Nonlinear Modeling of Tumor Growth I: Basic Models

John Lowengrub Dept Math, UCI

P. Macklin, Ph.D. 2007 (expected);
Vittorio Cristini (UCI/UT Health Sci. Center)
H. Frieboes (UCI)
S. Wise (UCI)
X. Zheng (U. Mich.)

Motivation

- Provide biophysically justified *in silico* virtual system to study
- Help experimental investigations; design new experiments
- Therapy protocols

Outline

•Introduction to tumor growth Multiscale complex soft matter problem

•Mathematical Models, Simplifications and Analysis (limited biophysics)

•Numerical Methods

•Results

The Six Basic Capabilities of Cancer (Hanahan and Weinberg, 2000)

- Genetic-Level (Nanoscopic)
 - Self-sufficiency in Growth Signals
 - Insensitivity to Growth-inhibitory Signals
 - Evasion of Programmed Cell Death
 - Limitless Replicative Potential
- Tissue-Level (Microscopic)
 - Tissue Invasion and Metastasis
 - Sustained Angiogenesis

Example of solid tumor growth

•Goal: Model all Phases of growth

In this talk, I will simplify the biophysics. More complex biophysics will be considered in subsequent talks.

Cancer/Solid Tumor

•complex micro-structured soft matter

<u>Micro scale</u> •Cell: ~10 micron •Sub cell (genes, large proteins): nanometer

<u>Macro scale</u> Carcinoma: billion to 1000 billion cells or 1—10 centimeter

Recent Reviews: Adam, Chaplain, Bellomo-Preziosi, Araujo-McElwain, Komarova,...

Modeling Choices

Discrete models:

Single-cell models:

- •Immersed boundary method.
- Direct account for cell-cell adhesive links/mitosisLimited to small numbers of cells (um scale)

Modeling Choices Contd

[µm]

•Total energy:

1

$$H = \sum_{lattice \ sites} J_{\tau(S_1)\tau(S_2)} [1 - \delta(S_1, S_2)] + \sum_{cells} \gamma \cdot (v - V^T)^2 .$$

450 ei00 860 1000 1208

[µm]

•Monte Carlo:

$$p = \begin{cases} 1, & \Delta H < 0\\ \frac{\Delta H}{k_b T}, & \Delta H \ge 0 \end{cases}$$

•Direct account of cell-volume and adhesion forces •Limited to small numbers of cells (um scale)

Modeling Choices Contd

Account for adhesion/proliferation
Does not track cell size or shape
Somewhat larger scale ~1mm

•To get to larger (cm) scale need continuum model

- •Continuum approximation: super-cell macro scale cm scale
- •Role of cell adhesion and motility on tissue invasion and metastasis Idealized mechanical response of tissues

•Coupling between growth and angiogenesis (neo-vascularization): necessary for maintaining uncontrolled cell proliferation

•Genetic mutations: random changes in microphysical parameters cell apoptosis and adhesion

•Limitations: poor feedback from macro scale to micro scale (Greenspan, Byrne & Chaplain, Anderson & Chaplain,Levine...)

Cell proliferation and tissue invasion

Greenspan, Chaplain, Byrne, ...

Evolution of nutrient: Oxygen/Glucose

Greenspan, Chaplain, Byrne, ...

Limited Biophysics

•Simplified cell-cycling model $\lambda_M(\sigma) = b \sigma$

•Simplified Blood-tissue transfer $\lambda_B(\sigma_B - \sigma, P_B - P, \mathbf{x}, t) = \lambda_B \cdot (\sigma_B - \sigma)$

•Avascular or fully vascularized growth (i.e. no angiogenesis)

Insight to biophysical systemBenchmark for more complicated systems

Basic model

Greenspan, Chaplain, Byrne, Friedman-Reitich, Cristini-Lowengrub-Nie,...

Nutrient

Pressure

$$0 = D\nabla^{2}\sigma + \Gamma, \qquad \mathbf{u} = -\mu\nabla P, \quad \nabla \bullet u = \begin{cases} \lambda_{P} & \text{in } \Omega_{P} \\ -\lambda_{N} & \text{in } \Omega_{N} \end{cases}$$

$$\Gamma = -\lambda_{B} (\sigma - \sigma_{B}) - \lambda \sigma. \qquad (P)_{\Sigma} = \gamma \kappa \qquad \lambda_{P} = b\sigma - \lambda_{A},$$

$$(\sigma)_{\Sigma} = \sigma^{\infty} \qquad \qquad V = -\mu \mathbf{n} \cdot (\nabla P)_{\Sigma}.$$

normal velocity

Nondimensionalization

(Cristini, Lowengrub and Nie, J. Math. Biol. 46, 191-224, 2003)

Intrinsic length scale: $L_D = D^{\frac{1}{2}} (\lambda_B + \lambda)^{-\frac{1}{2}}$ Adhesion time scale: λ_R^{-1} , $\lambda_R = \gamma \mu / L_D^3$

