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SCALING LIMITS FOR BEAM WAVE PROPAGATION IN ATMOSPHERIC

TURBULENCE

ALBERT C. FANNJIANG∗ KNUT SOLNA†

Abstract. Description of waves that propagate through the turbulent atmosphere is a funda-
mental problem, for instance from the point of view of applications to communication and remote
sensing. Yet, so far, very little is known about how the wave field interacts with the turbulent or
multiscale nature of the refractive index which derives from the multiscale nature of the tempera-
ture fluctuations. The parabolic or forward scattering approximation leads to a random Schrödinger
equation. Here, we take the parabolic wave equation as our starting point and derive a white noise
approximation for this problem. We start with a description where the non-Gaussian multiscale
nature of the refractive fluctuations are described by a power law spectrum with prescribed inner
and outer scales and analyze the asymptotic limits corresponding respectively to a relatively large
outer scale and or small inner scale. The reference scale in our modeling is taken to be the Fresnel
length. A main tool used to derive the convergence to a Gaussian Markov limit is the method of
multiple scales . From the white noise approximation we derive closed equations for the moments
of the wave field.

1. Introduction

The small-scale refractive index variations, called the refractive turbulence, in the atmosphere is
the result of small scale fluctuations of temperature, pressure and humidity caused by the turbu-
lence of air velocities. For optical propagation in the atmosphere the influence of the temperature
variations on the refractive index field is dominant whereas in the microwave range, the effect of
the humidity variations is more important. The refractive turbulence results in the phenomena of
beam wander, beam broadening and intensity fluctuation (scintillation). It is important to note
that these effects depend on the length scales of the waves as well as the refractive turbulence [16].

The refractive turbulence is modeled on the basis of Kolmogorov theory of turbulence which
introduces the notion of the inertial range bounded by the outer scale L0 (of the order of 100m−1km)
and the inner scale `0 (of the order of 1− 10mm). Other features of the refractive turbulence in the
open clear atmosphere include [19]: (i) small changes (typical value of 3× 10−4 at sea level) in the
refractive index related to small variations in temperature (on the order of 0.1 − 1oC), (ii) small
scattering angle which is of the order λ/`0 and has the typical value 3 × 10−4

rad for λ = 0.6mn
and `0 = 2mm. Perturbation methods for solving the Maxwell equations are adequate provided
that the propagation distance is less than, say, 100m, a severe limitation on their applicability to
imaging or communication problems. Our motivation is mainly from laser or microwave beams but
our consideration and results apply equally well to ultrasound waves in atmospheric turbulence.
The results are also relevant in the context of ultrasound waves penetrating through complicated
multiscale fluctuating (interface) zones in for instance human tissue.

Under the condition λ = O(`0) (including the millimeter and the sub-millimeter range) the
depolarization term in the Helmholtz equation for the electric field is negligible [19] and one can
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use the (scalar) Helmholtz equation

(1) ∇2E + k2E = −k2ε̃aE

with appropriate boundary conditions where k is the wavenumber and ε̃a the random fluctuation of
the atmospheric permittivity field. This is related to the refractive index field n and its fluctuations
n′ as

ε̃a = (n2 − E[n2])/E[n2] ≈ 2n′
E[n]/E[n2]

with n′ = n−E[n] where we have scaled the wavenumber so that the mean ε̄a = 1. Here and below
E[·] denotes the ensemble averaging.

1.1. The rescaled parabolic approximation. The well-known parabolic approximation to equa-
tion (1) is applicable in a regime where the variations of the index of refraction are small on the
scale of the wavelength so that backscattering is negligible [19]. This is the case when, for instance,
the propagation distance Lz satisfies λ3Lz � `4

0 or λLz � L2
0. For laser beams, these conditions

give a very large range of validity.
In this paper we study the initial value problem for the parabolic wave equation

(2) ∇2
⊥Ψ(z,x) + 2ik

∂Ψ(z,x)

∂z
= −k2ε̃a(z,x)Ψ(z,x), Ψ(0,x) = F0

(x

a

)

∈ L2(R2)

where z is the longitudinal coordinate in the direction of the propagation, x = (x1, x2) is the
transverse coordinates, ∇⊥ is the transverse gradient and Ψ is related to the scalar wave field E
by E = Ψ(z,x) exp (ikz). The initial condition has a typical width a which is the aperture. Below
we will drop the perp in denoting the derivatives in the transverse directions.

The difficulty in solving equation (2) lies in the random multiscale nature of ε̃a(z,x). First
we non-dimensionalize eq. (2) as follows. Let Lz be the propagation distance in the longitudinal
direction. Let λ0 be the characteristic wavelength. The corresponding central wavenumber is
k0 = 2π/λ0. The Fresnel length Lf is then given by

Lf =
√

Lz/k0.

