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Abstract. In this paper we develop iterative approaches for imaging extended inclusions from multi-
static response measurements at single or multiple frequencies. Assuming measurement noise, we perform a
detailed stability and resolution analysis of the proposed algorithms in two different asymptotic regimes. We
consider both the Born approximation in the nonmagnetic case and a high-frequency regime in the general
case. Based on a high-frequency asymptotic analysis of the measurements, an algorithm for finding a good
initial guess for the illuminated part of the inclusion is provided and its optimality is shown. We illustrate
our main findings with a variety of numerical examples.
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1. Introduction. Recently, we have been interested in the problem of locating and es-
timating the geometric features of small inclusions (compared to the operating wavelength),
using arrays of point source transmitters and receivers at single or multiple frequencies.
This measurement configuration gives the so-called multistatic response matrix (MSR). In
[2], using long-wavelength asymptotic expansions of the measurements of high-order, we
have shown how the electromagnetic parameters and the equivalent ellipse of the target
can be reconstructed. We have also proposed an optimization approach to image geometric
details of the target that are finer than the equivalent ellipse.

In this paper, we consider inclusions of characteristic size much larger than half the
operating wavelength. For such extended inclusions, our purpose is to propose iterative
approaches for imaging them from MSR measurements at single or multiple frequencies.
Since the structure of MSR matrices in this case is quite complicated, a direct approach
cannot be developed for imaging extended inclusions. However, direct approaches can be
used to construct a good initial guess.

We first provide optimization algorithms to reconstruct the inclusion shape. To handle
topology changes such as breaking one component into two, we develop a level set version of
our algorithms. In the presence of measurement noises, a stability and resolution analysis is
carried out in two different asymptotic regimes. We consider both the Born approximation
in the nonmagnetic case and a high-frequency regime in the general case. While in the Born
approximation points inside the target contribute to the MSR measurements, only the ones
on the illuminated part of the boundary do so in the general case. Optimality of a weighted
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subspace migration imaging functional for constructing a good initial guess is shown. In the
presence of white noise, the weights are uniform if the illumination is uniform in the angle
space.

The paper is organized as follows. In Section 2 we formulate the imaging problem in a
simplified electromagnetic setting. We consider solutions in the presence of the inclusion to
the Helmholtz equation in two and three dimensions. In Section 3 we introduce three dif-
ferent optimization algorithms to reconstruct the inclusion shape from MSR measurements.
In order to minimize these three cost functionals, their shape derivatives are computed in
Section 4. Section 5 is devoted to the analysis of the Born approximation in the nonmagnetic
case. Assuming measurement noises, we perform a resolution and stability analysis of the
proposed algorithms.

In Section 6 we turn to the general case and carry out a high-frequency asymptotic
analysis of the MSR matrix. We show that the MSR matrix in this regime depends only on
the part of the boundary of the target that is illuminated. Furthermore, we give evidence
that in order to sharply detect the edges of the boundary one should choose a weight function
in the cost functional that enhances the contributions of the singular vectors in the plunge
region of the singular values. In Section 7 we develop a weighted subspace migration imaging
functional for constructing a good initial guess and show its optimality. We illustrate our
main findings with some numerical examples in Section 8. In Section 9 our main results
for the Helmholtz equation are extended to the elastic case. We develop three optimal
control algorithms for reconstructing the shape of an extended elastic inclusion. An original
algorithm for finding a good initial guess for the illuminated part of the elastic inclusion is
provided. The algorithm is based on a high-frequency analysis of the MSR matrices and is of
migration type. For doing so, one has to decompose the contributions to the MSR matrices
of the compressional and shear waves. In Section 10, in order to handle topology changes
such as breaking one component into two, we convert the optimization procedures into level
set forms. We also formulate a hopping algorithm to improve the reconstruction results
using recursively measurements at multiple frequencies. The paper ends with a discussion
in Section 11.

2. Problem Formulation. Let µ0 and ǫ0 denote the magnetic permeability and elec-
trical permittivity of the background, respectively, that are the electromagnetic parameters
in the absence of any inclusion. Suppose that an electromagnetic inclusion D has µ and ǫ
as its permeability and permittivity. Throughout this paper, we assume that µ0, ǫ0, µ, and
ǫ are positive constants.

For a given wavenumber k, let Γk(x) be the outgoing Green function for ∆ + k2 in
R

d, d = 2, 3, corresponding to a Dirac mass at 0. That is, Γk is the solution to

(∆ + k2)Γk(x) = −δ0(x) in R
d,

subject to the outgoing radiation condition. In three dimensions, the Green function is given

by Γk(x) = eik|x|/(4π|x|), while in two dimensions, Γk(x) = (i/4)H
(1)
0 (k|x|), where H(1)

0 is
the Hankel function of the first kind of order zero.

Suppose that the inclusion D is illuminated by a time-harmonic point source acting at
the point y ∈ R

d \ D at the frequency ω. In this case, the electric field perturbed in the
presence of the inclusion is the solution u(·,y) to the following transmission problem:

∇ ·
(

1

µ0
χ(Rd \D) +

1

µ
χ(D)

)
∇u+ ω2

(
ǫ0χ(R

d \D) + ǫχ(D)
)
u = − 1

µ0
δy (2.1)
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with the radiation condition imposed on u, or equivalently






∆u+ k20u = −δy in R
d \D,

∆u+ k2u = 0 in D,

u
∣∣
+
− u

∣∣
−
= 0 on ∂D,

1

µ0

∂u

∂ν

∣∣∣∣
+

− 1

µ

∂u

∂ν

∣∣∣∣
−

= 0 on ∂D,

u satisfies the outgoing radiation condition,

(2.2)

where k0 = ω
√
ǫ0µ0 and k = ω

√
ǫµ. Here ∂/∂ν denotes the normal derivative to ∂D and

∂u

∂ν

∣∣
±
(x) := lim

t→0+
∇u(x± tν) · ν, x ∈ ∂D,

if the limits exist.
Suppose that we have coincident transmitter and receiver arrays {y1, . . . ,yN} of N

elements, used to detect the inclusion. In the presence of the inclusion the scattered field
induced on the nth receiving element, yn, from the scattering of an incident wave generated
at ym can be expressed as follows:

Anm = u(yn,ym)− Γk0(yn − ym). (2.3)

By reciprocity the response matrix is complex symmetric (but not Hermitian).
The multi-static response (MSR) matrix A = (Anm)n,m=1,...,N describes the transmit-

receive process performed at the array. The problem we consider is to image the inclusion
D from the MSR matrix A. We assume that the target is extended, i.e., its characteristic
size is much larger than half the wavelength, π/k0.

Note that the use of the formal equivalence between electromagnetics and linear acous-
tics, by term-to-term replacing permittivity and permeability by compressibility and volume
density of mass, and the electric field by the pressure field, extends the investigation and
the results below to acoustics.

3. Optimal Control Algorithms. Suppose that ǫ and µ are known. Let Ameas

denote the measured MSR matrix and let A[D] be the (computed) MSR matrix associated
with the inclusion D. The matrix A[D] is symmetric by definition, but the measured matrix
Ameas may not be symmetric due to an additive noise, for instance. Throughout this paper
we symmetrize the measured matrix by the transform A → (A+AT )/2 (which indeed has
the advantage of reducing the noise level in the case of additive noise as noticed in [5]). Here
T stands for the transpose.

A standard algorithm to image the inclusion is to minimize over D the cost functional
defined by [16]

J1[D] :=
1

2

N∑

n,m=1

∣∣Anm[D]−Ameas,nm

∣∣2. (3.1)

In the following we use extensively the Singular Value Decomposition (SVD) of a sym-

metric complex matrix A written in the usual form A = VΣV
T
. Let σ

(l)
meas, l = 1, . . . , L,
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be the singular values of Ameas counted according to multiplicity and v
(l)
meas be the singular

vector associated with σ
(l)
meas, so that (v

(l)
meas)Ll=1 is a basis of the image space of Ameas; L

being its dimension (i.e. the number of non-zero singular values).
A second algorithm is to minimize over D the cost functional defined by

J2[D] :=
1

2

L∑

l=1

W (σ(l)
meas)

∥∥∥
(
A[D]−Ameas

)
v(l)
meas

∥∥∥
2

, (3.2)

whereW is a real-valued weight function. As we will see the weight function can be useful to
enhance some geometrical features of the inclusion. Here, the MSR discrepancy is minimized
with respect to the signal space.

In this paper we propose also a third algorithm. At each step j, we arrange the singular
values, σ(l′)[Dj ], of the computed matrix A[Dj ] in a descending order and count them

according to their multiplicities. Let v(l′)[Dj ], j = 1, . . . , L′, be the first L′ singular vectors

associated with σ(l′)[Dj ].

A third algorithm is to minimize at the step j over all the changes D = Dj + δD the
cost functional

J (j)
3 [D] :=

1

2

L′∑

l′=1

L∑

l=1

W (σ(l)
meas)W

′(σ(l′)[Dj ])
∣∣∣
〈
(A[D]−Ameas)v

(l)
meas,v

(l′)[Dj ]
〉∣∣∣

2

, (3.3)

where W ′ is a second weight function. Here, the MSR discrepancy of the research direction
is minimized in the direction of the signal space.

Here and throughout this paper, 〈 , 〉 denotes the Hermitian product. The third algo-
rithm is a discrete version of the algorithm introduced in [4]. It is worth emphasizing that

the cost functional J (j)
3 is updated at every step j of the optimization procedure.

In the forthcoming sections, we discuss merits and demerits of these algorithms. We
also carry out a detailed stability and resolution analysis. Using asymptotic formulations of
the MSR matrix, we propose a method for choosing a prior guess and show its optimality.

