Nonlinear Tumor Modeling II: Tissue inhomogeneities and necrosis

> John Lowengrub Dept Math, UCI

P. Macklin, M.S. 2003, Ph.D. 2007 (expected);

V. Cristini (Dept Biomed Eng, UCI); Q. Nie (Dept Math, UCI)

Motivation

- Provide biophysically justified *in silico* virtual system to study
- Help experimental investigations; design new experiments
- Therapy protocols

Outline

•Review of basic model and results

•Extension to a (simple) model of tissue inhomogeneity

•Numerical methods

•Results

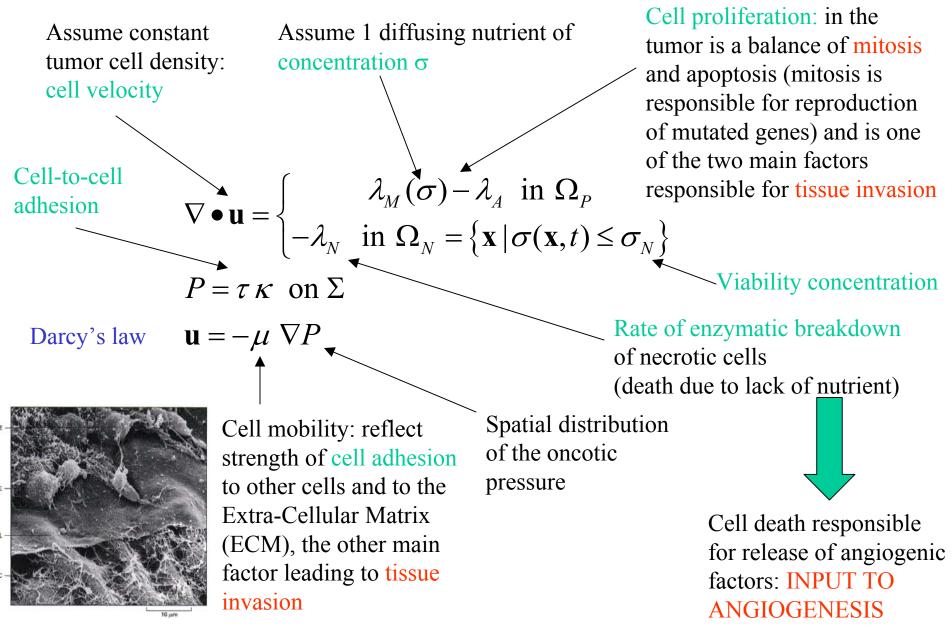
Mathematical model

- •Continuum approximation: super-cell macro scale
- •Role of cell adhesion and motility on tissue invasion and metastasis Idealized mechanical response of tissues
- •Coupling between growth and angiogenesis (neo-vascularization): necessary for maintaining uncontrolled cell proliferation
- •Genetic mutations: random changes in microphysical parameters cell apoptosis and adhesion
- •Limitations: poor feedback from macro scale to micro scale

(Greenspan, Byrne & Chaplain, Anderson & Chaplain, Levine...)

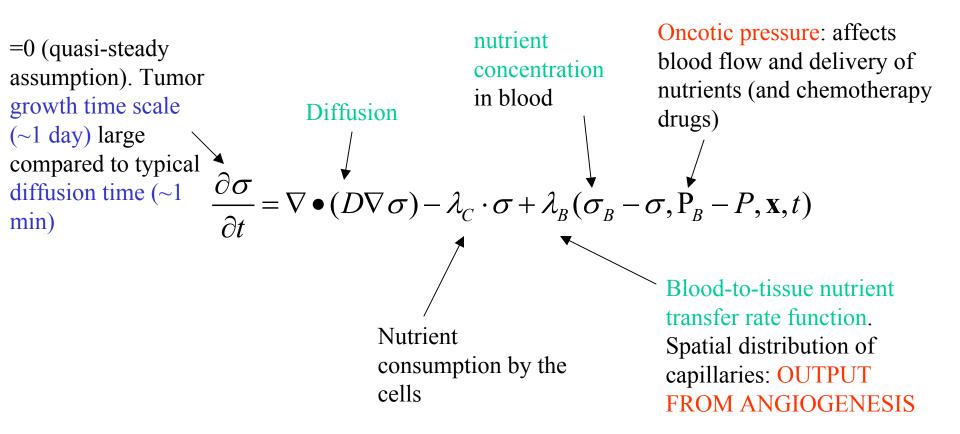
Cell proliferation and tissue invasion

Greenspan, Chaplain, Byrne, ...



Evolution of nutrient: Oxygen/Glucose

Greenspan, Chaplain, Byrne, ...



Limited Biophysics

•Simplified cell-cycling model $\lambda_M(\sigma) = b\sigma$

•Simplified Blood-tissue transfer $\lambda_B (\sigma_B - \sigma, P_B - P, \mathbf{x}, t) = \lambda_B \cdot (\sigma_B - \sigma)$

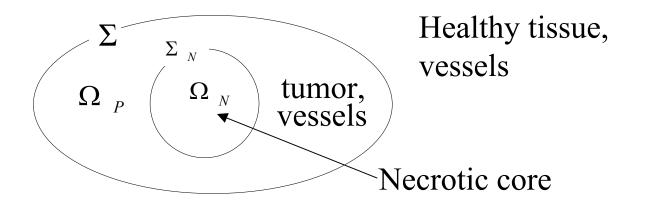
•Avascular or fully vascularized growth (i.e. no angiogenesis)

•Insight to biophysical system

•Benchmark for more complicated systems

Previous (basic) model

Greenspan, Chaplain, Byrne, Friedman-Reitich, Cristini-Lowengrub-Nie,...