We introduce dimensionless wave number and coordinates

k̃ = k/k0, x̃ = x/Lf , z̃ = z/Lz

and rewrite the equation in the form

(3) 2ik̃
∂Ψ

∂z
+ ∆Ψ + k̃2k0Lz ε̃a(zLz,xLf )Ψ = 0, Ψ(0,x) = F0(γ

1/2x) ∈ L2(R2)

after dropping the tilde in the coordinate variables where

γ =

(

Lf

a

)2

is assumed to be O(1), thus the source is supported on the scale determined by the Fresnel length.

1.2. Model spectra. A widely used model for the structure function of the refractive index field
of the atmosphere is based on the Kolmogorov theory of turbulence and has the following modified
Von K’arm’an spectral density

(4) Φn(k) = 0.033C2
n(|k|2 + K2

0 )−11/6 exp (−|k|2/K2
m)

where k = (ξ,p), with ξ ∈ R,p ∈ R
2 the Fourier variables conjugate to the longitudinal and

transversal coordinates, respectively. Here K0 = 2π/L0,Km = 5.92/`0. This spectrum has the
correct behavior only in the inertial subrange, i.e.

(5) Φn(k) ∼ |k|−11/3, |k| ∈ (2πL−1
0 , 2π`−1

0 ).
2



Outside of this range, particularly for |k| � 2πL−1
0 there is no physical basis for their behavior; they

are just mathematically convenient expressions of the cutoffs. In particular, if the wave statistics
strongly depend on `0 or L0, then the problem probably requires more accurate information on the
refractive index field outside of the inertial range [5], [10], [11]. Note that the ratio L0/`0 grows

like Re3/4 as the Reynolds number Re tends to infinity.
There are several variants of (4) arising from modeling more detailed features of the refractive

index field. One of them is the Hill spectrum [1], [13] to account for the “bump” at high wave
numbers which is known to occur near the inner scale

(6) Φn(k) = 0.033C2
n

[

1 + 1.802|k|/Km − 0.254(|k|/Km)7/6
]

(

|k|2 + K2
0

)−11/6
exp (−|k|2/K2

m)

where Km = 3.3/`0. The coefficient C2
n is itself a random variable that depends on time as well as

the altitude. Note that in atmospheric turbulence the inner and outer scales and the exponent in
the power law may also have to be modeled as stochastic processes [18]. The temporal dependence
is irrelevant for optical propagation; the altitude dependence has a rather permanent, non-universal
structure with length scales much greater than the outer scale L0 [16]. It would complicate the
analysis but not the main features of our conclusions. We will consider these issues in a separate
paper we will treat it as a (small) constant here.

We will consider a family of power-law type spectra

(7) Φ(α,k) ∼ |k|1−2α|k|−d, , d = 2, for |k| ∈ (L−1
0 , `−1

0 ),

with possibly different coefficients at the two ends of the inertial range as the ratio ρ → ∞ in the
high Reynolds number limit. We assume that the spectrum decays sufficiently fast for |k| � `−1

0

while staying bounded for |k| � L−1
0 . The details of the spectrum are not important for our

analysis, only the exponent α is. In particular, α = 4/3 for the Kolmogorov spectrum (5).

1.3. White noise scaling. Let us introduce the non-dimensional parameters that are pertinent
to our scaling:

ε =

√

Lf

Lz
, η =

Lf

L0
, ρ =

Lf

`0
.

In terms of the parameters and the power-law spectrum in (7) we rewrite (3) as

(8) 2ik̃
∂Ψε

∂z
+ ∆Ψε +

k̃2

ε
σαV(

z

ε2
,x)Ψε = 0, Ψε(0,x) = F0(γ

1/2x) ∈ L2(R2).

with

(9) σα =
Lα−1

f

ε3
C̃n

where C̃n the total structure parameter in the original refractive index spectrum. The spectrum
for the (normalized) process V is given by

(10) Φ(η,ρ)(α,k) ∼ |k|1−2α|k|−d, for |k| ∈ (η, ρ),

as in (7). We only require that (10) holds for 1 � |k| ≤ ρ (Theorem 1) and/or 1 � |k| ≥ η
(Theorem 2), possibly with different O(1) constants, and that Φ(η,ρ) decays fast for |k| ≥ ρ and
levels off for |k| ≤ η. For high Reynolds number one has L0/`0 = ρ/η � 1 which is always the case
in our study.

In the beam approximation one has ε � 1. The beam approximation is well within the range of
validity of the parabolic approximation. The white-noise scaling then corresponds to σα = O(1).

3



We set it to unity by absorbing the constant into V since the constants in (10) are unspecified.
This implies relatively weak fluctuations of the index field, i.e.

C̃n ∼ L
5/2−α
f L−3/2

z � 1, as Lz → ∞

in view of the fact that α ∈ (1, 2) and ε � 1.
In the present paper we first study the case ρ → ∞, but η fixed, as ε → 0 (Theorem 1). This

means that the Fresnel length is comparable to the outer scale. Second, we study the narrow beam
regime η � 1 where the Fresnel length is in the middle of the inertial subrange (Theorem 2). For
the proof, we adopt the approach of [9] where the turbulent transport of passive scalars is studied.