4. Shape Derivatives. In order to minimize the cost functional Jj , j = 1, 2, 3, we
update ∂D by ∂Dh. To this end we use the shape derivative of the MSR matrix. Let

∂Dh :=
{
x+ h(x)ν(x),x ∈ ∂D

}
, (4.1)

where ν is the outward unit normal to ∂D and h is a C1 function on ∂D. Let

M[
µ0

µ
](x) =

(µ0

µ
− 1

)(µ0

µ
ν(x)⊗ ν(x) + τ (x)⊗ τ (x)

)
, x ∈ ∂D

in two dimensions where τ (x) is the unit tangential vector to ∂D at x, and

M[
µ0

µ
](x) =

(µ0

µ
− 1

)(µ0

µ
ν(x)⊗ ν(x) +

2∑

k=1

τ k(x)⊗ τ k(x)
)
, x ∈ ∂D

in the three-dimensional case where τ 1(x) and τ 2(x) are two orthogonal unit tangential
vectors to ∂D at x.
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Let u[D](x,y) be the solution to (2.2). According to [10], the following asymptotic
formula holds as ‖h‖C1 → 0:

u[Dh](x,y)− u[D](x,y) =

∫

∂D

h(z)

[
∇zu[D](x, z)TM[

µ0

µ
](z)∇zu[D](z,y)

+ω2(ǫ − ǫ0)µ0u[D](x, z)u[D](z,y)

]
dσ(z) + o

(
‖h‖C1

)
, (4.2)

for x away from D. Therefore, we have (using the reciprocity u(x,y) = u(y,x))

Anm[Dh]−Anm[D] =

∫

∂D

h(x)

[
∇xu[D](x,yn)

TM[
µ0

µ
](x)∇xu[D](x,ym)

+ω2(ǫ − ǫ0)µ0u[D](x,yn)u[D](x,ym)

]
dσ(x) + o(‖h‖C1). (4.3)

Let B[D](x) = (Bnm[D](x))Nn,m=1 be the matrix defined by

Bnm[D](x) := ∇xu[D](x,yn)
TM[

µ0

µ
](x)∇xu[D](x,ym)

+ω2(ǫ− ǫ0)µ0u[D](x,yn)u[D](x,ym). (4.4)

Note that B depends not only on D but also on ω and on the contrasts µ0/µ and ǫ0/ǫ.
Now, for a cost functional J , define its shape derivative by

(dSJ [D], h) = lim
δ→0

J [Dδh]− J [D]

δ
,

where Dδh is defined as in (4.1) with h replaced by δh. From (4.3) it follows that the shape
derivatives of the cost functionals Jj , j = 1, 2, 3, are given by

(dSJ1[D], h) =

N∑

n,m=1

Re
[(
Anm[D]−Ameas,nm

) ∫

∂D

hBnm[D] dσ
]
,

(dSJ2[D], h) = Re

L∑

l=1

W (σ(l)
meas)

∫

∂D

h
〈
(A[D]−Ameas)v

(l)
meas, B[D]v(l)

meas

〉
dσ,

(dSJ (j)
3 [Dj ], h) = Re

L′∑

l′=1

L∑

l=1

W (σ(l)
meas)W

′(σ(l′)[Dj ])
〈
(A[Dj ]−Ameas)v

(l)
meas, v

(l′)[Dj]
〉

×
∫

∂D

h
〈
B[Dj]v

(l)
meas , v(l′)[Dj ]

〉
dσ.

Therefore, a basis for h in the first, second, and third algorithm is respectively given by

{ψp} = {Re(Bnm)}Nn,m=1 ∪ {Im(Bnm)}Nn,m=1,

{ψp} = {Re〈(A[D]−Ameas)v
(l)
meas, B[D]v(l)

meas 〉},

{ψp} = {Re〈B[Dj ]v
(l)
meas , v

(l′)[Dj]〉} ∪ {Im〈B[Dj ]v
(l)
meas , v

(l′)[Dj ]〉}.
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Moreover, in the m-th algorithm, m = 1, 2, 3, we replace at each step j ∂Dj by ∂Dj+1 :=
∂Dhj , where ∂Dhj := {x+ hj(x)ν(x),x ∈ ∂Dj} and hj is chosen as follows:

hj [ω](x) = − Jm[Dj ]∑
l |(dSJm[Dj ], ψl)|2

∑

l

(dSJm[Dj], ψl) ψl.

In the case where Jm[Dj+1] ≥ Jm[Dj ] we replace hj by hj/2
s where s is the smallest integer

such that Jm[Dhj/2
s

] < Jm[Dj]; ∂D
hj/2

s

:= {x+ hj(x)/2
s ν(x),x ∈ ∂Dj}.

If we have measurements of the MSR matrix at multiple frequencies (ωp)p=1,...,P then
the change in the step j is given by

hj(x) =
1

P

P∑

p=1

hj [ωp](x). (4.5)

We also note that in the third algorithm the higher L′ is, the better is the resolution,
which is quite natural. However, for a finite signal-to-noise ratio (SNR) in the measurements,
large L′ leads to an instable reconstruction. As it will be seen later, there is a trade-off
between the resolution and the stability.

5. The Born Approximation in the Nonmagnetic Case. In this section we as-
sume µ = µ0 and address the case where the Born approximation is valid. We consider a
circular geometry with target in center. This configuration allows us to do a detailed resolu-
tion and stability analysis in the presence of an additive measurement noise. This analysis
is also useful for choosing the prior guess in the imaging functional as shown in Section 7. In
connection with our results, we refer to [24, 15] for the design of direct imaging procedures
within the Born approximation.

5.1. Asymptotic Formulation of the Response Matrix. Let Dtrue be the true
inclusion. If we set µ = µ0 and ǫ ≈ ǫ0, then by using the Born approximation

u[Dtrue](x,yn) ≈ Γk0(x− yn), ∀ 1 ≤ n ≤ N and x ∈ Dtrue.

Therefore, we have

Ameas,nm ≈ ω2(ǫ− ǫ0)µ0

∫

Dtrue

Γk0(x− yn)Γ
k0(x− ym) dx.

If we define the matrix

B[ω](x) :=

(
Γk0(x− yn)Γ

k0(x− ym)

)N

n,m=1

for x ∈ Dtrue,

then, one can write

Ameas ≈ ω2(ǫ − ǫ0)µ0

∫

Dtrue

B[ω](x) dx.

Note that in this case B does not depend on Dtrue. Below we assume d = 2. If ω is large,
then

B[ω](x) ≈ i

8πk0

(
eik0(|x−yn|+|x−ym|)

√
|x− yn||x− ym|

)

n,m

.
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Assuming further that the distance LF between the array and the target is much larger
than aperture yields

B[ω](x) ≈ i

8πk0LF

(
eik0(|x−yn|+|x−ym|)

)

n,m

.

In polar coordinates, let the points of the array be as follows:

yn = (Rn cos θn, Rn sin θn),

and let the domain Dtrue be of the form

Dtrue =
{
y = (r cos θ, r sin θ) , 0 ≤ r ≤ R(θ) , 0 ≤ θ ≤ 2π

}
. (5.1)

Using the Taylor series expansion

|yn − x| = |yn| −
yn · x
|yn|

+O
( |x|2
|yn|

)
, (5.2)

we find that, in polar coordinates x = (r cos θ, r sin θ),

Ameas,mn[Dtrue] = eik0[Rn+Rm]

∫ 2π

0

dθ

∫ R(θ)

0

rdre−ik0r[cos(θ−θm)+cos(θ−θn)],

up to a multiplicative constant, which is valid if k0diam
2(D) is much smaller than the

distance from the target D to the array (this is the Fraunhofer regime).
Note that the first phase factor in the response matrix does not modify the singular

values and it only modifies the singular vectors by a phase term independent of the singular
value itself. In the following this factor is removed.

5.1.1. The Unperturbed Domain. We assume in this subsection that the domain
Dtrue := D0, a disk with radius r0. In the continuum approximation (the number of array
elements N → +∞) the response matrix is proportional to the operator whose kernel is

A[D0](θ1, θ2) =
1

πr20

∫ 2π

0

dθ

∫ r0

0

rdre−ik0r[cos(θ−θ1)+cos(θ−θ2)].

The kernel can be written as [1, Formulas 9.1.21 and 9.1.30]

A[D0](θ1, θ2) = a(θ1 − θ2) with a(θ) = 2
J1
(
2k0r0 cos(

θ
2 )
)

2k0r0 cos(
θ
2 )

.

The function a(θ) can be expanded in Fourier series as [1, Formula 11.4.7]

a(θ) =
∞∑

n=−∞

âne
inθ with ân = (−1)n

(
J2
n − Jn−1Jn+1

)
(k0r0),

where Jn is the Bessel function of the first kind of order n, which shows that the singular
values of A[D0] are (

√
2π|âp|)p∈N, each of which (except

√
2π|â0|) is of multiplicity two. The

associated singular vectors are (ψ(p,±)(θ))θ∈[0,2π) = (e±ipθ/
√
2π)θ∈[0,2π).

In the asymptotic framework k0r0 ≫ 1, there are about 2k0r0 significant singular values.
More exactly, using [1, Formula 9.3.3], we find that, for k0r0 ≫ 1 and n ∈ [−k0r0, k0r0]:

|ân| ≃
2

πk0r0

√
1−

( n

k0r0

)2
.

For k0r0 ≫ 1 and |n| > k0r0 the singular values are exponentially small.
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5.1.2. The Perturbed Domain. We assume in this section that the domain Dtrue

is a deformed disk (around the perfect disk D0 with radius r0). In polar coordinates x =
(r cos θ, r sin θ) the domain Dtrue is given by (5.1) with

R(θ) = r0 + htrue(θ), htrue(θ) =
∞∑

p=−∞

ĥtrue,pe
ipθ. (5.3)

We address the regime in which k0‖htrue‖∞ ≪ 1 < k0r0. In the continuum approximation
the perturbation of the response matrix is the operator with the kernel

H[Dtrue](θ1, θ2) := A[Dtrue](θ1, θ2)−A[D0](θ1, θ2)

=
1

πr0

∫ 2π

0

dθhtrue(θ)e
−ik0r0[cos(θ−θ1)+cos(θ−θ2)].

The results of the previous section indicate that we should represent the perturbation of
the response matrix in the Fourier domain, since the singular vectors of the unperturbed
response matrix are the Fourier modes. The Fourier coefficients of the kernel of the operator
H[Dtrue] are defined by

Ĥjl[Dtrue] =
1

(2π)2

∫
H[Dtrue](θ1, θ2)e

−ijθ1−ilθ2dθ1dθ2,

and they are given by

Ĥjl[Dtrue] =
2

r0
ĥtrue,j+lJj(k0r0)Jl(k0r0)i

−j−l.