Nutrient

Pressure

$$0 = D\nabla^{2}\sigma + \Gamma, \qquad \mathbf{u} = -\mu\nabla P, \quad \nabla \bullet u = \begin{cases} \lambda_{P} & \text{in } \Omega_{P} \\ -\lambda_{N} & \text{in } \Omega_{N} \end{cases}$$

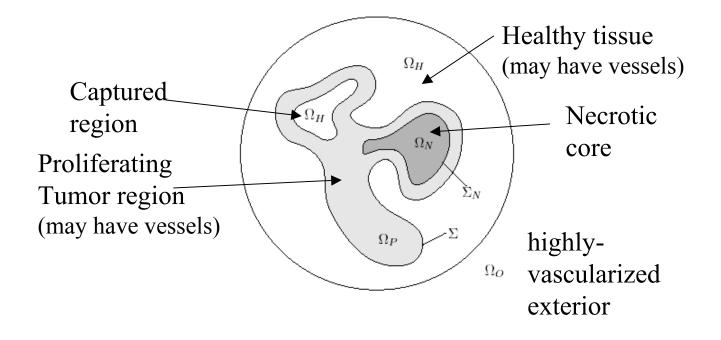
$$\Gamma = -\lambda_{B} (\sigma - \sigma_{B}) - \lambda \sigma. \qquad (P)_{\Sigma} = \gamma \kappa \qquad \lambda_{P} = b\sigma - \lambda_{A},$$

$$(\sigma)_{\Sigma} = \sigma^{\infty} \qquad \qquad V = -\mu \mathbf{n} \cdot (\nabla P)_{\Sigma}.$$

normal velocity

()

Extended model



Extended Model Ω_H Macklin, Lowengrub, In preparation. Ω_{H} Pressure Ω_N Nutrient $\mathbf{u} = -\mu \nabla P$, $\nabla \bullet \mathbf{u} = \begin{cases} \lambda_P & \text{in } \Omega_P \\ 0 & \text{in } \Omega_H \\ -\lambda_N & \text{in } \Omega_N \end{cases}$ $0 = \nabla \bullet (D\nabla \sigma) + \Gamma$ Ω_P $\Gamma = \begin{cases} -\lambda_B (\sigma - \sigma_B) - \lambda \sigma & \text{in } \Omega_P \\ -\lambda_{B,H} (\sigma - \sigma_B) - \lambda_H \sigma & \text{in } \Omega_H \\ 0 & \text{in } \Omega_N \end{cases}$ $\llbracket P \rrbracket_{\Sigma} = \gamma \kappa, \quad \llbracket \mu \nabla P \bullet \mathbf{n} \rrbracket_{\Sigma} = 0$ $\left\| P \right\|_{\Sigma_{N}} = \left\| \mu \nabla P \bullet \mathbf{n} \right\|_{\Sigma_{N}} = 0$ $\|\boldsymbol{\sigma}\|_{\Sigma} = \|D\nabla\boldsymbol{\sigma} \bullet \mathbf{n}\|_{\Sigma} = 0$ $(p)_{\partial\Omega_0} = p_{\infty}$ $\left\| \boldsymbol{\sigma} \right\|_{\Sigma_{\mathcal{N}}} = \left\| D \nabla \boldsymbol{\sigma} \bullet \mathbf{n} \right\|_{\Sigma_{\mathcal{N}}} = 0$ $(\sigma)_{\partial\Omega_{\alpha}} = \sigma_{\infty}$ $V = -\mu \mathbf{n} \cdot (\nabla P)_{\Sigma} \,.$ normal velocity •Let D and μ vary in Ω_p and $\Omega_{\rm H}$

Interpretation

In Ω_H ,

•*D* is an indirect measure of perfusion *i.e.*, *D* large → nutrient rich

• μ is a measure of mechanical properties of extra-tumoral tissue

i.e., μ small \longrightarrow tissue hard to penetrate (less mobile)

•Although a very simplified model of these effects, this does provide insight on how inhomogeneity influences tumor growth.

Nondimensionalization

(Cristini, Lowengrub and Nie, J. Math. Biol. 46, 191-224, 2003)

Intrinsic length scale: $L_D = D_P^{1/2} (\lambda_B + \lambda)^{-1/2}$ Adhesion time scale: λ_R^{-1} , Previous nondimensional parameters: $\lambda_R = \gamma \mu_P / L_D^3$

•Vascularization: $B = \frac{\sigma_B}{\sigma^{\infty}} \frac{\lambda_B}{\lambda_B + \lambda}$ •Apoptosis vs. mitosis $A = \frac{\lambda_A / \lambda_M - B}{1 - B}$ •Mitosis vs. adhesion $G = \frac{\lambda_M}{\lambda_R} (1 - B)$ •Necrosis vs. mitosis $G_N = \lambda_N / \lambda_M$ $\lambda_M = b\sigma^{\infty}$ •Viability $N = \frac{\sigma_N}{\sigma_{\infty}} - B$

New nondimensional parameters:

•Diffusion ratio: $\chi_D = D_H / D_P$ •Mobility (adhesion) ratio: $\chi_\mu = \mu_H / \mu_P$

•Transfer ratio:
$$\chi_B = \lambda_{B,H} / \lambda_B$$
 •Uptake ratio: $\chi_{\lambda} = \lambda_H / \lambda$

•Reduces to basic model when: $\chi_D, \chi_\mu \to \infty, \quad \chi_\lambda, \chi_B$ bounded