2. Formulation and main results

2.1. Martingale formulation. We consider the weak formulation of the equation:

2ik̃ [〈Ψε
z, θ〉 − 〈Ψ0, θ〉] = −

∫ z

0
〈Ψε

s,∆θ〉 ds − k̃2

ε

∫ z

0

〈

Ψε
s,V(

s

ε2
, ·) · θ

〉

ds(11)

for any test function θ ∈ C∞
c (Rd), the space of smooth functions with compact support. The

tightness result (Section 4.1) implies that for L2 initial data the limiting measure P is supported
in L2

w([0, z0];L
2
w(Rd)).

For tightness as well as identification of the limit, the following infinitesimal operator Aε will
play an important role. Let Vε

z ≡ V(z/ε2, ·), Fε
z the σ-algebras generated by {Vε

s , s ≤ z} and E
ε
z

the corresponding conditional expectation w.r.t. Fε
z . Let Mε be the space of measurable functions

adapted to {Fε
z ,∀z} such that supz<z0

E|f(z)| < ∞. We say f(·) ∈ D(Aε), the domain of Aε, and

Aεf = g if f, g ∈ Mε and for f δ(z) ≡ δ−1[Eε
zf(z + δ) − f(z)] we have

sup
z,δ

E|f δ(z)| < ∞

lim
δ→0

E|f δ(z) − g(z)| = 0, ∀z.

Consider the special class of admissible functions f(z) = φ(〈Ψε
z, θ〉), f ′(z) = φ′(〈Ψε

z, θ〉),∀φ ∈
C∞(R), then we have the following expression from (11) and the chain rule

Aεf(z) =
i

2k̃
f ′(z)

[

〈Ψε
z,∆θ〉 +

k̃2

ε
〈Ψε

z,Vε
zθ〉
]

.(12)

A main property of Aε is that

(13) f(z) −
∫ z

0
Aεf(s)ds is a Fε

z -martingale, ∀f ∈ D(Aε).

Also,

(14) E
ε
sf(z) − f(s) =

∫ z

s
E

ε
sAεf(τ)dτ ∀s < z a.s.

(see [14]). We denote by A the infinitesimal operator corresponding to the unscaled process Vz(·) =
V(z, ·).
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Define

Γ(1)(x,y) =

∫ ∫ ∫ ∞

0
cos ((x − y) · p) cos (sξ)Φ(η,ρ)(α, ξ,p) ds dξ dp(15)

= π

∫

cos ((x − y) · p)Φ(η,ρ)(α, 0,p) dp

Γ(x,y) = lim
ρ→∞

Γ(1)(x,y)(16)

Γ0(x) = Γ(x,x)(17)

where we have written the wavevector k ∈ R
3 as k = (ξ,p) with p ∈ R

2.
Now we formulate the solutions for the Gaussian Markovian model (for Theorem 1) as the

solutions to the corresponding martingale problem: Find a measure P (of Ψz) on the subspace of

D([0,∞);L2
w(Rd)) whose elements have the initial condition F0(γ

1/2x) such that

f(〈Ψz, θ〉) −
∫ z

0

{

f ′(〈Ψs, θ〉)
[

i

2k̃
〈Ψs,∆θ〉 − k̃2

4

〈

Ψs,Γ0θ
〉

]

− k̃2

4
f ′′(〈Ψs, θ〉)

〈

θ,KΨsθ
〉

}

ds

is a martingale w.r.t. the filtration of a cylindrical Wiener process, for each f ∈ C∞(R)

where

(18) KΨsθ =

∫

Ψs(x)Ψs(y)Γ(x,y)θ(y) dy.

The Gaussian Markovian model has been extensively studied for beam wander, broadening and
scintillation effects in the literature (see, e.g. [4], [12]). It can also been written as the Itô’s
equation

dΨz =

(

i

2k̃
∆ − k̃2

4
Γ0

)

Ψz dz +
ik̃√
2

(

KΨz

)1/2
dWz

=

(

i

2k̃
∆ − k̃2

4
Γ0

)

Ψz dz +
ik̃√
2
ΨzdW z, Ψ0(x) = F0(γ

1/2x)

where W z is the Brownian field with the spatial covariance Γ(x,y).
As we let η = η(ε) → 0 (Theorem 2) the limiting Gaussian, Markovian model has different

covariance structure Γ′. as defined below. We introduce the new fields

V ′(z,x) = V(z,x) − V(z, 0)(19)

=

∫

[exp (ip · x) − 1] V̂(z, dp)(20)

in view of the (partial) spectral representation for V

V(z,x) =

∫

exp (ip · x)V̂(z, dp)

where the process V̂(z, dp) is the (partial) spectral measure of orthogonal increments over p.
Let

Γ′(x,y) = lim
ρ→∞,η→0

E

[

V ′
z(y)

∫ ∞

z
Ez

[

V ′
s(x)

]

ds

]

(21)

= π

∫

(eix·p − 1)(e−iy·p − 1)Φ∞
0 (α,p)dp

and
Γ′

0(x) = Γ′(x,x)
5



where

Φ∞
0 (α,p) = lim

ρ→∞,η→0
Φ(η,ρ)(α, 0,p).