5.2. Resolution and Stability Analysis of the Imaging Functionals. Assuming
measurement noise, we perform a resolution and stability analysis of the proposed algo-
rithms. We assume that the receiver-transmitter array covers in a dense manner a closed
surface surrounding the inclusion D.

We assume that the domain is the deformed disk Dtrue given by (5.3) and that the
response matrix is corrupted by an additive Gaussian white noise εmeas or equivalently in
the continuum approximation, the kernel of the operator is given by

Ameas(θ1, θ2) = A[Dtrue](θ1, θ2) + εmeas(θ1, θ2).

The purpose of the imaging process is to estimate the function htrue(θ) that characterizes
Dtrue. The results of the previous subsection indicate that we should look for the Fourier
coefficients (ĥtrue,p)p∈Z that characterize the boundary of the domain Dtrue.

5.2.1. First Functional. The first imaging functional defined in (3.1) is

J1[D] =
1

2

∥∥A[D](·, ·)−Ameas(·, ·)
∥∥2

2
=

1

2

∥∥H[D](·, ·) −H[Dtrue](·, ·) − εmeas(·, ·)
∥∥2

2
.

Here ‖·‖2 denotes the L2 norm. The domainD is characterized by the function (h(θ))θ∈[0,2π).
Using Parseval’s formula the first imaging functional can be written as

J1[D] =
(2π)2

2

∞∑

l′,l=−∞

∣∣(Q1ĥ)l′l − (Q1ĥtrue)l′l − ε̂meas,l′l

∣∣2,
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where ε̂meas,l′l are the Fourier coefficients of εmeas(·, ·) and

(Q1ĥ)l′l =
2

r0
ĥl′+lJl′(k0r0)Jl(k0r0)i

−l′−l, l′, l ∈ Z.

The least-square inverse is

(
(Q∗

1Q1)
−1Q∗

1ε̂
)
p
=
r0

∑∞
l=−∞ Jl(k0r0)Jp−l(k0r0)i

pε̂l,p−l

2
∑∞

l=−∞ J2
l (k0r0)J

2
p−l(k0r0)

, p ∈ Z.

Therefore, given the measured kernel Ameas, the least-square estimation (ĥest,p)p∈Z of the
Fourier coefficients of the shape htrue(θ) of the domain Dtrue is

(ĥest,p)p∈Z = (Q∗
1Q1)

−1Q∗
1

(
(Âmeas,l′l − Âl′l(D0))l′,l∈Z

)
.

This gives, for all p ∈ Z,

ĥest,p = ĥtrue,p +
r0

∑∞
l=−∞ Jl(k0r0)Jp−l(k0r0)i

pε̂meas,l,p−l

2
∑∞

l=−∞ J2
l (k0r0)J

2
p−l(k0r0)

,

which shows that the estimation is unbiased with the variance

Var(ĥest,p) =
r20σ

2

4
∑∞

l=−∞ J2
l (k0r0)J

2
p−l(k0r0)

,

where σ2 = E(|ε̂meas,l′l|2) (independent on l′, l for a white noise). Here E stands for the
expectation (mean value).

Now, from Neumann’s formula [13, Formula 7.7.2(11)], we have for any l ∈ Z:

Jl(k0r0)Jp−l(k0r0) =
1

2π

∫ 2π

0

Jp(2k0r0 cos θ) cos
(
(2l − p)θ

)
dθ.

Using Parseval’s formula gives

∞∑

l=−∞

J2
l (k0r0)J

2
p−l(k0r0) =

1

2π

∫ 2π

0

J2
p (2k0r0 cos θ)dθ.

It follows from [23, Eq. (4)] that in the asymptotic framework when k0r0 ≫ 1 and p is
smaller than 2k0r0,

∞∑

l=−∞

J2
l (k0r0)J

2
p−l(k0r0) ∼

1

π2k0r0

[
log k0r0 + 5 ln 2 + γ − 2

(
1 +

1

3
+ · · ·+ 1

2p− 1

)

+O
(

1
(k0r0)1/2

)]
,

where γ is the Euler’s constant, while when p is larger than 2k0r0 the sum is exponentially
close to zero. We can therefore conclude that, in the presence of a small additive noise:

(i) the estimation of ĥtrue,p is possible for p < 2k0r0 with the accuracy (standard

deviation) of the order of (σr0/2)π(k0r0)
1/2/ log1/2(k0r0), and impossible for p >

2k0r0;
(ii) the coefficient ĥp corresponds to a feature at the surface of the unperturbed disk D0

whose characteristic length scale is 2πr0/p, and therefore the limitation p < 2k0r0
corresponds to a length scale larger than half a wavelength, which is the diffraction
limit.
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5.2.2. The Second Functional. The second imaging functional defined in (3.2) (with
the first 2L+ 1 singular values) is

J2[D] =
1

2

2L+1∑

l=1

W (σ(l)
meas)

∥∥(A[D](·, ·)−Ameas(·, ·)
)
v(l)meas(·)

∥∥2
2

=
1

2

2L+1∑

l=1

W (σ(l)
meas)

∥∥(H[D](·, ·)−H[Dtrue](·, ·)− εmeas(·, ·)
)
v(l)meas(·)

∥∥2

2
,

where σ
(l)
meas and v

(l)
meas are the lth singular value and singular vector of Ameas. If Dtrue is a

small deformation of the disk D0 and the additive white noise is small, then the difference
between the singular vectors of Ameas and those of A[D0] is small and therefore, after
relabelling the vectors and up to an error that is of higher order, we have

J2[D] =
1

2

L∑

l=−L

wl

∥∥(H[D](·, ·)−H[Dtrue](·, ·)− εmeas(·, ·)
)
ψ(l)(·)

∥∥2

2
,

where ψ(l)(θ) = eilθ/
√
2π and wl =W (σ|l|) =W

(
(J2

l − Jl−1Jl+1)(k0r0)
)
. We have

(
H[D]ψ(l)

)
(θ) =

2
√
2π

r0

∑

p

ĥpJl+p(k0r0)Jl(k0r0)i
−2l−pei(l+p)θ.

Using Parseval’s formula, we get

J2[D] =
(2π)2

2

∞∑

l′=−∞

L∑

l=−L

wl

∣∣(Q2ĥ)l′l − (Q2ĥtrue)l′l − ε̂meas,l′l

∣∣2,

where

(Q2ĥ)l′l =
2

r0
ĥl′+lJl′(k0r0)Jl(k0r0)i

−(l′+l), l′ ∈ Z, l = −L, . . . , L.

Introducing the multiplication operator W2 defined by

(W2ε̂)l′l = wlε̂l′l, l′ ∈ Z, l = −L, . . . , L,

the least-square inverse is

(
(Q∗

2W2Q2)
−1Q∗

2W2ε̂
)
p
=
r0

∑L
l=−L wlJl(k0r0)Jp+l(k0r0)i

p+2lε̂p+l,−l

2
∑L

l=−L wl(Jl(k0r0)Jp+l(k0r0))2
, p ∈ Z.

Therefore the least-square estimation (ĥest,p)p∈Z of the Fourier coefficients of the shape
htrue(θ) of the domain Dtrue is

(ĥest,p)p∈Z = ((Q∗
2W2Q2)

−1Q∗
2W2

(
(Âmeas,l′l − Âl′l[D0])l′∈Z,l=−L,...,L

)
.

This gives, for all p ∈ Z:

ĥest,p = ĥtrue,p +
r0

∑L−p
l=−L−p wl+pJl(k0r0)Jp−l(k0r0)i

pε̂meas,l,p+l

2
∑L

l=−LwlJ2
l (k0r0)J

2
p−l(k0r0)

,
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which implies that the estimation is unbiased with the variance

Var(ĥest,p) =
r20σ

2

4

∑L
l=−Lw

2
l J

2
l (k0r0)J

2
p−l(k0r0)[∑L

l=−L wlJ2
l (k0r0)J

2
p−l(k0r0)

]2 .

It is natural to look for the optimal weight function W , that is, the one that minimizes
the variance. The minimization problem can be solved using Lagrange multipliers and one
finds that W should be constant. This result shows that the optimal weight function for the
second functional is the uniform weight in the presence of white noise. This is characteristic
of the situation addressed in this section, in which the array surrounds the target and the
Born approximation holds true, which implies that illumination should be uniform (in the
angle space). As we will see in Section 6.2, weighting can become important when these
ideal conditions are not fulfilled.

When the weight function W is constant, then the variance of the estimation is

Var(ĥest,p) =
σ2r20

4
∑L

l=−L J
2
l (k0r0)J

2
p−l(k0r0)

.

This result shows that the second functional is more sensitive to an additive white noise than
the first one for small L, while they are equivalent when L > k0r0. If the noise is colored
(which is the case when the noise comes from random heterogeneities in the medium) then
the situation can be more complex.

5.2.3. The Third Functional. The third imaging functional defined in (3.3) (for
j = 0) is

J (0)
3 [D] =

1

2

2L′+1∑

l′=1

2L+1∑

l=1

W (σ(l)
meas)W

′(σ(l′)[D0])
∣∣∣
〈(

A[D]−Ameas)
)
v(l)meas, v

(l′)[D0]
〉∣∣∣

2

.

To leading order in the amplitude of the noise and the deformation of the domain, we have
after relabelling the vectors

J (0)
3 [D] =

1

2

L∑

l=−L

L′∑

l′=−L′

wlw
′
l′

∣∣∣
〈(

H[D]−H[Dtrue]− εmeas

)
ψ(l), ψ(l′)

〉∣∣∣
2

,

with wl = W (σ|l|) = W
(
(J2

l − Jl−1Jl+1)(k0r0)
)
and w′

l′ = W ′(σ|l′|). Using Parseval’s
formula, we get

J (0)
3 [D] =

(2π)2

2

L′∑

l′=−L′

L∑

l=−L

wlw
′
l′

∣∣(Q3ĥ)l′l − (Q3ĥtrue)l′l − ε̂meas,l′,−l

∣∣2,

where

(Q3ĥ)l′l =
2

r0
ĥl′−lJl′(k0r0)Jl(k0r0)i

−l′−l, l′ = −L′, . . . , L′, l = −L, . . . , L.

