

curvature

f

•f perturbed about the spinodal point



Nearly matched surface
tension x =0.1

Ca=0.2, Pe=10.
C=0.02, M=1.0

•Surface phase initially
decomposes at tips

•Then is swept around
drop by the flow



Surface phase distribution

Blue: k
Red: f

time

•Periodic behavior?



Interface deformation

Maximum distance from center

time

Homogenous surface f =0

•Periodic?
•Intriguing behavior



Significantly different surface tensions x =0.5

Ca=0.2, Pe=10.
C=0.02, M=1.0

•Phase decomposition occurs at tips
•Steady-state distribution is achieved (energetically favorable

to have low surface tension phase at tip)



Surface phase distribution

•Steady-state



Drop deformation
X=0.5

X=0.1

•Deformation larger than for x=0.1 due to smaller surface
tension of tip phase (f=1)

•Drop is steady when x=0.5



Conclusions
•Developed general formulation for multicomponent membranes
in a fluid flow

•Solved equations in special case of inhomogenous surface
Energy and phase-decomposition

•Investigated role of surface tension of phases. Nontrivial  
behavior. Evidence of periodic solutions when surface tension 
is nearly matched

Next, incorporate:

• Bending forces

•Inextensibility constraints

•Theory…