Nondimensional System

Nutrient: $c = (\sigma / \sigma_{\infty} - B) / (1 - B)$ Pressure: $p = (P - P_{\infty}) / (\gamma / L_D)$

Generic Poisson-type problems for *c* and *p*: (w = c or p) $\nabla \bullet (\chi \nabla w) = f(x, w), \text{ in } \Omega = \Omega_N \bigcup \Omega_P \bigcup \Omega_H$ $\llbracket w \rrbracket_{\Sigma} = g, \quad \llbracket \chi \nabla w \bullet \mathbf{n} \rrbracket_{\Sigma} = 0$ $\left[\!\left[w\right]\!\right]_{\Sigma_{\mathcal{N}}} = \left[\!\left[\chi \nabla w \bullet \mathbf{n}\right]\!\right]_{\Sigma_{\mathcal{N}}} = 0$ $(w)_{\partial\Omega_{\alpha}} = w_{\infty}$ $d\mathbf{X}_{\Sigma}$

$$\mathbf{n} \cdot \frac{dH_{\Sigma}}{dt} = V = -\nabla p \cdot \mathbf{n}$$

More Complex Biophysics

•Non-uniform parameters •Necrosis Level-set method •Complex morphology •angiogenesis φ •Continuum description $\omega = 0$ $\phi_t + V \mid \nabla \phi \mid = 0$ $V = \mathbf{u} \bullet \mathbf{n}$

Difficulties:

- •Stability– sensitive to geometry $V \sim H(\kappa_s)$
- •Accurate extension/interpolation
- •Stable discretizations of \mathbf{n} and κ

2nd Order Accurate Ghost Fluid/Level-Set Method Fedkiw, Gibou, Osher,...

Macklin, Lowengrub, J. Comp. Phys. **203** (2005). Macklin, Lowengrub, J. Comp. Phys. (2005) in press.

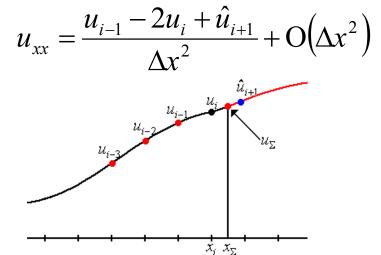
•Embed in Rectangular domain

•Solve equations on full Cartesian mesh

Difficulties:

- •Stability– sensitive to geometry $V \sim H(\kappa_s)$
- •Accurate extension/interpolation
- •Stable discretizations of \mathbf{n} and κ

•Incorporate sub-cell resolution And physical boundary conditions



2nd Order Accurate Method

Extension

Cubic extrapolation

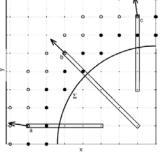
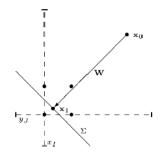
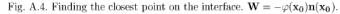


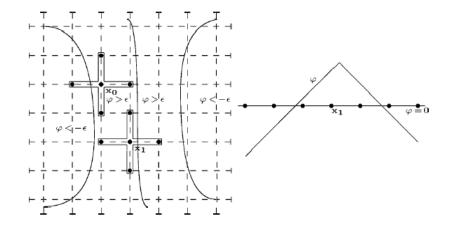
Fig. A.3. Gradient Extension: We extend a scalar function beyond $\Omega \cup \Sigma$ by one-dimensional, grid-aligned extrapolation. The points used in the extrapolation are chosen according to the direction of the normal vector. We preserve outware information flow by choosing the next point for extension according to the value of the level set function at the remaining points (open circles).





Bilinear interpolation

Normal Vector/ Curvature



1-sided method

Fig. A.5. Effect of Level Set Irregularity on κ and **n**: In the left figure, two interfaces are close together. The middle curve shows the points equidistant from both interfaces, and the level set function is irregular along this curve. The standard techniques for calculating κ and **n** work well at **x**₀ (where φ_x and φ_y are continuous), whereas they break down numerically at **x**₁. The right figure shows a cross-section through **x**₁ of the level set function; the "peak" in the middle is equidistant from the two interfaces and a point of irregularity in φ .

Gaussian smoothing

$$\hat{f}_I = \frac{1}{A} \frac{1}{N\sqrt{2\pi}} \sum_{i=-3N}^{3N} f_{I-i} \exp\left(-\frac{1}{2} \left(\frac{i}{N}\right)^2\right), \qquad N=3$$

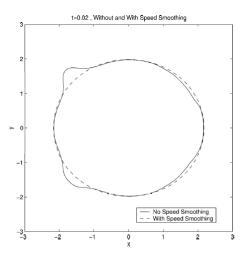


Fig. A.8. Effect of Smoothing on Overall Stability and Accuracy: Initially small perturbations have grown to grossly distort the shape of the interface by t = 0.01. The dashed curve shows the solution at the same time with speed smoothing.