Note that Q3ĥ is a function of (ĥp)p=−L−L′,L+L′ only. Denoting by W3 the multiplication
operator

(W3ε̂)l′l = w′
l′wlε̂l′l, l′ = −L′, . . . , L′, l = −L, . . . , L,
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the least-square estimation (ĥest,p)p=−L−L′,...,L+L′ of the first Fourier coefficients of the
shape htrue(θ) of the domain Dtrue is

(ĥest,p)p=−L−L′,...,L+L′ = (Q∗
3W3Q3)

−1Q∗
3W3

(
(Âmeas,l′l − Âl′l[D0])l′=−L′,...,L′,l=−L,...,L

)
.

This gives, for all p = −L− L′, . . . , L+ L′:

ĥest,p = ĥtrue,p +
r0

∑L∧L′+p
l=−L∨−L′+p Jl(k0r0)Jp−l(k0r0)i

pε̂meas,l,p−l

2
∑L∧L′+p

l=−L∨−L′+p(Jl(k0r0)Jp−l(k0r0))2
,

which implies that the estimation is unbiased with the variance

Var(ĥest,p) =
σ2r20

4
∑L∧L′+p

l=−L∨−L′+p(Jl(k0r0)Jp−l(k0r0))2
.

This result shows that it is possible to reconstruct the Fourier coefficients ĥp up to p =
(L + L′) ∧ 2k0r0 using the third functional. Here a ∧ b and a ∨ b respectively denotes the
minimum and the maximum between a and b.

6. Asymptotic Formulation in the General Case. Now we turn to the general
case, that is without assuming Born approximation. As in the case where the Born approx-
imation is valid, we carry out a (formal) high-frequency asymptotic analysis of the MSR
matrix.

6.1. High-frequency Asymptotics of the Response Matrix. Write

u[D](x,yn) =

{
Γk0(x− yn) + u

(s)
n (x) for x ∈ R

2 \D,
u
(t)
n (x) for x ∈ D.

Using Green’s formula, we get

Anm[D,ω] =

∫

∂D

(
∂Γk0

∂ν
(ym − x)u(s)n (x)− Γk0(ym − x)

∂u
(s)
n

∂ν
(x)

)
dσ(x).

Using a WKB approximation for u
(s)
n and

∂u(s)
n

∂ν on ∂D as ω → +∞ [17], we find

u(s)n (x) ≈ a(s)n (x)
eik0|x−yn|

√
|x− yn|

and
∂u

(s)
n

∂ν
(x) ≈ −ik0a(s)n (x)

(x− yn) · ν(x)
|x− yn|

eik0|x−yn|

√
|x− yn|

(6.1)

if (x− yn) · ν(x) < 0, where a
(s)
n is the amplitude, and

u(s)n (x) ≈ ∂u
(s)
n

∂ν
(x) ≈ 0 if (x− yn) · ν(x) ≥ 0. (6.2)

Since, in dimension d = 2,

Γk0(x− ym) ≈ − eiπ/4

2
√
2πk0

eik0|x−ym|

√
|x− ym|
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and

∂Γk0

∂ν
(x− ym) ≈ −i

√
k0e

iπ/4

2
√
2π

(x− ym) · ν(x)
|x− ym|

eik0|x−ym|

√
|x− ym|

,

then

Anm[D,ω] ≈ −i
√
k0e

iπ/4

2
√
2π

∫

∂Dillum,yn

a(s)n (x)

(
(x− ym) · ν(x)

|x− ym|

+
(x− yn) · ν(x)

|x− yn|

)
eik0(|x−ym|+|x−yn|)

√
|x− ym||x− yn|

dσ(x),

(6.3)

where ∂Dillum,yn =
{
x ∈ ∂D : (x−yn) ·ν(x) < 0

}
. Equation (6.3) shows that the response

matrix in this regime depends only on the boundary of the target that is illuminated. Note
that, if the aperture of the array is small compared to the distance from the array to the
target, then the illuminated part of the target boundary ∂Dillum,yn does not depend on yn.

6.2. Resolution Analysis.

6.2.1. The Unperturbed Domain. Let us consider the situation in which the array is
linear and densely samples the line {(y, 0), y ∈ (−α/2, α/2)} while the illuminated boundary
∂D0 of the target is the line

∂D0 =
{
(x,−LF ), x ∈ (−β/2, β/2)

}
.

Assuming that the distance LF from the array to the target is much larger than the diameter
α of the array and the diameter β of the target, the response matrix is proportional to

Anm =

∫

∂D0

eik0[|x−ym|+|x−yn|]dσ(x).

Using the Taylor series expansion (5.2), we find that, in the Fraunhofer regime k0β
2/LF ≪ 1,

the response matrix is

Anm = βe2ik0LF e
ik0

y2m+y2n
2LF sinc

[ k0β
2LF

(yn + ym)
]
.

Note that the first phase factor in the response matrix does not modify the singular values
and it only modifies the singular vectors by a phase term independent of the singular value
itself. In the following this factor is removed. Therefore, in the continuum approximation
(writing ym = αy/2), the response matrix is proportional to the operator (from L2[−1, 1] to
L2[−1, 1]): A[D0] = RS, where R is the involution operator Rf(x, y) = f(−x, y) and S is
the sinc operator whose kernel is:

S(x, y) = sin[C(x− y)]

π(x − y)
, x, y ∈ [−1, 1],

with C = (k0βα)/(4LF ). The singular values (σ(l))l≥1 and singular vectors (ψ(l))l≥1 of the
sinc operator S are known and they are described in Appendix A. In particular the singular
vectors are the prolate spheroidal functions which are either odd or even functions, so that
(σ(l), ψ(l))l≥1 are also the singular values and vectors of A. We consider the situation C ≫ 1.
According to [22], the important facts in this regime are:
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(i) there are about [2C/π] significant singular values; more exactly, the first [2C/π]
singular values are close to one while the following ones are close to zero. The
Fourier transforms of the significant singular vectors are concentrated in (−C,C);

(ii) the first singular vectors are concentrated around the center of the interval (−1, 1),
and they contain only low-frequencies; more exactly, the singular vectors are ap-
proximately concentrated on an interval with length of the order of 1/

√
C centered

at 0, and their Fourier transforms are approximately concentrated on an interval
with length of the order of

√
C;

(iii) the last significant singular vectors (i.e., those with indices close to [2C/π]) are
concentrated at the edges of the interval (−1, 1) and their Fourier transforms are
approximately concentrated on (−C,C).

6.2.2. The Perturbed Domain. Here we consider the case when the illuminated
boundary ∂D of the target is the perturbed curve

∂D =
{
x = (x,−LF + h(x)), x ∈ (−β/2, β/2)

}
.

Denoting h̃(y) = h(βy/2), y ∈ (−1, 1), the response matrix in the continuum approximation
is proportional to the operator

A[D] = A[D0]− ik0RH[D], H[D](x, y) =

∫ 1

−1

h̃(z)eiCz(x−y)dz, x, y ∈ (−1, 1).

By expanding the function h̃(y) over the image basis of the unperturbed operator A[D0],

h̃(y) =
∞∑

p=1

h̃pψ
(p)(y), y ∈ (−1, 1),

we find using (A.6) that

〈
ψ(l′),H[D]ψ(l)

〉
= (Qh̃)l′l = (

∞∑

p=1

Ql′lph̃p)l′l,

with

Ql′lp = 2πil−l′
√
σ(l)σ(l′)

C

∫ 1

−1

ψ(l′)(y)ψ(l)(y)ψ(p)(y)dy.

Note that Ql′lp is not vanishing as long as l′, l, p are smaller than [2C/π]. If the response
matrix corresponding to the true domain Dtrue is corrupted by an additive Gaussian white
noise, then the three imaging functionals have the following form to leading order in the
perturbation (up to a multiplicative constant):

Jj [D] =
1

2

∞∑

l=1

∞∑

l′=1

wj,lw
′
j,l′

∣∣(Qh̃)l′l − (Qh̃true)l′l − εmeas,l′l

∣∣2,

where w1,l = w′
1,l′ = 1 for the first functional j = 1, w2,l = W (σ(l))1l≤L and w′

2,l′ = 1 for

the second functional j = 2, w3,l = W (σ(l))1l≤L and w′
3,l′ = W ′(σ(l′))1l′≤L′ for the third

functional j = 3. Finally εmeas,l′l are independent Gaussian random variables.
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Denoting by Wj the multiplication operator (Wj ǫ̂)l′l = wj,lw
′
j,l′ ǫ̂l′l, the minimization

problem is solved by applying the operator (Q∗WjQ)−1Q∗Wj to the data
(〈
ψ(l′), i

k0
R(Ameas−

A[D0])ψ
(l)
〉)

l′,l
. This gives an unbiased estimator of (h̃true,p)p.

Note that we have using (A.3) that

(Q∗Q)p′p =
4π2

C2

∫ 1

−1

∫ 1

−1

S(x, y)2φ(p′)(x)φ(p)(y) dxdy,

which is close to the identity operator (up to a factor 4π/C) when restricted to p, p′ ≤ [2C/π].

We come therefore to the following conclusions:

(i) we can reconstruct the coefficients h̃true,p up to p ≤ (L + L′) ∧ [2C/π];

(ii) the first coefficients h̃p (those which are estimated with the highest accuracy) cor-
respond to low-frequency information about the central part of the boundary ∂D;

(iii) the coefficients h̃p for p close to [2C/π] correspond to high-frequency information
about the edges of the boundary ∂D. This implies that, if we want a sharp detection
of the edges of the boundary, then we should choose a weight function that enhances
the contributions of the singular vectors in the plunge region of the singular values.
This was already noticed in [12];

(iv) the coefficients h̃p, p = 1, . . . , [2C/π], correspond to features whose minimal wavenum-
ber is C/(β/2) = k0α/(2LF ), which corresponds to a length scale of 2λ0LF /α. This
is the classical Rayleigh resolution formula.