Note that the limit η → 0 in (21) is convergent only if

α < 3/2;

in particular, the limit exists for the Kolmogorov spectrum α = 4/3.

2.2. Uniqueness. To identify the limit we need the uniqueness result for the limiting martingale
problem. Because of the non-smoothness of the white-noise potential the approach of [7] does not
apply here.

Take the function f(r) = rn in the martingale formulation, we arrive after some algebra at the
following equation

∂F
(n)
z

∂z
= C1F

(n)
z + C2F

(n)
z(22)

for the n−point correlation function

F (n)
z (x1, . . . ,xn) ≡ E [Ψz(x1) · · ·Ψz(xn)]

where

C1 =
i

2k̃

n
∑

j=1

∆xj
(23)

C2 = − k̃2

4

n
∑

j,k=1

Γ(xj ,xk), with Γ(x,x) = Γ0(x)(24)

or C2 = − k̃2

4

n
∑

j,k=1

Γ
′
(xj ,xk), with Γ

′
(x,x) = Γ

′
0(x).(25)

We will now establish the uniqueness for eq. (22) with the initial data

F
(n)
0 (x1, . . . ,xn) = E [Ψ0(x1) · · ·Ψ0(xn)] , Ψ0 ∈ L2(R2).

In the former case (24) C2 is a bounded, Hölder continuous function, we rewrite eq. (22) in the
mild formulation

F (n)
z = exp (zC1)F

(n)
0 +

∫ z

0
exp [(z − s)C1]C2F

(n)
s ds

whose local existence and uniqueness can be easily established by straightforward application of
the contraction mapping principle. By linearity, local well-posedness can be extended to global
well-posedness.

In the latter case (25) C2 is unbounded, Hölder continuous function with sub-Lipschitz growth.
We first note that C2 is non-positive everywhere since

n
∑

j,k=1

Γ
′
(xj ,xk) = π

∫

∑

j

(eixj ·p − 1)
∑

k

(eixk·p − 1)Φ∞
0 (α,p)dp ≥ 0.

Hence both C1 and C2 are generators of one-parameter contraction semigroups on L2(R2n), thus by
the product formula (Theorem 3.30, [6]) we have

lim
m→∞

[

exp (
z

m
C1) exp (

z

m
C2)
]m

F = exp [z(C1 + C2)]F

for all F ∈ L2(R2n), which then gives rise to a unique semigroup on L2(R2n).
6



2.3. Main assumptions and theorems. Assume that the new random field

Ṽz(x) =

∫ ∞

z
Ez [Vs(x)] ds(25)

is well-defined. This holds, for instance, when the mixing coefficient of Vz is integrable [8]. It is
easy to see that

AṼz = −Vz

and that Ṽz(x) has a spectral density like (10) with an exponent α + 1 such that

Γ(1)(x,y) = E

[

Ṽz(x)Vz(y)
]

.

In addition to (10) we also assume that up to the fourth moment of the field V can be estimated
in terms of (10) as in the case of Gaussian fields. We call this the fourth-order scale-invariance
property. We assume that for η > 0 fixed,

sup
z<z0

‖θV(
z

ε2
, ·)‖2 = o

(

1

ε

)

, ε → 0, ∀θ ∈ C∞
c (Rd)(26)

with a random constant of finite moment. We assume that

sup
z<z0

‖θV ′(
z

ε2
, ·)‖2

2 = O(ε−1), independent of η and ρ, ∀θ ∈ C∞
c (Rd)(27)

with a random constant of finite moment. Note that the refractive index field V loses regularity as
ρ → ∞ and homogeneity as η → 0.

In the case of Gaussian refractive index fields conditions (26) and (27) are always satisfied

sup
z<z0

‖θV(
z

ε2
, ·)‖2 ≤ C1 log

[z0

ε2

]

(28)

sup
z<z0

‖θV ′(
z

ε2
, ·)‖2 ≤ C2 log

1

ε
(29)

where the random constants C1, C2, C3 have a Gaussian-like tail by Chernoff’s bound.

Theorem 1. Let V satisfy (10), (25), (26) and the fourth-order scale-invariance property. Let
ρ → ∞ as ε → 0 while η is fixed such that

lim
ε→0

ερ2−α = 0.(30)

Then the weak solution Ψε of (11) converges in the space of D([0,∞);L2(Rd)) to that of the Gauss-
ian, Markovian model with the covariance functions Γ and Γ0.

Remark 1. The power-law spectrum (10) plays no role in the proofs of Theorem 1 and 2. A
similar theorem holds for the random media with a finite correlation length such that their fourth
moments can be controlled by their second moments and that the roughness of the random media
can be controlled as in for instance (30).