 σ_{∞}

Nondimensional Parameters:

•Vascularization:
$$B = \frac{\sigma_B}{\sigma^{\infty}} \frac{\lambda_B}{\lambda_B + \lambda}$$

•Apoptosis vs. mitosis $A = \frac{\lambda_A / \lambda_M - B}{1 - B}$ healthy tissue: $A \approx 1$
genetic mutation: $A < 1$
•Mitosis vs. adhesion $G = \frac{\lambda_M}{\lambda_R} (1 - B)$ $\lambda_M = b\sigma^{\infty}$
Mitosis rate
•Necrosis vs. mitosis $G_N = \lambda_N / \lambda_M$
•Viability $N = \frac{\sigma_N}{\sigma} - B$

Nondimensional basic system

nutrient

pressure

 $c = (\sigma / \sigma_{\infty} - B) / (1 - B) \qquad p = P / (\gamma / L_D)$

Free Boundary Problem:

$$\Delta c = c \quad \text{in } \Omega_P \qquad \Delta p = G \cdot \begin{cases} (A - c) & \text{in } \Omega_P \\ G_N & \text{in } \Omega_N \end{cases}$$

where $\Omega_N(t) = \{ \mathbf{x} | c(\mathbf{x}, t) \le N \}$

On Σ :

$$p = \kappa \qquad \mathbf{n} \cdot \frac{d\mathbf{x}_{\Sigma}}{dt} = V = -\nabla p \cdot \mathbf{n}$$

Evolution of a spherical tumor:

1. Low vascularization:

- -0.75 -0.5 0.250 0.8 0.6 0.4 $\frac{V}{G}$ 0.25-0.2 -0.4 -0.6 0.5-0.8 0.75A = 1-1ò R
- 2. Moderate vascularization: A < 0 and G > 0

Mimic angiogenesis, unbounded growth

3. High vascularization: G < 0

A > 0 and G > 0

Dormant state, Shrinkage to zero

Unbounded growth, shrinkage to zero

Agreement w/ observed growth

Transition between

phases

Tumor Spheroids: In vitro study

In vitro growth: No vascularization (diffusion-dominated) Dormant (steady) states

One micron section of tumor spheroid showing outer living shell of growing cells and inner core of necrosis.

3-D video holography through biological tissue P. Yu, G. Mustata, and D. D. Nolte, Dept. of Physics, Purdue University

Tumor Modeling: The basic model

Model validation:

In vitro data: Karim & Carlsson Cancer Res.

Agreement w/ observed growth
Determine microphysical parameters

Microphysical parameters

• A=0,
$$G_N = \begin{cases} 4.0 & u118 \\ 0.31 & u251 \end{cases}$$
 $N \approx 10^{-2}$

$$\lambda_{M} \approx 0.3 \text{ day}^{-1} \qquad D \approx 3 \times 10^{-3} \text{ mm}^{2} / s$$
$$\lambda_{C} \approx 2 s^{-1} \qquad L \approx 4 \times 10^{-2} \text{ mm}$$
(approximately 7 cells)

G can be estimated indirectly.

Estimation of *G*

Frieboes, Cristini, et al. Clin. Canc. Res., 2006.

Low vascularization regime. B=0, G>0. In proliferating region, At tumor boundary,

$$P \sim L_{D}^{2} \lambda_{M} / \mu$$

$$P \sim \tau / L_D R$$

R – nondimensional tumor radius

At steady-state,

 $L_D^2 \lambda_M / \mu \sim \tau / L_D R$ which implies $G \sim 1/R$

 $G \sim 0.1$ for u118 and u251 (N=0, A>0) (underestimate)

Experiments Linear stability theory

needed for further refinement.

Morphological stability

Perturbation

$$r_{\Sigma} = R(t) + \delta(t) \begin{cases} \cos(l\theta) & \text{in } 2D \\ Y_{lm}(\theta, \phi) & \text{in } 3D \end{cases}$$

Underlying Growth $G^{-1}\frac{dR}{dt} = -\frac{AR}{d} + \begin{cases} I_1(R)/I_0(R) \text{ in } 2D\\ \operatorname{coth}(R) - 1/R \text{ in } 3D \end{cases} + F(N, G_N, R)$ *d*=2,3

→
$$G_N = G_N^{steady}(R, N, A)$$
 such that $dR / dt = 0$
(balance between proliferation, necrosis and apoptosis)

R

If
$$N=0$$
, then reduces to $A = A^{steady}(R)$

Shape evolution
$$\left(\frac{\delta}{R}\right)^{-1} \frac{d}{dt} \left(\frac{\delta}{R}\right) = H_{growth}(l, R, A, G, G_N, N) - H_{decay}(l, R, A, G, G_N, N)$$

Self-similar evolution $G = G^{crit}(l, R, G_N, N, A)$ such that $d(\delta/R)/dt = 0$ If N=0, then can also get $A = A^{crit}(l, R, G)$