Curvature/Normal Vector

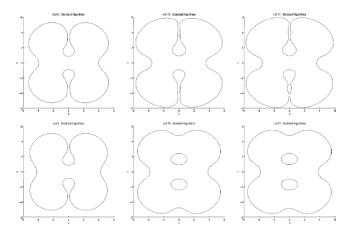
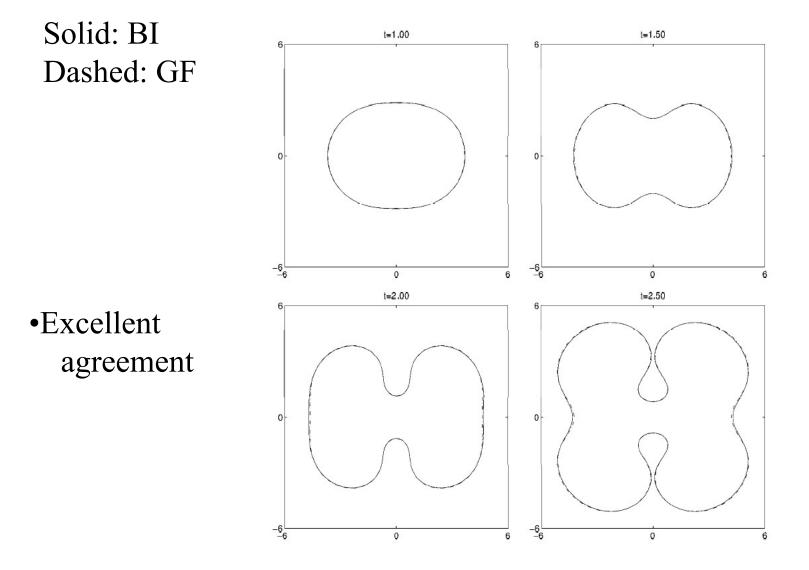


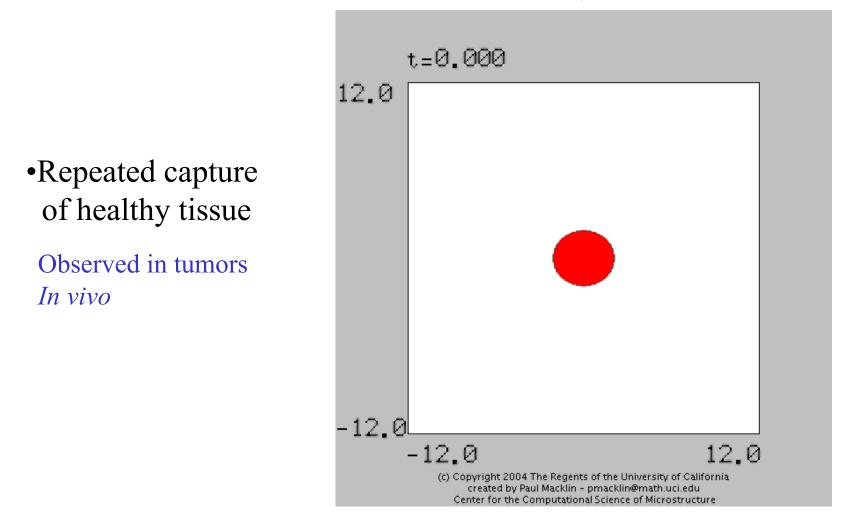
Fig. A.10. Effect of the Curvature and Normal Vector Modifications on a Tumor Growth Simulation: The plots show the solution to the problem in Section 5.3 at t = 2.5, t = 2.75, and t = 2.77. The top row shows the calculation using standard centered differences for κ and **n**; the bottom row shows the same calculation with our modified algorithms.

Poisson 2: Quadratic extrapolation of ghost-value linear approximation of ghost-point WENO5: Reinitialization/Advection

Validation with benchmark boundary integral result



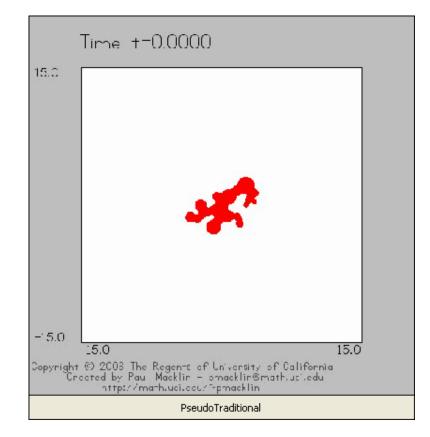
Post-transition dynamics



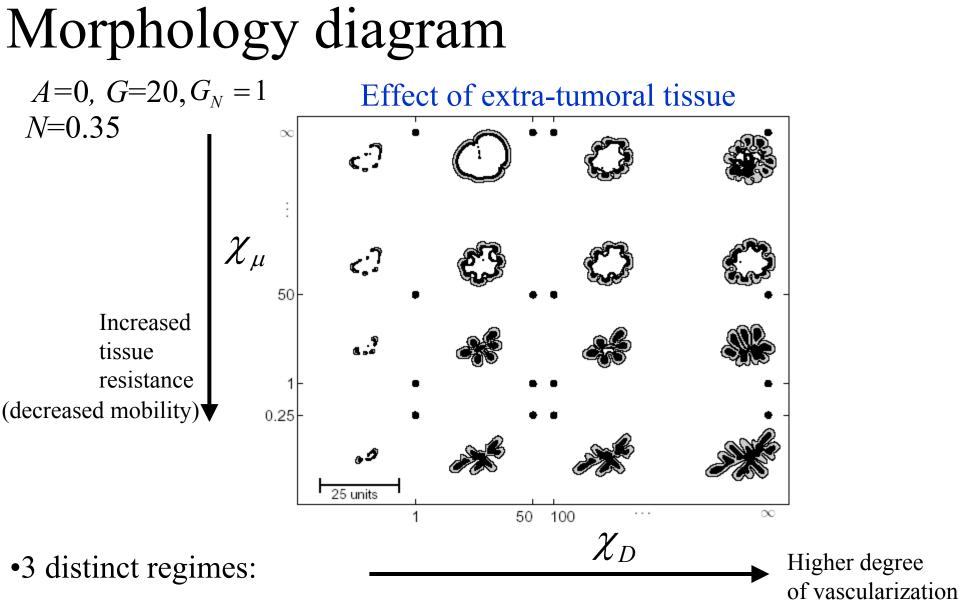
•Captured tissue acts like blood vessels (nutrient supply from 3D) Mimics tumor growing into uniformly vascularized tissue