7. Construction of an Initial Guess. In this section we develop a weighted subspace
migration imaging functional for constructing a good initial guess. The idea behind this is
to use the asymptotic formulation of the response matrix obtained in the previous sections.
We will show the optimality of the proposed method for choosing the prior guess.

7.1. Measurements at a Single Frequency. We first construct an initial guess from
measurements of the response matrix at a single frequency ω. Let us introduce the vector
field

g(x, ω) =
(exp(ik0|x− yn|)√

N

)

n=1,...,N
. (7.1)

A good initial guess would be obtained using a weighted subspace migration [12]:

ISM(x, ω,w) = g(x, ω)
T

N∑

l=1

wl(x, ω)v
(l)
meas[ω]v

(l)
meas[ω]

T g(x, ω)

=

N∑

l=1

wl(x, ω)
〈
g(x, ω),v(l)

meas[ω]
〉2
, (7.2)

where (v
(l)
meas[ω])l=1,...,N are the singular vectors ofAmeas[ω] andw(x, ω) = (wl(x, ω))l=1,...,N

are filter (complex) weights.

Consider in particular the weights:

w
(1)
l (x, ω) = σ(l)

meas[ω], w
(2)
l (x, ω) = exp

(
−i2 arg

〈
g(x, ω),v(l)

meas[ω]
〉)

1l≤L,
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where L is the number of the nonzero singular values (i.e., the dimension of the image space
of Ameas[ω]). Then ISM(x, ω,w(1)) corresponds to Kirchhoff migration:

ISM(x, ω,w(1)) = IKM(x, ω) := g(x, ω)
T
Ameas[ω]g(x, ω). (7.3)

Moreover, we have the following connection of ISM(x, ω,w(2)) to the MUSIC (which stands
for MUltiple Signal Classification) algorithm:

IMUSIC(x, ω) =
∥∥g(x, ω)−

L∑

l=1

〈
v(l)
meas[ω], g(x, ω)

〉
v(l)
meas[ω]

∥∥−1/2

=
(
1−

L∑

l=1

∣∣〈v(l)
meas[ω], g(x, ω)

〉∣∣2)−1/2

=
(
1− ISM(x, ω,w(2))

)−1/2
. (7.4)

The next subsection will make it clear that an appropriate weighted subspace migration is
optimal to find an initial guess in the presence of additive noise.

7.2. Optimality. We present here a particular context in which a weighted subspace
migration imaging functional gives the “optimal” approach to choosing the prior guess for
the scatterer support D, or rather the illuminated part of its boundary. This generalizes the
results of [6] obtained for a point target to the case of an extended target.

For simplicity, we drop in this section the dependence on the frequency ω from the
notation. We assume the following model for the data

Ameas ∼
L∑

l=1

τl g(xl)g(xl)
T + σN.

Here L is an estimated signal space dimension, N ∈ R
N×N has zero-mean jointly circularly

symmetric Gaussian distributed entries and models additive noise, g(x) is defined by (7.1),
and g(xj) ⊥ g(xl), j 6= l, i.e., 〈g(xj), g(xl)〉 = 0. Recall that the measured response matrix
is symmetrized by the straightforward formula A → (A+AT )/2, so the additive noise also
undergoes the same transformation. It is also worth emphasizing that the orthogonality
assumption g(xj) ⊥ g(xl), j 6= l is ideal. In fact, if the sampling points xj are well-
separated, the distance between the array and the target is large and the illumination is
uniform in the angle space, then this orthogonality assumption holds approximately and
can be used to provide a good initial guess.

Given the observations Ameas, we find by using Bayes theorem with the Jeffreys prior
for the parameters (a non-informative prior distribution) that the likelihood function of the
parameters X = (xj)j=1,...,L, τ = (τ1, . . . , τL) and σ

2 is proportional to

l0
(
X, τ , σ2 | Ameas

)
=

1

σL2+L+1
exp

(
−

∥∥Ameas −
∑L

l=1 τlg(xl)g(xl)
T
∥∥2
F

2σ2

)
, (7.5)

with the subscript F representing Frobenius norm. The maximum likelihood estimate of X
and the nuisance parameters σ and τ are found by maximizing the likelihood function (7.5)
with respect to these:

(
X̂, τ̂ , σ̂2

)
= argmax

X,τ ,σ2|g(xj)⊥g(xl),j 6=l

l0
(
X, τ , σ2 | Ameas

)
.
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We first eliminate σ2 by requiring

∂l0
(
X, τ , σ2 | Ameas

)

∂σ
= 0.

This gives

σ̂2 =
‖Ameas −

∑L
l=1 τlg(xl)g(xl)

T ‖2F
L2 + L+ 1

,

and the likelihood ratio is proportional to

l0
(
X, τ , σ̂2 | Ameas

)
≃

∥∥Ameas −
L∑

l=1

τlg(xl)g(xl)
T
∥∥−(L2+L+1)/2

F
.

Note that we have

∥∥Ameas −
L∑

l=1

τlg(xl)g(xl)
T
∥∥2
F
=

∥∥ṽ −
L∑

l=1

τlg̃(xl)
∥∥2

2

for ṽ =
∑N

l=1 σ
(l)
measv

(l)
meas ⊗ v

(l)
meas and g̃(xl) = g(xl) ⊗ g(xl). Using that g̃(xj) ⊥ g̃(xl) for

j 6= l we find

∥∥Ameas −
L∑

l=1

τlg(xl)g(xl)
T
∥∥2
F
=

L∑

l=1

‖ṽ − τlg̃(xl)‖22 − (L − 1)‖ṽ‖22.

On the other hand, note that

τ̂ = argmin
τ

L∑

l=1

‖ṽ − τlg̃(xl)‖22 =
(〈
ṽ, g̃(xl)

〉)
l=1,...,L

,

where we have taken into account the fact that ‖g̃(xl)‖2 = 1. We therefore conclude that

the estimate X̂ derives from

X̂= argmin
X|g(xj)⊥g(xl),j 6=l

L∑

l=1

∥∥ṽ −
〈
ṽ, g̃(xl)

〉
g̃(xl)

∥∥2

2
.

Note that

L∑

l=1

∥∥ṽ −
〈
ṽ, g̃(xl)

〉
g̃(xl)

∥∥2
2
= L‖ṽ‖22 −

L∑

l=1

|〈g̃(xl), ṽ〉|2

= L‖ṽ‖22 −
L∑

l=1

∣∣∣
N∑

l′=1

σ(l′)
meas[ω]

〈
g(xl, ω),v

(l′)
meas[ω]

〉2∣∣∣
2

.

From this representation we find that the estimates of the locations X = (xl)l=1,...,L

can be expressed in terms of the weighted subspace migration ISM with the weights w(1) =

(σ
(l)
meas)l=1,...,L, which is the KM functional IKM by (7.3):

X̂ = argmax
X|g(xj)⊥g(xl),j 6=l

L∑

l=1

|IKM(ω,xl)|2 . (7.6)

This gives then an algorithm for the prior guess:
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(i) Compute the KM map IKM(ω,x);
(ii) By parameterizing the curve corresponding to the illuminated part of the boundary

of the inclusion with L points separated by approximately λ0/2, and by maximizing∑L
l=1 |IKM(ω,xl)|2 over the positions of the m points, we obtain the initial guess.

Here, λ0 is the central wavelength.
Note that the weighted subspace migration with the weightsw(1), corresponding to KM,

is more appropriate for the initial guess than the weighted subspace migration ISM with the
weights w(2), corresponding to MUSIC.

We remark that the implementation regarding the identification of the points approxi-
mating the boundary may be carried out recursively. It is then relevant to project the signal
space and illumination vectors on the complement of the range of the illumination space
associated with the points already identified. That is, one may implement the prior guess
identification as:

(i’) Identify x̂1 as the spatial location maximizing the imaging function |IKM(ω,x)|2.
(ii’) Given x̂1, · · · , x̂k−1 identify x̂k as the location separated approximately by λ0/2

from previously identified points and maximizing the imaging function associated
with the projected signal space and illumination vectors:

Ǎmeas = Π1,k−1AmeasΠ1,k−1, ǧ(xk) = Π1,k−1g(xk),

for Π1,k−1 ≡ I−∑k−1
j=1 g(x̂j)g(x̂j)

T .

7.3. Measurements at Multiple Frequencies. In the case of measurements at mul-
tiple frequencies one can use the following imaging functional

ISM(x,w) =
1

P

P∑

p=1

ISM(x, ωp,w), (7.7)

where ISM(x, ωp,w) is given by (7.2) and P is the number of used frequencies, in order to
get an initial guess of the illuminated part of the inclusion D. This proposition comes from
the following approximate calculations. For any smooth function ã(y) and boundary ∂D,

N∑

m,n=1

1

P

P∑

p=1

e−iωp(|x−ym|+|x−yn|)

∫

∂D

ã(y)eiωp(|y−ym|+|y−yn|) dσ(y)

=

N∑

m,n=1

∫

∂D

ã(y)

[
1

P

P∑

p=1

e−iωp(|x−ym|−|y−ym|+|x−yn|−|y−yn|)

]
dσ(y)

≈
N∑

m,n=1

∫

∂D

ã(y)δ(|x − ym|+ |x− yn| − |y − ym| − |y − yn|) dσ(y)

≈ N2

∫

∂D

ã(y)δ(y − x) dσ(y) ≈
{
N2ã(x) if x ∈ ∂D,

0 elsewhere.

It is possible to do a detailed analysis of the previous sum along the same lines as in [14]. It
would exhibit that the final Dirac distribution is in fact a sharp peak whose width depends
on the bandwidth and on the geometry of the array. Here this approximate calculation is
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sufficient to justify that (7.7) is a reasonable initial guess. Therefore, it follows from (6.3)
that in order to construct an initial guess in the general case one can use (7.7). This is
good in absence of additive noise. In the presence of additive Gaussian white noise (which
gives independent noises for each frequency), we can repeat the Bayesian arguments of the
previous subsection, and we find the following algorithm for the prior guess:

(i) Compute the KM map IKM(ω,x);
(ii) By parameterizing the curve corresponding to the illuminated part of the boundary

of the inclusion with L points separated by approximately λ0/2, and by maximizing∑P
p=1

∑N
l=1 |IKM(ωp,xl)|2 over the positions of the L points, we obtain the initial

guess. Here, λ0 is the central wavelength.