Remark 2. Since both the limiting and pre-limiting equations preserve the L2-norm of the initial
data it suffices to prove the convergence in the space D([0,∞);L2

w(Rd)) where the weak topology is
used.

Note that in the limiting model the white-noise velocity field has transverse regularity of Hölder
exponent α − 1/2.

Next we let η tend to zero as well, but this would induce uncontrollable large scale fluctuation
which should be factored out first. Thus we consider the solution of the form

Ψε(z,x) = Ψ̃ε(z,x) exp (
ik̃

2ε

∫ z

0
Vε

s (0) ds)

7



and the resulting equation

(30) 2ik̃
∂Ψ̃ε

∂z
+ ∆Ψ̃ε +

k̃2

ε
V ′(

z

ε2
,x)Ψ̃ε = 0

where V ′ is defined by (19).

Theorem 2. Let α < 3/2. Let the assumptions of Theorem 1 be satisfied. Additionally, assume
(27) and η = η(ε) → 0 such that

lim
ε→0

εη2−2α = 0.

Then the weak solution Ψ̃ε of (2.3) converges in the space of D([0,∞);L2(Rd)) to that of the
Gaussian, Markovian model with the covariance functions Γ′ and Γ′

0.

Because of α < 3/2, the limiting model is only Hölder continuous in the transverse coordinates.
The convergence of the white-noise limit has been established in [2] and [3] under more stringent

conditions. In particular, their limit theorems do not allow ρ → ∞, η → 0 among other restrictions.
In [17] the random media studied has a finite bandwidth. Also, the geometric optics limit is first
taken, then the white-noise limit and the broad beam limit η → ∞ are taken subsequently.

3. Proof of Theorem 1

3.1. Tightness. In the sequel we will adopt the following notation

f(z) ≡ f(〈Ψε
z, θ〉), f ′(z) ≡ f ′(〈Ψε

z, θ〉), f ′′(z) ≡ f ′′(〈Ψε
z, θ〉), ∀f ∈ C∞(R).

Namely, the prime stands for the differentiation w.r.t. the original argument (not z) of f, f ′ etc.
A family of processes {Ψε, 0 < ε < 1} ⊂ D([0,∞);L2

w(Rd)) is tight if and only if the family
of processes {〈Ψε, θ〉 , 0 < ε < 1} ⊂ D([0,∞);L2

w(Rd)) is tight for all θ ∈ C∞
c (Rd). We use the

tightness criterion of [15] (Chap. 3, Theorem 4), namely, we will prove: Firstly,

lim
N→∞

lim sup
ε→0

P{sup
z<z0

| 〈Ψε
z, θ〉 | ≥ N} = 0, ∀z0 < ∞.(31)

Secondly, for each f ∈ C∞(R) there is a sequence f ε(z) ∈ D(Aε) such that for each z0 < ∞
{Aεf ε(z), 0 < ε < 1, 0 < z < z0} is uniformly integrable and

lim
ε→0

P{sup
z<z0

|f ε(z) − f(〈Ψε, θ〉)| ≥ δ} = 0, ∀δ > 0.(32)

Then it follows that the laws of {〈Ψε, θ〉 , 0 < ε < 1} are tight in the space of D([0,∞);L2
w(Rd))

Condition (31) is satisfied because the L2-norm is preserved. Let

f ε
1 (z) ≡ ik̃

2ε

∫ ∞

z
E

ε
z f ′(z) 〈Ψε

z,Vε
sθ〉 ds

be the 1-st perturbation of f(z). Let

Ṽε
z =

1

ε2

∫ ∞

z
E

ε
zVε

s ds.

We obtain

(32) f ε
1 (z) =

ik̃ε

2
f ′(z)

〈

Ψε
z, Ṽε

zθ
〉

.

Proposition 1.

lim
ε→0

sup
z<z0

E|f ε
1 (z)| = 0, lim

ε→0
sup
z<z0

|f ε
1 (z)| = 0 in probability

.
8



Proof. We have

E[|f ε
1 (z)|] ≤ ε‖f ′‖∞‖Ψ0‖2E‖θṼε

z‖2(33)

and

sup
z<z0

|f ε
1 (z)| ≤ ε‖f ′‖∞‖Ψ0‖2 sup

z<z0

‖θṼε
z‖2.(34)

The right side of (33) is O(ε) while that of (34) is o(1) in probability by (26). Proposition 1 now
follows from (33), (34) and (26). �

Set f ε(z) = f(z) + f ε
1 (z). A straightforward calculation yields

Aεf ε
1 = −ε

4
f ′′(z)

[

〈Ψε
z,∆θ〉 +

k̃2

ε
〈Ψε

z,Vε
zθ〉
]

〈

Ψε
z, Ṽε

zθ
〉

−ε

4
f ′(z)

[

〈

Ψε
z,∆(Ṽε

zθ)
〉

+
k̃2

ε

〈

Ψε
z,Vε

z Ṽε
zθ
〉

]