Growth with necrosis and without 3D nutrient supply

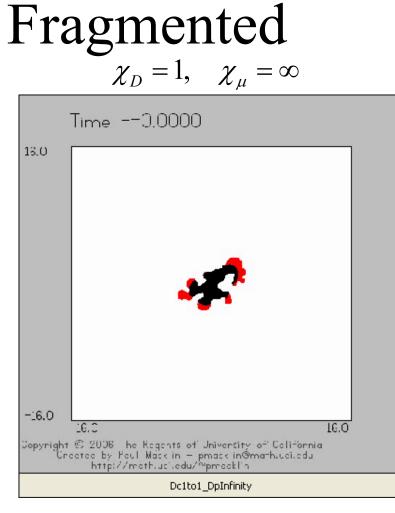
•Captured regions do not act as nutrient source



- •Many topology transitions of tissue and necrotic core
- •Quite different morphology



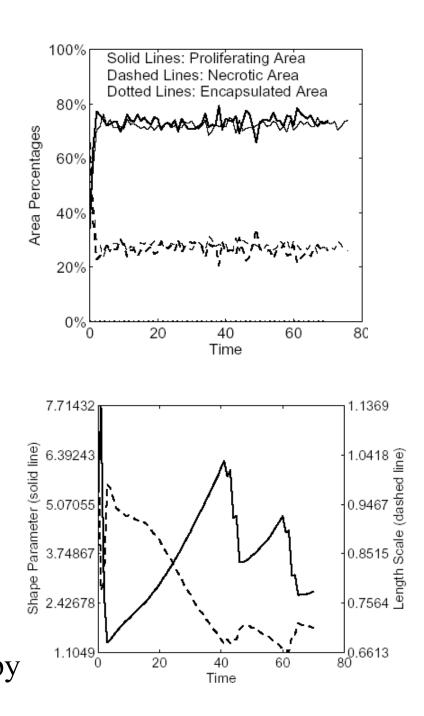
- •Fragmented (nutrient-poor)
- •Fingered (high tissue resistance)
- •Hollowed (low tissue resistance, nutrient-rich)

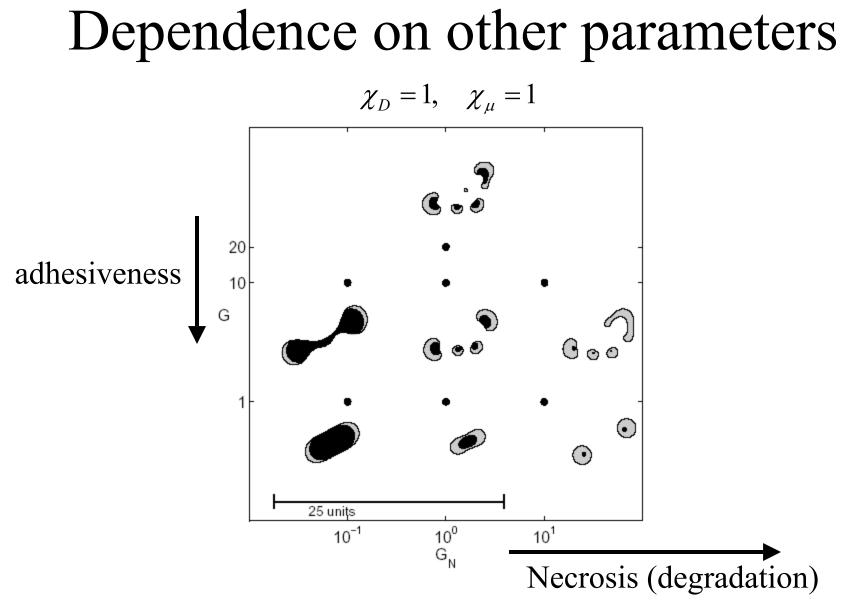


Hypoxia leads to invasion *i.e.*, inhomogeneous nutrient distribution,
imperfect vasculature

Strong metastatic potential

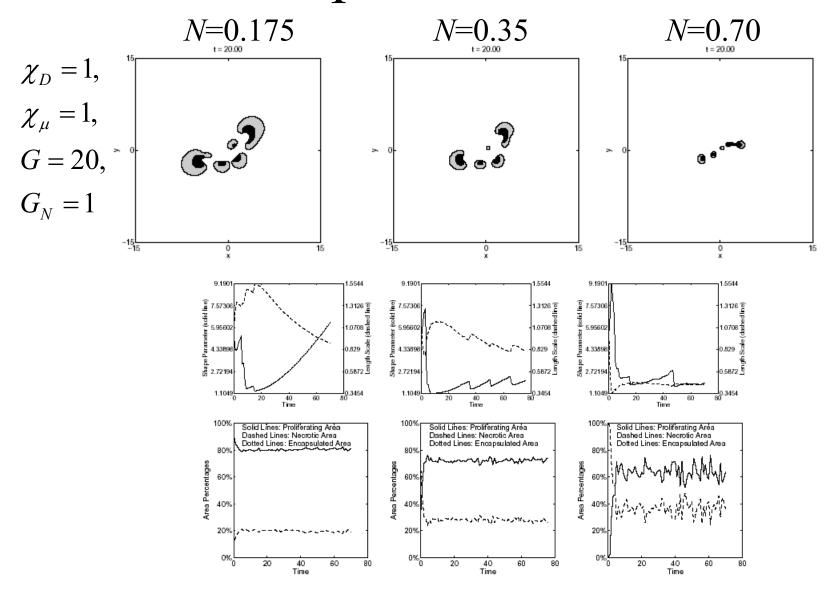
Implications for antiangiogenic therapy
Combine with anti-invasive therapy