Note that we should look for the maximum of the sum of the square moduli of the KM
functionals in order to exploit the multi-frequency information optimally. The fact that the
relevant operation is the sum of the squares comes from the fact that the additive noise
matrices are assumed to be independent for different frequencies.

8. Numerical Illustrations. In this section, we illustrate our algorithms for recov-
ering the shape of a domain from multistatic response measurements. The direct solver is
implemented based on the boundary integral representation of the solution to the corre-
sponding transmission problem. Throughout this section, we set µ0 = 1, µ = 5, ǫ0 = 1, and
ǫ = 2. We assume that the permeability and permittivity contrasts are known. The coinci-
dent transmitter and receiver arrays {y1, . . . ,yN} are located at either one of the following
positions:

yj = 10(cos((j − 1)π/5), sin((j − 1)π/5)), j = 1, . . . , 10, (8.1)

yj = ((−3.5 + 0.5j)π, 10), j = 1, . . . , 13, (8.2)

yj = (10, (−3.5 + 0.5j)π), j = 1, . . . , 13. (8.3)

Configuration (8.1) corresponds to a full aperture while (8.2) and (8.3) correspond to limited-
view configurations.

We suppose that D is illuminated by a time-harmonic point source acting at yj with
frequency ω. Note that the corresponding wavenumber is k0 = ω.

We first use the Kirchhoff migration functional (7.3) with frequency ω = 2 to get an
initial guess. Collecting the grid points where ISM(x, ω,w(1)) has a large value, we get a
disk which is used as the initial guess. Figure 8.1 shows that the initial guess is close to the
true inclusion. Moreover, it depends on the configuration of the transmitters and receivers
array.

Now, we turn to the optimization procedures. The first weights W (σ
(l)
meas) are chosen at

the first, second, and third iteration as follows:

• W (σ
(l)
meas) = 1 for 1 ≤ l ≤ 5 and 0 elsewhere,

• W (σ
(l)
meas) = 1 for 6 ≤ l ≤ 10 and 0 elsewhere,

• W (σ
(l)
meas) = 1 for 1 ≤ l ≤ 10 and 0 elsewhere.

While, at the first step, the low-frequency oscillations of the boundary are recovered, in the
second step the high-frequency part is reconstructed. In the third iteration, we use all of
the singular vectors of the MSR matrix.

This pattern of choosing weights is repeated for each 3 steps. Moreover, the second

(dual) weights W ′(σ(l′)[Dj ]) are chosen to be the same as W (σ
(l)
meas).
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Fig. 8.1. Kirchhoff migration for getting initial guesses. The first one is from the measurement (8.1),
and the second and the third are from (8.2) and (8.3), respectively.

Note that the number of significant singular vectors is less than 10 even when we increase
the number of the transmitters and the receivers, as shown in Figure 8.2. Hence, we can use
the weights defined above even with denser arrays.
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Fig. 8.2. Singular values of the MSR matrix with 20 transmitters and 20 receivers. The number of
significant singular values is less than 10 out of 20. The figure on the left corresponds to the inclusion which
is the unit disk centered at the origin and the one on the right corresponds to a general shaped inclusion.

Now, consider an extended target which is a perturbation of the disk D0 with unit radius
r0 = 1. We test the proposed shape reconstruction schemes. On the one hand, in the left
picture of Figure 8.3, we fix the frequency ω = 1 and investigate the performance of Method
1 as a function of ε for ∂D = ∂D0 + hν and h = ε(1 + 2 cos(3θ)). On the other hand, in
the right picture of Figure 8.3, fixing ω = 1 and ε = 0.1, we also test the validity of Method
1 as a function of the number of oscillations p of the perturbation h = 0.1(1 + 2 cos(pθ)).
It turns out that if p < 2k0r0, then the numerical scheme works well, as predicted by the
resolution theory of Section 5.2. In Figure 8.3, |D△D0| and |D△D6| are respectively the
symmetric differences between D and D0 and D and D6.

8.1. Reconstruction Examples. In the following two examples, we consider the in-
fluence on the reconstruction of the frequency and an additive noise in the MSR measure-
ments.

Example 1. In this example, h = 0.2(1 + 2 cos(pθ)), p = 3 and 6 and the transmitter and
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Fig. 8.3. The difference between initial and reconstructed shapes depends on the magnitude of per-
turbations ε, the radius of the target r0 = 1, and the number p of oscillations of the perturbation. If ε is
relatively small and p < 2k0r0, then Method 1 works well. D6 is the reconstructed target after 6 iterations.

receiver arrays are given by (8.1). The chosen operating frequencies are ω = 1 and ω = 2.
In Figure 8.4, p = 6 and ω = 2. The initial guess was constructed using (7.3). We start with
the initial guess shown as dashed line and show the shape D6 obtained after 6 iterations
with dark solid line. As shown in Figure 8.4, in the case of noise, Method 3 improves the
shape relatively slower than Methods 1 and 2. In Figure 8.5, we use p = 3 and ω = 1.
While Method 1 does not improve the shape relative to the initial guess, Methods 2 and 3
do. Moreover, Method 3 has the best resolution.

Example 2. Here ω = 1 and p = 3. In Figure 8.6, the first row is the reconstruction D6

without error while the second and third row is with 5% and 10% relative L2-error in MSR
matrix, respectively. Comparing to Figure 8.4, Method 1 detects better the shape because
D is less oscillatory. Method 1 is more stable than Methods 2 and 3.

Example 3. The example in Figure 8.7 is the reconstruction of kite-shaped D with 0% and
10% noise. Methods 1 regularizes the image while Method 2 and 3 catch better details.

Example 4. The examples in Figure 8.8 show how the reconstructed images depend on
the location of transmitter and receiver arrays in the limited-view case. When the arrays
coincide, the part in front of the array is better reconstructed.

Example 5 The example in Figure 8.9 reveals the limitation of the shape reconstruction of
highly nonconvex or thin shapes. Here we used measurement configuration (8.1).

9. The Elastic Case.

9.1. Problem Formulation. Let the constants (λ, µ) denote the background Lamé
coefficients, that are the elastic parameters in the absence of any elastic inclusion. Let Lλ,µ

denote the Lamé operator

Lλ,µu = (λ+ µ)∇(∇ · u) + µ∆u.

Let ρ be the density of the background medium. Let Gω(x,y) be the outgoing Green
function for Lλ,µ + ω2ρ in R

2 corresponding to a Dirac mass at y. That is, Gω is the
solution to

Lλ,µG
ω(x,y) + ω2ρGω(x,y) = −δy(x)I in R

2,
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Fig. 8.4. The first, second and third columns are from Method 1, 2 and 3, respectively, obtained with
ω = 2 in the case of a full aperture array. First row is the reconstruction without error and the second and
the third row is with 5% and 10% relative L2-error in MSR matrix, respectively.
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Fig. 8.5. The first, second and third figures (from the left to the right) are from Method 1, 2 and 3,
respectively. They are obtained with ω = 1. Methods 2 and 3 can detect (highly compared to the wavelength)
oscillatory boundary perturbations which are undetectable with Method 1.
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Fig. 8.6. First row is the reconstruction without error, and the second and third row is with 5% and
10% relative L2-error in MSR matrix, respectively. Columns are reconstructions by Method 1, 2, and 3,
respectively. Method 1 is more stable than Methods 2 and 3.

subject to the outgoing radiation conditions. Here I is the 2× 2 identity matrix. We recall
the reciprocity relation: Gω(y,x) = Gω(x,y)T . Denote

cp =

√
λ+ 2µ

ρ
, cs =

√
µ

ρ
.

The Green function is given by

Gω
jl(x,y) =

i

4µ
δjlH

(1)
0

(ω|x− y|
cs

)

+
i

4ω2ρ
∂j∂l

(
H

(1)
0

(ω|x− y|
cs

)
−H

(1)
0

(ω|x− y|
cp

))
, j, l = 1, 2.

Suppose that the soft elastic inclusion D has the pair of Lamé constants (λ̃, µ̃) and the
density ρ̃. Let Lλ,µ and Lλ̃,µ̃ be the Lamé systems corresponding to the Lamé parameters
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Fig. 8.7. First row is the reconstruction of kite-shape target by Method 1,2,3 without error, and the
second row is with 10% relative L2-error in MSR matrix.

(λ, µ) and (λ̃, µ̃), respectively. We will denote by G̃ω(x,y) the outgoing Green function
associated with (λ̃, µ̃, ρ̃). We assume that D is illuminated by a time-harmonic point source
acting at the point y in the direction γ with frequency ω. The displacement field u(·,y,γ)
is given as the solution to the transmission problem:





Lλ,µu+ ω2ρu = −γδy in R
2 \D,

Lλ̃,µ̃u+ ω2ρ̃u = 0 in D,

u
∣∣
+
− u

∣∣
−
= 0 on ∂D,

∂u

∂n

∣∣
+
− ∂u

∂ñ

∣∣
−
= 0 on ∂D,

u satisfies the outgoing radiation conditions.

(9.1)

Here ∂/∂n and ∂/∂ñ denote the co-normal derivatives associated with Lλ,µ and Lλ̃,µ̃.
Suppose that we have two coincident transmitter and receiver arrays {y1, . . . ,yN} of

N elements, used to detect the inclusion. Let {γi
1, . . . ,γ

i
N} and {γo

1, . . . ,γ
o
N} be the corre-

sponding unit directions of incident fields/observation directions. The MSR matrix describes
the transmit-receive process performed from this array. In the presence of the inclusion the
displacement field induced on the n-th receiving element from the scattering of an incident
wave generated at ym of direction γi

m can be expressed as follows:

γo
n ·

(
u(yn,ym,γ

i
m)−Gω(yn,ym) · γi

m

)
.