− ik̃

2ε
f ′(z) 〈Ψε

z,Vε
zθ〉

and, hence

Aεf ε(z) =
i

2k̃
f ′(z) 〈Ψε

z,∆θ〉 − k̃2

4
f ′(z)

〈

Ψε
z,Vε

z Ṽε
zθ
〉

− k̃2

4
f ′′(z) 〈Ψε

z,Vε
zθ〉
〈

Ψε
z, Ṽε

zθ
〉

(33)

−ε

4

[

f ′(z)
〈

Ψε
z,∆(Ṽε

zθ)
〉

+ f ′′(z) 〈Ψε
z,∆θ〉

〈

Ψε
z, Ṽε

zθ
〉]

= Aε
1(z) + Aε

2(z) + Aε
3(z) + Aε

4(z)

where Aε
2(z) and Aε

3(z) are the O(1) statistical coupling terms.
For the tightness criterion stated in the beginnings of the section, it remains to show

Proposition 2. {Aεf ε} are uniformly integrable and

lim
ε→0

sup
z<z0

E|Aε
4(z)| = 0

.

Proof. We show that {Aε
i}, i = 1, 2, 3, 4 are uniformly integrable. To see this, we have the following

estimates.

|Aε
1(z)| ≤ 1

2k̃
‖f ′‖∞‖Ψ0‖2‖∆θ‖2

|Aε
2(z)| ≤ k̃2

4
‖f ′‖∞‖Ψ0‖2‖Vε

z Ṽε
zθ‖2

|Aε
3(z)| ≤ k̃2

4
‖f ′′‖∞‖Ψ0‖2

2‖Vε
zθ‖2‖Ṽε

zθ‖2.

For fixed η, the second moments of the right hand side of the above expressions are uniformly
bounded as ε → 0, ρ → ∞ and hence Aε

1(z), Aε
2(z), Aε

3(z) are uniformly integrable.

|Aε
4| ≤ ε

4

[

‖f ′′‖∞‖Ψ0‖2
2‖∆θ‖2‖Ṽε

zθ‖2 + ‖f ′‖∞‖Ψε
z‖2‖∆(Ṽε

zθ)‖2

]

.

The only term in (28) that is not bounded ρ → ∞ is

‖∆(Ṽε
zθ)‖2,(28)

whose second moment is O(ρ2(2−α)). By assumption, ερ2−α → 0, Aε
4 is therefore uniformly inte-

grable. Finally, it is clear that
lim
ε→0

sup
z<z0

E|Aε
4(z)| = 0.

�
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3.2. Identification of the limit. Once the tightness is established we can use another result in
[15] (Chapter 3, Theorem 2) to identify the limit. Let Ā be a diffusion or jump diffusion operator
such that there is a unique solution ωz in the space D([0,∞);L2

w(Rd)) such that

(28) f(ωz) −
∫ z

0
Āf(ωs) ds

is a martingale. We shall show that for each f ∈ C∞(R) there exists f ε ∈ D(Aε) such that

sup
z<z0,ε

E|f ε(z) − f(〈Ψε
z, θ〉)| < ∞(29)

lim
ε→0

E|f ε(z) − f(〈Ψε
z, θ〉)| = 0, ∀z < z0(30)

sup
z<z0,ε

E|Aεf ε(z) − Āf(〈Ψε
z, θ〉)| < ∞(31)

lim
ε→0

E|Aεf ε(z) − Āf(〈Ψε
z, θ〉)| = 0, ∀z < z0.(32)

Then the aforementioned theorem implies that any tight processes 〈Ψε
z, θ〉 converges in law to the

unique process generated by Ā. As before we adopt the notation f(z) = f(〈Ψε
z, θ〉).

For this purpose, we introduce the next perturbations f ε
2 , f ε

3 . Let

A
(1)
2 (φ) ≡

∫ ∫

θ(x)φ(x)Γ(1)(x,y)φ(y)θ(y) dx dy(33)

A
(1)
3 (φ) ≡

∫

Γ(1)(x,x)φ(x)θ(x) dx(34)

where

Γ(1)(x,y) ≡ E

[

Vε
z (x)Ṽε

z (y)
]

.(35)

It is easy to see that

(35) A
(1)
2 (φ) = E

[

〈φ,Vε
zθ〉
〈

φ, Ṽε
zθ
〉]

.

Define

f ε
2 (z) ≡ k̃2

4
f ′′(z)

∫ ∞

z
E

ε
z

[

〈Ψε
z,Vε

sθ〉
〈

Ψε
z, Ṽε

sθ
〉

− A
(1)
2 (Ψε

z)
]

ds

f ε
3 (z) ≡ k̃2

4
f ′(z)

∫ ∞

z
E

ε
z

[〈

Ψε
z,Vε

s (Ṽε
sθ)
〉

− A
(1)
3 (Ψε

z)
]

ds.