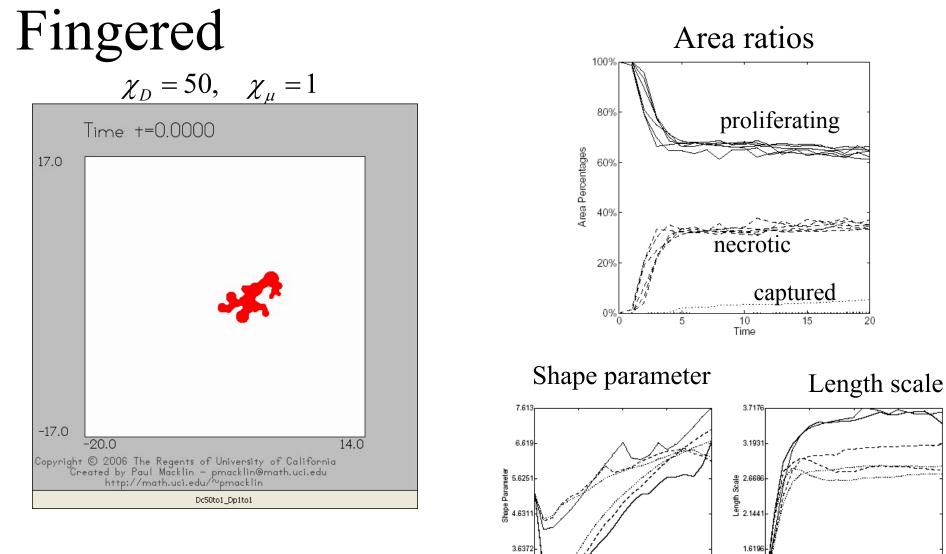


- •Increasing G or G_N enhances instability
- •Increasing G_N decreases necrotic core

Dependence on N



•Strong effect on size



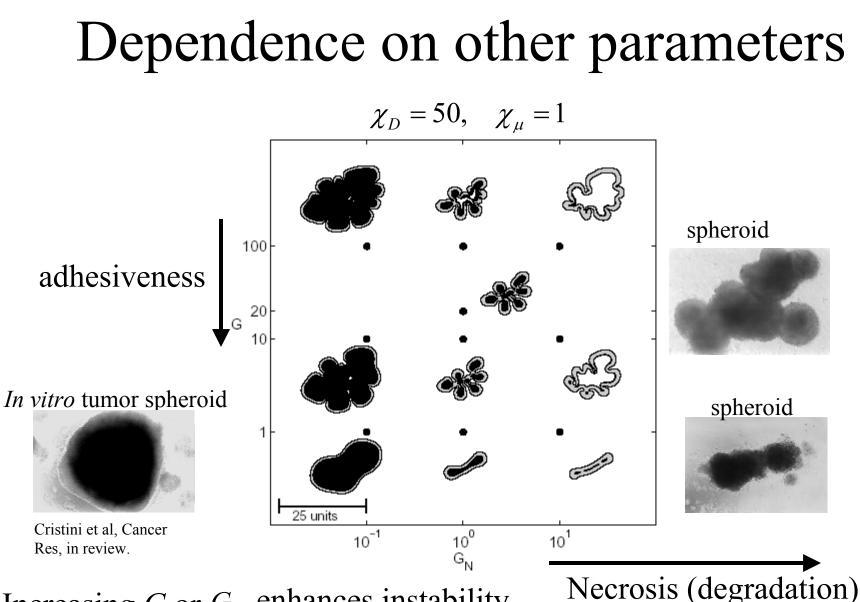
2.6432

Time

Time

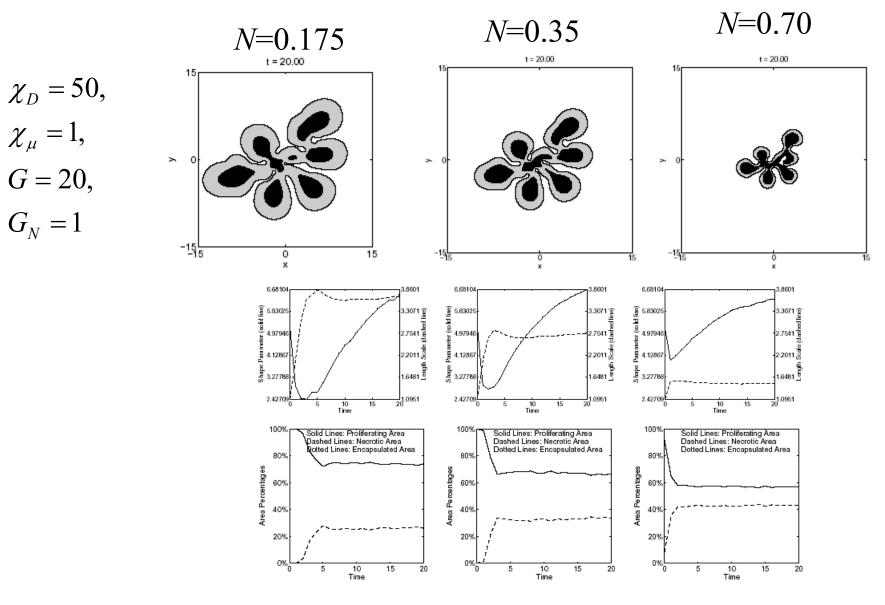
1.0951

•Growth into less mobile tissue results in invasive fingering



- •Increasing G or G_N enhances instability
- •Increasing G_N decreases necrotic core
- •Strong effect on morphology– compact, 1D-like, hollow