Note that pairs of transmitting and receiving elements could be repeated to model up to
four experiments performed with the same pair of elements with orthogonal emission and
reception directions γi

m and γo
n.
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Fig. 8.8. Method 2 with different source-receiver points. First, second, and third image corresponds to
(8.1),(8.2), and (8.3), respectively.

We assume that the characteristic size of the inclusion is much larger than πcp/ω. The
problem we consider in this section is to image the extended elastic inclusion D from the
MSR matrices at multiple frequencies (ωp)p=1,...,P .

9.2. Optimal Control Algorithms. In order to reconstruct the shape of an extended
inclusion from the MSR matrices at multiple frequencies, we propose in this section a gen-
eralization of the algorithms designed in the first part of the paper to the elastic case. We
propose optimal control algorithms to match the signal spaces of the MSR matrices at mul-
tiple frequencies. We want to find an inclusion D that minimizes the differences between the
measured MSR matrices Ameas[ωp] and the computed matrix A[D,ωp], which is the MSR
matrix associated with D at the frequency ωp.

We first propose to minimize the cost functional:

J2[D] :=
1

2P

P∑

p=1

L∑

l=1

W (σ(l)
meas[ωp])

∥∥∥(A[D,ωp]−Ameas[ωp])v
(l)
meas[ωp]

∥∥∥
2

, (9.2)
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Fig. 8.9. Reconstruction of C-shaped and bar-shaped inclusion by (from the left to the right) Method
1, 2, and 3 after 9 iterations.

where σ
(l)
meas[ωp] and v

(l)
meas[ωp], l = 1, . . . , L, are respectively the non-zero singular values of

Ameas[ωp] and the associated singular vectors. The minimization of the analogous of J1 is
quite similar and will not be discussed here.

Analogously to J (j)
3 defined in (3.3), we introduce for a deformation D = Dj + δD the

cost functional

J (j)
3 [D] :=

1

2P

P∑

p=1

L∑

l=1

L′∑

l′=1

W (σ(l)
meas[ωp])W

′(σ(l′)[Dj , ωp])

×
∣∣∣
〈
(A[D,ωp]−Ameas[ωp])v

(l)
meas[ωp],v

(l′)[Dj , ωp]
〉∣∣∣

2

, (9.3)

where σ(l′)[Dj , ωp] and v(l′)[Dj , ωp], j = 1, . . . , L′, are the first L′ singular values and singular

vectors of A[Dj , ωp]. Again the weights W (σ
(l)
meas) and W ′(σ(l′)) are for enhancing all the

detectable geometric features of the inclusion. As we have seen in the previous sections it
can be appropriate to enhance the contributions of the singular vectors in the plunge region
of the singular values in order to enhance the resolution of the edges of the inclusion.

We then compute the shape derivatives of J2[D] and J (j)
3 [D]. For doing so, let ν be

the outward normal to ∂D, τ denote the tangential vector, and κ be the curvature of ∂D.
Let h ∈ C1(∂D) and consider Dδh to be a δ-perturbation of D. The boundary ∂Dδh is then
given by

∂Dδh =
{
x̃ : x̃ = x+ δh(x)ν(x), x ∈ ∂D

}
.
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Consider the perturbed transmission problem





Lλ,µuδ + ω2ρuδ = −γδy in R
2 \Dδh,

Lλ̃,µ̃uδ + ω2ρ̃uδ = 0 in Dδh,

uδ

∣∣
+
− uδ

∣∣
−
= 0 on ∂Dδh,

∂uδ

∂n

∣∣
+
− ∂uδ

∂ñ

∣∣
−
= 0 on ∂Dδh,

uδ satisfies the outgoing radiation conditions.

We need to introduce some notation. Let a⊗b := (aibj)i,j=1,2 denote the tensor product
between vectors in R

2 and let

E[u] = (Ejl[u])j,l=1,2, Ejl[u] =
1

2
(∂jul + ∂luj). (9.4)

Following [11, 4], we can prove that the leading-order term in the perturbations due to
the interface changes are given by

uδ(x)− u(x) = δ

[ ∫

∂D

h(z)M[u(z)] : E[Gω(z,x)] dσ(z)

+ω2(ρ̃− ρ)

∫

∂D

h(z)Gω(z,x)u(z) dσ(z)

]
+ o(δ), (9.5)

where the elastic moment tensor M, which is now local, is given by

M[u] = a(∇ · u)I+ bE[u] + c
(∂(u · τ )

∂τ
+ κu · ν

)
τ ⊗ τ + d

∂(u · ν)
∂ν

ν ⊗ ν, (9.6)

with




a = (λ̃− λ)
λ + 2µ

λ̃ + 2µ̃
, b = 2(µ̃− µ)

µ

µ̃
,

c = 2(µ̃− µ)
(2λ̃+ 2µ̃− λ

λ̃+ 2µ̃
− µ

µ̃

)
, d = 2(µ̃− µ)

µ̃λ− µλ̃

µ̃(λ̃+ 2µ̃)
.

Here A : B =
∑
aijbij for two matrices A = (aij) and B = (bij). The quantity M[u(z)] :

E[Gω(z,x)] is a vector given by (M[u(z)] : E[Gω(z,x)])l = M[u(z)] : E[Gω
·l(z,x)]. A

more compact but equivalent form of (9.6) can be found in [3].
Therefore, the shape derivative dSJ2 is given by

(dSJ2, h) =
1

P
Re

∑

p

∑

l

W (σ(l)
meas[ωp])

×
〈
(A[D,ωp]−Ameas[ωp])v

(l)
meas[ωp],

∫

∂D

h(x)B[D,ωp](x)v
(l)
meas[ωp] dσ(x)

〉
,

(9.7)

where the matrix B is defined by

Bnm[D,ωp](x) := (γo
n)

T
(
M[Gωp(x,ym)] : E[Gωp(x,yn)]

+ω2
p(ρ̃− ρ)Gωp(x,ym)Gωp(x,yn)

)
γi
m, x ∈ ∂D.

(9.8)
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The algorithm consists then in replacing, in each step, ∂D 7→ ∂D + hν, where

h(x) = − 1

P
Re

∑

p

∑

l

W (σ(l)
meas[ωp])

〈
A[D,ωp]−Ameas[ωp])v

(l)
meas[ωp],B[D,ωp](x)v

(l)
meas[ωp]

〉
.

(9.9)

Note that the action of B[D,ωp](x)v
(l)
meas[ωp] corresponds to back-propagating to ∂D

the information in the MSR residual in the direction of the significant singular vectors of the
measured MSR matrix. Using formula (9.5), one can easily compute the shape derivative

of the cost functional J (j)
3 and design a second iterative procedure for reconstructing the

elastic inclusion.

9.3. Finding an Initial Guess. We provide in this section an original algorithm for
finding a good initial guess for the illuminated part of the boundary of the inclusion defined
as the set of points x ∈ ∂D such that (x− yn) · ν(x) < 0 for some n:

∂Dillum = {x ∈ ∂D : (x− yn) · ν(x) < 0}.

The algorithm is based on a high-frequency analysis of the MSR matrices and is of migration
type. In the high frequency limit the P or compressional waves behave exactly like acoustic
waves while the S or shear waves behave exactly like electromagnetic waves [20]. The waves
P and S are coupled by the transmission conditions.

In the elastic case, where the vector nature of the underlying elastic motion should be
taken into consideration, the displacement field u(x), that is the solution to (9.1), is the
sum of a P and a S waves. Therefore, if one can migrate the parts of the MSR matrices
corresponding to either the S or the P contributions, then one can form an initial guess for
the illuminated part of the boundary of the inclusion.

Let us consider that, for each point source ym, two experiments are carried out. In
the lth experiment, l = 1, 2, a wave is emitted in the êl-direction and the reflected wave
ul(yn,ym) is recorded at each receiver point yn. Here ê1 = (1, 0)T and ê2 = (0, 1)T . We
can then form four response matrices:

(
A(jl)

nm

)
n,m=1,...,N

=
(
êj · ul(yn,ym)

)
n,m=1,...,N

, j, l = 1, 2,

whose (n,m)th entry is the scalar field recorded at yn in the direction êj when a wave is
emitted from ym in the direction êl . These MSR matrices can be used to decompose the
contributions of S and P parts, thanks of the two following remarks:
- By linearity, the vector velocity field recorded at yn when a wave is emitted from ym in
the direction γi

m is (ê1 · γi
m)u1(yn,ym) + (ê2 · γi

m)u2(yn,ym).
- The recorded vector velocity field can be decomposed into P and S wave modes. The
P wave mode is characterized by a longitudinal velocity field (i.e., a velocity field oriented
along the propagation axis) while the S wave mode is characterized by a transversal velocity
field. As a result, for a given search point x, denoting γn(x) = (yn − x)/|yn − x|, the
quantity

Ax,PP
nm =

2∑

j,l=1

(
êj · γn(x)

)
A(jl)

nm

(
êl · γm(x)

)
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gives the amplitude of the P wave coming from x, recorded at yn, and emitted as a P wave
from ym towards x. We define similarly for the other mode components:

Ax,PS
nm =

2∑

j,l=1

(
êj · γn(x)

)
A(jl)

nm

(
êl · γm(x)⊥

)
,

Ax,SP
nm =

2∑

j,l=1

(
êj · γn(x)

⊥
)
A(jl)

nm

(
êl · γm(x)

)
,

Ax,SS
nm =

2∑

j,l=1

(
êj · γn(x)

⊥
)
A(jl)

nm

(
êl · γm(x)⊥

)
.

As in the scalar case, we can then use the following Kirchhoff migration to get an initial
guess:

ISM(x) :=
1

P

∑

p

[
gP (x, ωp)

T
Ax,PP

nm gP (x, ωp) + gP (x, ωp)
T
Ax,PS

nm gS(x, ωp)

+gS(x, ωp)
T
Ax,SP

nm gP (x, ωp) + gS(x, ωp)
T
Ax,SS

nm gS(x, ωp)
]
,

where

gP (x, ω) =
(exp(i ωcp |x− yn|)

√
N

)

n=1,...,N
, gS(x, ω) =

(exp(i ωcs |x− yn|)√
N

)

n=1,...,N
.