Nontrivial steady states

• R = 0 and $\delta = 0$ Non-necrotic. $A = A^{steady}(R)$ $G = G^{crit}(l, R, A^{steady})$

Self-similar evolution

Shape instability with high vascularization

Vascular/mechanical inhomogeneity

5 mm

Nonlinear Simulations

Non-necrotic. Boundary integral methods

2D: Cristini, Lowengrub and Nie, J. Math. Biol. 46, 191-224, 2003 3D: Li, Lowengrub, Pham, Cristini, Nie. In preparation

Modified pressure:

$$\widetilde{p} = p + G(c-1) - AG |\mathbf{x}|^2 / 2d$$
 then $\Delta \widetilde{p} = 0$

2D: Double-layer potentials for p and c:

$$c(\mathbf{x}) = \frac{1}{2\pi} \int_{\Sigma} \beta(\mathbf{x}') \mathbf{n} \cdot \nabla K_0(|\mathbf{x} - \mathbf{x}'|) d\Sigma(\mathbf{x}')$$
$$\widetilde{p}(\mathbf{x}) = \int_{\Sigma} \mu(\mathbf{x}') \mathbf{n} \cdot \nabla G(\mathbf{x} - \mathbf{x}') d\Sigma(\mathbf{x}')$$

 $K_0(r)$ Modified Bessel function $G(\mathbf{x}) = \frac{1}{2\pi} \log |\mathbf{x}|$ Green's function

2nd kind Fredholm integral equations for β , μ V (normal velocity) evaluated by the Dirichlet-Neumann Map

Difficulties

•Singular kernels

•Compute singular contribution explicitly to remove singularity.

•Spectrally accurate discretization.

•Stiffness
$$V \sim H(\kappa_s) \longrightarrow \Delta t \leq \Delta s^3$$

Explicit methods.

2D: Equal arclength parametrization. Special choice of tangential velocity.
Small scale decomposition. Nonstiff, explicit time integration schemes

Hou, Lowengrub, Shelley, J. Comp. Phys. 1994.

Numerical Results

- •Steady-states
- •Self-similar evolution
- •Stable evolution
- •Diffusional Instability

Nonlinear Steady-States

Critical G for nontrivial steady state

Convergence to linear theory for small perturbationsNonlinearity reduces the critical G

Examples of Shape preserving evolution

 $A = A^{crit}(l, R, G)$

•Strongly suggests existence of nonlinear self-similar evolution

Stable evolution

Highly vascularized regime.

•Nonlinear results consistent with linear theory.

Diffusional Instability

2D: Cristini, Lowengrub and Nie, J. Math. Biol. 46, 191-224, 2003 3D:, Li, Lowengrub, Pham Cristini, and Nie. In preparation

 $R_0 = 2.0, R_\infty = 2.51$

•Deviation from linear theory

3D Evolution Similar

3D:, Li, Cristini, Nie, Lowengrub. DCDS-B, in press.

Avascular (tumor spheroid) (low cell-to-cell adhesion)

Numerical method:

- •Single layer representation of c.
- •Vector potential representation for p

$$p(\mathbf{x}) = \frac{1}{4\pi} \oint_{\Sigma} \nu(\mathbf{x}') \frac{(\mathbf{x}' - \mathbf{x}) \cdot \mathbf{n}(\mathbf{x})}{|\mathbf{x}' - \mathbf{x}|^3} dS(\mathbf{x}')$$

•Adaptive surface mesh Cristini et al. J. Comp. Phys, 2001

- •Rescaled coordinates
- •Adaptive quadrature of singular integrals
- •Smoothing

Experimental Evidence

•Diffusional Instability. (Tumor spheroids)

glioblastoma

Velocity field (simulation)

Frieboes, et al.

Swirling ejection from bulk

•Theory: Possible mechanism for invasion into soft tissue Cristini, Lowengrub, Nie J. Math. Biol (2003) Cristini, Gatenby, et. al., Clin. Cancer Res. 11 (2005) 6772.

Diffusional Instability during shrinkage *l=5, G=1*

 $A = A^{crit}(l, R, G)$

•Deviation from linear theory (dashed)

•Fragmentation

•Metastasis

•Implication for therapy Cut off blood supply

(antiangiogenic therapy)

Radiotherapy/chemotherapy may lead to instability

Therapy

•Can lead to tumor fission. Metastases.

Diffusional instability implications

•Fundamental instability

•Increased surface area to volume ratio

•Overcome diffusion-limitations on growth

•Mechanism for invasion of soft tissue

•Topology changes may lead to metastasis

•Therapy may lead to fragmentation and metastasis Key features:

•Nonuniform cell-proliferation

•Competition between mitosis, apoptosis and adhesion

Conclusions

•Basic model is able to capture basic qualitative/quantitative features of tumor growth

•Instability in high vascularization regime requires vascular or mechanical inhomogeneity

•Diffusional instability provides a mechanism to overcome diffusional limitations on growth and can lead to invasive growth and metastasis