Dependence on N

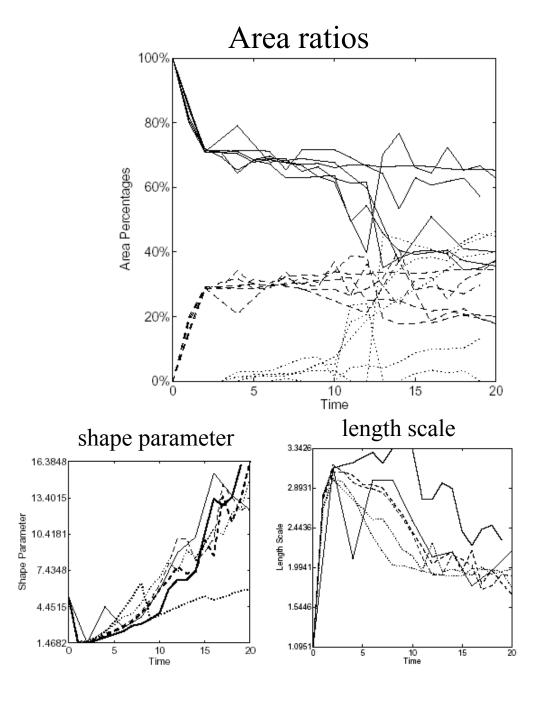


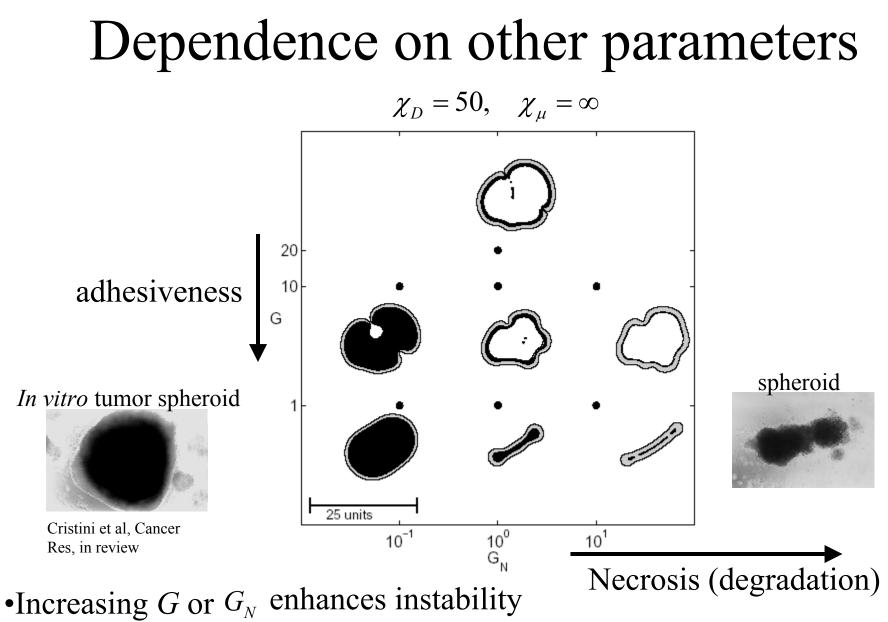
•Strong effect on size

Hollowed $\chi_D = 100, \quad \chi_\mu = 50$

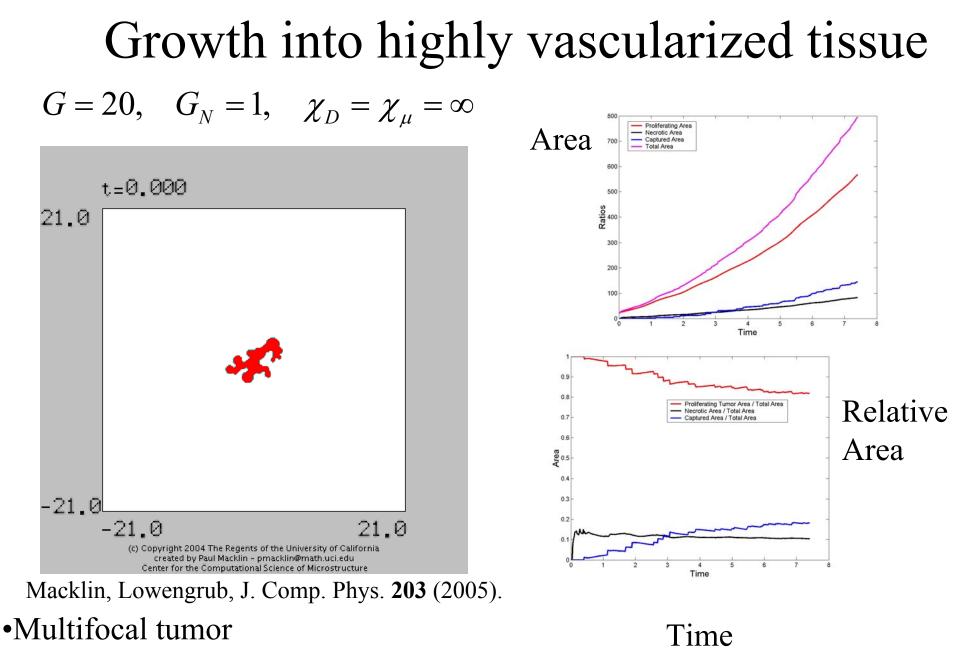
Time +=0.0000 12.0 -12.0 12.0 -12.0 Copyright © 2006 The Regents of University of California Created by Paul Macklin — pmacklin@math.uci.edu http://math.uci.edu/∿pmacklin Dc100to1_Dp50to1

