These pages are under construction!
Biocomputational and Experimental Modeling of Cancer and Chemotherapy

Microstructured Materials

 

Microstructured materials, such as emulsions and polymer blends, crystals, thin films and metallic alloys, blood and biological tissues, are fundamental to many applications involving transport, mixing, and separation of petroleum, chemical, and waste streams, food processing, composite materials, drug delivery and biomedical applications.

These diverse materials share the common feature that the microscale and macroscale are linked. The phenomena at microscopic scale, such as the morphological instability of crystalline precipitates and drop deformation, break-up and coalescence, determine the microstructure and its time evolution; thus affecting the rheology and mechanical properties of the materials on the macroscale.

The goal of our research is to provide a quantitative understanding of microstructured materials by two steps:
(1). detailed description of the phenomena at the microscale;
(2). linking the microstructural phenomena and the macroscopic behavior.

We specialize in the use of nonlinear analysis and the development and use of state-of-the-art adaptive numerical algorithms (capable of bridging wide ranges in length scales) to study microstructured materials.



Current projects include: Multiphase Flows, Crystal Growth, Nanostructure Patterning, Metallic Alloys, Tumor Growth, Tissue Engineering.