Let

Γ(2)(x,y) ≡ E

[

Ṽε
z (x)Ṽε

z (y)
]

,

and

A
(2)
2 (φ) ≡

∫ ∫

θ(x)φ(x)Γ(2)(x,y)φ(y)θ(y) dx dy(36)

A
(2)
3 (φ) ≡

∫

Γ(2)(x,x)φ(x)θ(x) dx,(37)

we then have

f ε
2 (z) =

ε2k̃2

8
f ′′(z)

[

〈

Ψε
z, Ṽε

zθ
〉2

− A
(2)
2 (Ψε

z)

]

(38)

f ε
3 (z) =

ε2k̃2

8
f ′(z)

[〈

Ψε
z, Ṽε

z Ṽε
zθ
〉

− A
(2)
3 (Ψε

z)
]

.(39)
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Proposition 3.

lim
ε→0

sup
z<z0

E|f ε
2 (z)| = 0, lim

ε→0
sup
z<z0

E|f ε
3(z)| = 0.

Proof. We have the bounds

sup
z<z0

E|f ε
2 (z)| ≤ sup

z<z0

ε2k̃2

4
‖f ′′‖∞

[

‖Ψ0‖2
2E‖Ṽε

zθ‖2
2 + E[A

(2)
2 (Ψε

z)]
]

sup
z<z0

E|f ε
3 (z)| ≤ sup

z<z0

ε2k̃2

4
‖f ′‖∞

[

‖Ψ0‖2E‖Ṽε
z Ṽε

zθ‖2 + E[A
(2)
3 (Ψε

z)]
]

;

both of them tend to zero. �

We have

Aεf ε
2 (z) =

k̃2

4
f ′′(z)

[

−〈Ψε
z,Vε

zθ〉
〈

Ψε
z, Ṽε

zθ
〉

+ A
(1)
2 (Ψε

z)
]

+ Rε
2(z)

Aεf ε
3 (z) =

k̃2

4
f ′(z)

[

−
〈

Ψε
z,Vε

z (Ṽε
zθ)
〉

+ A
(1)
3 (Ψε

z)
]

+ Rε
3(z)

with

Rε
2(z) =

iε2k̃

8

f ′′′(z)

2

[

〈Ψε
z,∆θ〉 +

k̃2

ε
〈Ψε

z,Vε
zθ〉
]

[

〈

Ψε
z, Ṽε

zθ
〉2

− A
(2)
2 (Ψε

z)

]

+
iε2k̃

4
f ′′(z)

〈

Ψε
z, Ṽε

zθ
〉

[

〈

Ψε
z,∆(Ṽε

zθ)
〉

+
k̃2

ε

〈

Ψε
z,Vε

z Ṽε
zθ
〉

]

− iε2k̃

4
f ′′(z)

[

〈

Ψε
z,∆(G

(2)
θ Ψε

z)
〉

+
k̃2

ε

〈

Ψε
z,Vε

zG
(2)
θ Ψε

z

〉

]

(34)

where G
(2)
θ denotes the operator

G
(2)
θ φ ≡

∫

θ(x)Γ(2)(x,y)θ(y)φ(y) dy.

Similarly

Rε
3(z) =

iε2k̃

8
f ′(z)

[

〈

Ψε
z,∆(Ṽε

z Ṽε
zθ)
〉

+
k̃2

ε

〈

Ψε
z,Vε

z Ṽε
z Ṽε

zθ
〉

]

+
iε2k̃

8
f ′′(z)

[

〈Ψε
z,∆θ〉 +

k̃2

ε
〈Ψε

z,Vε
zθ〉
]

[〈

Ψε
z, Ṽε

z Ṽε
zθ
〉

− A
(2)
3 (Ψε

z)
]

− iε2k̃

8
f ′(z)

[

〈

Ψε
z,∆(Γ

(2)
0 θ)

〉

+
k̃2

ε

〈

Ψε
z,Vε

zΓ
(2)
0 θ
〉

]

where

Γ
(2)
0 (x) ≡ Γ(2)(x,x).

Proposition 4.

lim
ε→0

sup
z<z0

E|Rε
2(z)| = 0, lim

ε→0
sup
z<z0

E|Rε
3(z)| = 0.
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The argument is entirely analogous to that for Proposition 3. The most severe factors involve
∆(Ṽε

zθ) and ∆(Ṽε
z Ṽε

zθ), both of which also have the prefactor ε2. Therefore they do not require any
more conditions than what we have needed so far.

Consider the test function f ε(z) = f(z) + f ε
1 (z) − f ε

2 (z) − f ε
3 (z). We have

(31) Aεf ε(z) =
i

2k̃
f ′(z) 〈Ψε

z,∆θ〉 − k̃2

4
f ′′(z)A

(1)
2 (Ψε

z) −
k̃2

4
f ′A

(1)
3 (Ψε

z) − Rε
2(z) − Rε

3(z) + Aε
4(z).

Set

(31) Rε(z) = Rε
1(z) − Rε

2(z) − Rε
3(z), with Rε

1(z) = Aε
4(z).