•Repeated capture and coalescence leads to hollow structure

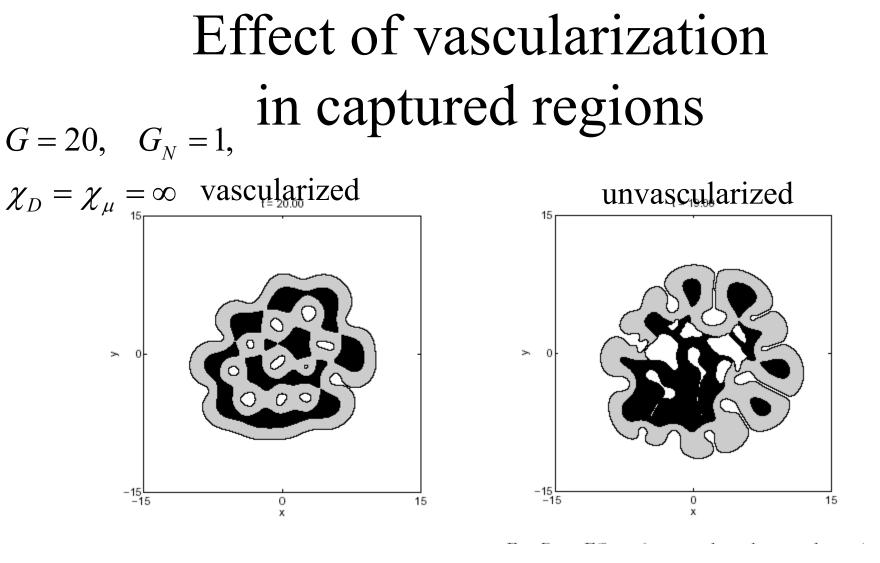




- •Increasing G_N decreases necrotic core
- •Strong effect on morphology– compact, 1D-like, hollow

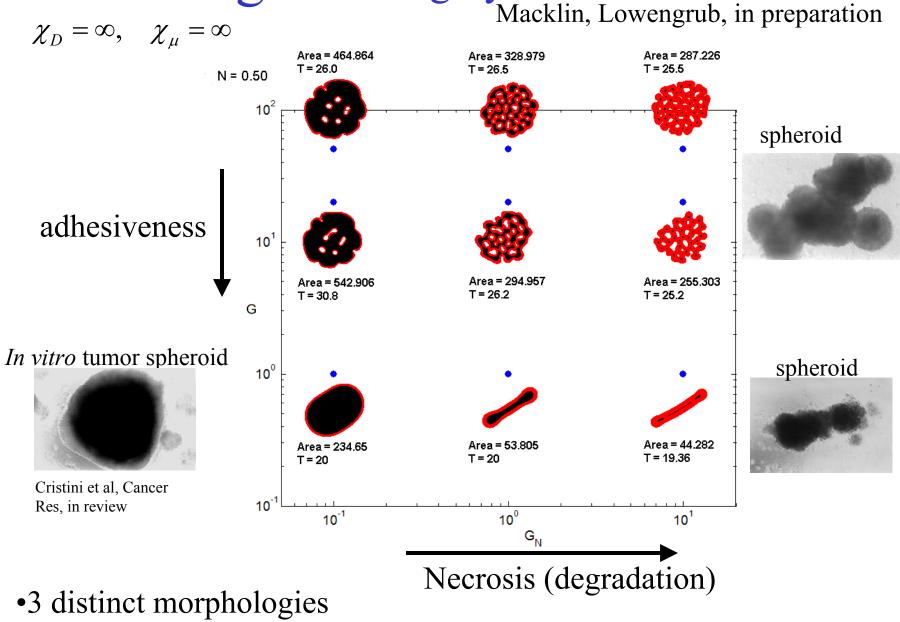


•Statistically self-similar



•Vascularized tumor is more compact as predicted by previous theory.

Phase Diagram: Highly vascularized tissue



•Evolution becomes independent of *G* for *G*>>1

Conclusions

- •Extra-tumoral tissue strongly affects the size and morphology of growing tumors
- •Inhomogeneity in nutrient distribution may lead to invasion, fragmentation and metastasis through diffusional instability
- •Additional instability introduced by growth into less mobile tissue

Next Steps

- •More complex/realistic biophysics
 - •Angiogenesis
 - •Multiphase/Multiscale models
 - •More realistic mechanical response
 - •Finite, complex domains
 - •Stochastic models

•Genetic mutations, celldifferentiation and spatial structure

Non-random Time 1-0.0000 Time $\pm = 0.0000$ 5.00 5.00 -5.00 5.005.00 -5.00 -5.00 apprigh @ 2005 the Regents of the university of Cellibrate Groupe by Pac. Nextlin - onrecklin@math.asi.edu the pit/Ameth.asi.edu/Yournak.im opyright © 2005 The Regents of the University of California Created by Paul Macklin - pmacklin@math.uci.edu NonRandomTest RandomTes

Random

5.00

Komarova, Macklin, L.

Future work

Highly simplified model: $dX_{\Sigma} = dt + dW$

•Strong interaction among length scales with geometry of domain leads to delayed invasion

Modeling growth in real organs

Breast cancer model