10. Level-Set and Hopping Algorithms . Level-set and hopping algorithms apply
for both electromagnetic and elastic imaging of extended targets. The level-set algorithm
is to handle topology changes such as breaking one component into two while the hopping
algorithm is intended to improve the reconstruction results in a robust fashion by recursively
using measurements at increasing frequencies.

10.1. Level-Set Reconstruction Algorithm. The main idea of the level set ap-
proach is to represent the inclusion D as the zero level set of a continuous function φ, i.e.,

D =
{
x ∈ Ω : φ(x) < 0

}
,

to work with the function φ instead of an explicit representation, and to derive an evolution
equation for φ to solve the maximization problem. In fact, by allowing additional time-
dependence of φ, one can compute the geometric motion of D in time by evolving the level
set function φ. A geometric motion with normal velocity V = V (x, t) can be realized by
solving the Hamilton-Jacobi equation

∂φ

∂t
+ V (x, t)|∇φ| = 0. (10.1)

Optimization within the level set framework consists in choosing a velocity V driving the
evolution towards a maximum (or at least increasing the objective functional we want to
maximize).



30 H. AMMARI ET AL.

In the elastic case, formula (9.9) gives the velocity V to choose within the level set
framework. One can convert the minimization problem (9.2) into a level set form by choosing
the gradient ascent direction V (x) as

V (x) = − 1

P
Re

∑

p

∑

l

W (σ(l)
meas[ωp])

〈
(A[D,ωp]−Ameas[ωp])v

(l)
meas[ωp],B[D,ωp](x)v

(l)
meas[ωp]

〉
.

(10.2)

Then we evolve φ by solving the Hamilton-Jacobi equation (10.1) for one time step. We
emphasize that in (10.2), V is only defined on the boundary ∂D, even though under the
level set framework it has to be defined on the whole domain. We remark here that since
ν = ∇φ/|∇φ|, τ = (∇φ/|∇φ|)⊥, κ = ∇ · (∇φ/|∇φ|), it follows that

M[u] = c
(
∇(u · ( ∇φ

|∇φ|
)⊥

) ·
( ∇φ
|∇φ|

)⊥
+ (∇ · ∇φ

|∇φ| )(u · ∇φ
|∇φ| )

)( ∇φ
|∇φ|

)⊥ ⊗
( ∇φ
|∇φ|

)⊥

+a(∇ · u)I+ bE[u] + d
∇φ
|∇φ| · ∇

(
u · ∇φ

|∇φ|
) ∇φ
|∇φ| ⊗

∇φ
|∇φ| .

(10.3)
Substituing into the expression (9.8) of B and then into the expression (10.2) of V , we obtain
that the equation (10.1) on φ can be modified as follows:

∂φ

∂t
+ F

( ∇φ
|∇φ| ,∇ · ∇φ

|∇φ|
)
|∇φ| = 0. (10.4)

The evolution of the level-set function φ then follows from the solution of (10.4) instead of
(10.1). Numerically, we start from an initial guess φ0 for φ(x, t) and evolve φ by (10.4) for
one time step. We refer to [19] for more details on the level set function and issues like
re-initialization and regularization.

10.2. Hopping Algorithm. Other than summing over the frequencies as in (4.5), a
second approach for imaging extended inclusions from MSR matrices at multiple frequen-
cies is by a hopping reconstruction method [9]. The data is assumed to be available at
multiple frequencies, ω1 < · · · < ωP . The initial guess at step p is chosen from a level set
representation at frequency ωp−1, p ≥ 2, obtained by minimizing the cost functional:

J (p−1)
2 [D] :=

∑

l

W (σ(l)
meas[ωp−1])

∥∥∥
(
A[D,ωp−1]−Ameas[ωp−1]

)
v(l)
meas[ωp−1]

∥∥∥
2

.

We can also use J3. We can perform recursive linearization to improve the reconstruction
for the inclusion. Let Dp be the reconstructed inclusion at step p using frequency ωp, p ≥
1. Suppose that ωp is slightly larger than ωp−1. We wish to determine the perturbation
Dp −Dp−1. Writing, as in (9.9), ∂Dp = ∂Dp−1 + hν, we have

h(x) = −Re
∑

l

W (σ(l)
meas[ωp])

〈(
A[Dp−1, ωp−1]−Ameas[ωp]

+(ωp − ωp−1)
dA

dω
[Dp−1, ωp−1]

)
v(l)
meas[ωp],B[Dp−1, ωp−1](x)v

(l)
meas[ωp]

〉
.

Therefore, in order to determine Dp, one should only compute the additional quantity

(dA
dω

[Dp−1, ωp−1]
)
v(l)
meas[ωp].
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11. Conclusion. In this paper we have proposed original optimization algorithms to
recover geometric features of the shape of an inclusion using MSR matrices at single or
multiple frequencies. We have also formulated a new level-set type approach and developed
a weighted migration algorithm for finding a good initial guess. A hopping algorithm using
iterative level-set imaging procedure was proposed. A detailed stability and resolution anal-
ysis for the proposed algorithms was performed. The optimality of the weighted migration
algorithm for finding a good initial guess was shown.

For the scalar case, the presented numerical results show the efficiency of the proposed al-
gorithms and their validity with respect to the size of the targets. The designed optimization
algorithms perform numerically quite well and lead to stable and accurate reconstructions.
It is found that the most standard method (Method 1) is the most stable (if the size of the
MSR matrix is small) while the third one based on backpropagating the singular vectors
associated with the computed target has the best resolution. The degradation of the qual-
ity of the reconstructed image in the limited view case and for imaging highly non-convex
targets is also illustrated. In the case where the MSR matrix is large, Method 2 performs
better than Method 1 since the information in the noise space is filtered out.

In a forthcoming work, we will address the imaging of extended electromagnetic inclu-
sions using the full Maxwell equations. We will also make an attempt to recover the material
parameters of inhomogeneous extended targets from MSR measurements. To handle topol-
ogy changes such as breaking one component into two, we will implement level set versions
of our algorithms.

Appendix A. Prolate Spheroidal Functions. We review some results that are
taken from [18, 22] and that are relevant for our paper. Let C > 0. The prolate spheroidal
functions ψ(l)(x) are the eigenfunctions of the sinc kernel:

∫ 1

−1

sin[C(x− y)]

π(x − y)
ψ(l)(y)dy = σ(l)ψ(l)(x) . (A.1)

The symmetric sinc kernel sinC(x−y)
π(x−y) is positive definite. Its spectrum (σ(l))l≥1 is discrete

and positive, σ(1) > σ(2) > · · · > 0 and σ(l) → 0 as l → ∞. The real-valued eigenfunctions
ψ(l) are orthonormal on (−1, 1) (they can be continued to define orthogonal functions on
(−∞,∞)):

∫ 1

−1

ψ(l)(x)ψ(j)(x)dx = 1j(l) . (A.2)

By the spectral representation of the sinc kernel, we have
∞∑

l=1

σ(l)ψ(l)(x)ψ(l)(y) =
sin[C(x − y)]

π(x− y)
for x, y ∈ (−1, 1) , (A.3)

∞∑

l=1

ψ(l)(x)ψ(l)(y) = δ(x− y) for x, y ∈ (−1, 1) . (A.4)

When C is large, the eigenvalues σ(l) stay close to one for small l and then they plunge to
0 near the threshold value [2C/π]:

σ(l) C→∞−→






1 if l =
[
2C
π (1 − ε)

]
, ε > 0,

1
1+eπb if l =

[
2C
π + b

π logC
]
, b ∈ R,

0 if l =
[
2C
π (1 + ε)

]
, ε > 0.

(A.5)
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Finally, we have for any x ∈ R and l ≥ 1:

∫ 1

−1

e−iCxyψ(l)(y)dy = il+1

√
2πσ(l)

C
ψ(l)(x) . (A.6)

REFERENCES

[1] M. Abramowitz and I. Stegun (editors), Handbook of Mathematical Functions, National Bureau of
Standards, Washington D.C., 1964.

[2] H. Ammari, H. Kang, E. Kim, and J.Y. Lee, The generalized polarization tensors for resolved imaging.
Part II, submitted.

[3] H. Ammari, E. Beretta, E. Francini, H. Kang, and M. Lim, Reconstruction of small interface changes
of an inclusion from modal measurements II: The elastic case, J. Math. Pures Appl, 94 (2010),
322–339.

[4] H. Ammari, P. Garapon, F. Jouve, H. Kang, and M. Lim, A new optimal control approach for the
reconstruction of extended inclusions, submitted.

[5] H. Ammari, J. Garnier, H. Kang, W.K. Park, and K. Sølna, Imaging schemes for perfectly conducting
cracks, submitted.

[6] H. Ammari, J. Garnier, and K. Sølna, A statistical approach to target detection and localization in
the presence of noise, submitted.

[7] H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements,
Lecture Notes in Mathematics, Vol. 1846, Springer-Verlag, Berlin, 2004.

[8] H. Ammari, H. Kang, G. Nakamura, and K. Tanuma, Complete asymptotic expansions of solutions of
the system of elastostatics in the presence of inhomogeneities of small diameter, J. Elasticity 67
(2002), 97-129.

[9] G. Bao, S. Hou, and P. Li, Recent studies on inverse medium scattering problems, Lecture Notes in
Comput. Sci. Eng., Vol. 59, 165–186, 2007.

[10] E. Beretta and E. Francini, Asymptotic formulas for perturbations in the electromagnetic fields due
to the presence of thin inhomogeneities, in Inverse problems: theory and applications, Contemp.
Math., 333, Amer. Math. Soc., Providence, RI, 2003.

[11] E. Beretta and E. Francini, An asymptotic formula for the displacement field in the presence of thin
elastic inhomogeneities, SIAM J. Math. Anal., 38 (2006), 1249–1261.

[12] L. Borcea, G. Papanicolaou, and F.G. Vasquez, Edge illumination and imaging of extended reflectors,
SIAM J. Imaging Sci., 1 (2008), 75–114.
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