It follows from Propositions 3 and 5 that

lim
ε→0

sup
z<z0

E|Rε(z)| = 0.

Recall that

M ε
z (θ) = f ε(z) −

∫ z

0
Aεf ε(s) ds

= f(z) + f ε
1 (z) − f ε

2 (z) − f ε
3 (z) −

∫ z

0

i

2k̃
f ′(z) 〈Ψε

z,∆θ〉 ds

+

∫ z

0

k̃2

4

[

f ′′(s)A
(1)
2 (Ψε

s) + f ′(s)A
(1)
3 (Ψε

s)
]

ds −
∫ z

0
Rε(s) ds

is a martingale. Now that (29)-(32) are satisfied we can identify the limiting martingale to be

(28) Mz(θ) = f(z) −
∫ z

0

{

f ′(s)

[

i

2k̃
〈Ψs,∆θ〉 − k̃2

4
Ā3(Ψs)

]

− k̃2

4
f ′′(s)Ā2(Ψs)

}

ds

where

Ā2(φ) = lim
ρ→∞

A
(1)
2 (φ), Ā3(φ) = lim

ρ→∞
A

(1)
3 (φ).

Since 〈Ψε
z, θ〉 is uniformly bounded

|〈Ψε
z, θ〉| ≤ ‖Ψ0‖2‖θ‖2

we have the convergence of the second moment

lim
ε→0

E

{

〈Ψε
z, θ〉2

}

= E

{

〈Ψz, θ〉2
}

.

Use f(r) = r and r2 in (3.2)

M (1)
z (θ) = 〈Ψz, θ〉 −

∫ z

0

[

i

2k̃
〈Ψs,∆θ〉 − k̃2

4
Ā3(Ψs)

]

ds

is a martingale with the quadratic variation

[

M (1)(θ),M (1)(θ)
]

z
=

−k̃2

2

∫ z

0
Ā2(Ψs) ds =

−k̃2

2

∫ z

0

〈

θ,KΨsθ
〉

ds

where

KΨsθ =

∫

Ψs(x)Γ(x,y)Ψs(y)θ(y) dy.

Therefore,

M (1)
z =

ik̃√
2

∫ z

0

√

KΨsdWs

12



where Ws is a real-valued, cylindrical Wiener process (i.e. dWz(x) is a space-time white noise field)

and
√

KΨs is the square-root of the positive-definite operator given in (18).

4. Proof of Theorem 2

We turn to eq. (2.3). We will use the same notation

Ṽε
z (x) =

1

ε2

∫ ∞

z
E

ε
zV ′(

s

ε2
,x) ds.

The proof of the uniform integrability of Aε[f(z) − f ε
1 (z)] breaks down. The problem is related to

the divergence of the second moment of Ṽε
z , an O(η2−2α) quantity. In this case, we work with the

perturbed test function
f ε(z) = f(z) + f ε

1 (z) − f ε
2 (z) − f ε

3 (z)

for both tightness and identification.

Proposition 5.

(28) lim
ε→0

sup
z<z0

E|f ε
j (z)| = 0, lim

ε→0
sup
z<z0

|f ε
j (z)| = 0 in probability, ∀j = 1, 2, 3.

Proof. The argument for the case of f ε
1 (z) is the same as Proposition 1. For f ε

2 (z) and f ε
3 (z) we

have the bounds

sup
z<z0

E|f ε
2 (z)| ≤ C1ε

2η2−2α(29)

sup
z<z0

E|f ε
3 (z)| ≤ C2ε

2η2−2α(30)

both of which are O(ε2) under the assumptions of the theorem.
As for estimating supz<z0

|f ε
j (z)|, j = 2, 3, we can use

Md

∫

|x|<M
|Ṽε

z |2(x) dx in place of

∫

|x|<M
E|Ṽε

z |2(x) dx

in the above bounds and obtain by assumption the desired estimate which have a similar order of
magnitude with an additional factor of 1/ε and a random constant possessing a finite moment. �

Proposition 6.

lim
ε→0

sup
z<z0

E|Rε
j(z)| = 0, j = 1, 2, 3.

Proof. The proof is similar to that of Proposition 5 with the additional consideration due to η → 0.
These additional terms can all be estimated by

C1ε

∫

|x|<M
E

[
∣

∣

∣
Ṽε

z (x)Ṽε
z (x)

∣

∣

∣

]

dx ≤ C2εη
2−2α

which tends to zero under the assumptions of the theorem. �

For the tightness it remains to show

Proposition 7. {Aεf ε} are uniformly integrable.

Proof. We shall prove that each term in the expression (3.2) is uniformly integrable. The analysis
of Proposition 2 still works here except for additional considerations in connection to the limit
η → 0. The most severe term arising from this is

(30) εṼε
z (x)Ṽε

z (x)

in the expression for Rε
3 whose second moment behaves like ε2η4−4α and vanishes in the limit. �

Now we have all the estimates needed to identify the limit as in the proof of Theorem 1.
13
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