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EFFECTIVE TRANSPORT EQUATIONS AND ENHANCED
BACKSCATTERING IN RANDOM WAVEGUIDES∗
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Abstract. In this paper we derive a general system of transport equations for the moments
of reflected and transmitted mode amplitudes in a randomly perturbed waveguide, in a regime
where backscattering is significant. The derivation is based on a limit theorem for the system
of coupled differential equations for the mode amplitudes, in the limit where the amplitude of the
random fluctuations of the medium is small, the correlation lengths in the transverse and longitudinal
directions are of the same order of the wavelength, and the waveguide is long. Using this system we
derive several results in specific regimes, including the enhanced backscattering phenomenon for the
reflected wave: when an incoming monochromatic wave with a specific incidence angle is present,
the mean reflected power has a local maximum in the backward direction twice as large as the mean
reflected power in the other directions.
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1. Introduction. This paper is devoted to the analysis of wave propagation in a
random waveguide. We use a separation of scales technique introduced by Papanico-
laou and his co-authors. Although this technique was originally introduced for wave
propagation in one-dimensional random media [1], it has been shown recently that it
is possible to extend the technique to three-dimensional random media in the context
of waveguides [5, 7, 6]. By writing the coupled mode equations for the complex mode
amplitudes, diffusion approximation theorems can be applied, leading to differential
equations driven by Brownian motions whose solutions are Itô diffusion processes. In
[5, 6, 7] the analysis was restricted to the forward scattering approximation, where
the conversion from forward-going to backward-going modes is neglected. This regime
is characterized by the equipartition of energy: the mean transmitted mode powers
become uniformly distributed when the waveguide is long enough. In this paper, we
revisit this analysis in the general case and take into account backscattering. We de-
rive a system of transport equations for the moments of the reflected and transmitted
mode amplitudes in the regime where the fluctuations of the random medium have
a small amplitude and a correlation length of the same order as the typical wave-
length. This allows us to exhibit the enhanced backscattering phenomenon: when
a monochromatic input mode is applied, the mean reflected mode powers become
uniformly distributed, except for the mode corresponding to the backward direction,
where the mean reflected power is twice the mean power of the other modes. This
phenomenon, also known as weak localization, is well referenced in the physical litera-
ture and it has been observed in several experimental contexts, such as in optics with
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powder suspensions [17, 15], with biological tissues [18], and with ultracold atoms [11]
as well as in acoustics [14]. The physical analysis of the weak localization is based on
diagrammatic expansions [16], where interference effects between direct and reverse
paths play a crucial role. Here we give a mathematical derivation of this phenomenon
by an asymptotic analysis in the context of random waveguides. We also compute
the second moments of the reflected mode powers and show that these quantities are
not statistically stable in the sense that their fluctuations are of the same order as
their mean values. This means that it is necessary to average the reflected power to
detect the enhanced backscattering. This point was already mentioned in the physical
literature, and we give here a quantitative analysis of this phenomenon.

2. Propagation in a random waveguide. We consider wave propagation in
a waveguide where the medium parameters have small random perturbations. Many
modern applications involve propagation in waveguides [3, 4, 13]. We will here de-
scribe the problem in a scaling regime where the radius of the waveguide is of the
order of a few wavelengths and with the medium parameters varying randomly in the
longitudinal and transversal directions with a correlation length on the order of the
wavelength. This scaling regime was also considered in [5, 7, 6]. The analysis could
be generalized to other scaling limits whenever diffusion approximation theorems can
be applied.

We consider linear acoustic waves propagating in three spatial dimensions:

(2.1) ρ(x, z)
∂u

∂t
+ ∇p = 0,

1

K(x, z)

∂p

∂t
+ ∇ · u = 0 for x ∈ D and t, z ∈ R,

where p is the pressure field, u is the velocity field, ρ is the density of the medium,
K is the bulk modulus, and (x, z) = (x, y, z) stands for the space coordinates. The
cross section of the waveguide is denoted by D, and we shall use Dirichlet boundary
conditions

(2.2) p(t,x, z) = 0 for x ∈ ∂D and z ∈ R.

The direction of propagation along the waveguide axis is z and the transverse coordi-
nates are denoted by x ∈ D. The random part of the waveguide occupies the region
z ∈ [0, L/ε2] and is embedded in between two homogeneous waveguide sections. In-
side the perturbed waveguide the bulk modulus is randomly varying, and we assume
for simplicity that the density is homogeneous:

1

K(x, z)
=

{
1
K

(1 + εν(x, z)) for x ∈ D, z ∈ [0, L/ε2],
1
K

for x ∈ D, z ∈ (−∞, 0) ∪ (L/ε2,∞),
(2.3)

ρ(x, z) = ρ̄ for x ∈ D, z ∈ (−∞,∞).(2.4)

It is possible to take into account a randomly varying density; this complicates the
algebra but leads to the same general system of transport equations for the moments
of reflected and transmitted mode amplitudes. Such a generalization was carried
out in the case of randomly layered media in [5, section 17.3]. Here ε is a small
parameter and ν(x, z) is a zero-mean random process that describes the random
medium fluctuations that are mixing in the z-direction. This weakly heterogeneous
regime can be encountered, for instance, in underwater acoustics [4, 8].
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2.1. Waveguide modes. In a homogeneous waveguide ν = 0, the complex
amplitude of a monochromatic wave p(t,x, z) = p̂(ω,x, z)e−iωt at frequency ω satisfies
the time-harmonic form of the wave equation (Helmholtz equation):

(2.5) ∂2
z p̂ + Δ⊥p̂ + k2(ω)p̂ = 0.

Here Δ⊥ is the transverse Laplacian, k(ω) = ω/c̄ is the wavenumber, and c̄ =
√
K̄/ρ̄ is

the homogenized wave speed. The monochromatic wave can be decomposed in terms
of normal modes which are the (normalized in L2(D)) solutions of the eigenvalue
problem

−Δ⊥φj(x) = λjφj(x), x ∈ D, φj(x) = 0, x ∈ ∂D,

for j = 1, 2, . . . . The eigenvalues are positive and nondecreasing, and we assume for
simplicity that they are simple, so we have 0 < λ1 < λ2 < · · · . The eigenmodes are
real and form an orthonormal set∫

D
φj(x)φl(x) dx = δjl.

For a given frequency ω, there exists a unique integer N(ω) such that λN(ω) ≤ k2(ω) <
λN(ω)+1, with the convention that N(ω) = 0 if λ1 > k2(ω). The modal wavenumbers
βj(ω) for 1 ≤ j ≤ N(ω) are defined by

(2.6) βj(ω) =
√

k2(ω) − λj .

The solutions p̂j(ω,x, z) = φj(x)e±iβj(ω)z, j = 1, . . . , N(ω), of the wave equation
(2.5) are the propagating waveguide modes. For j > N(ω) we define the modal
wavenumbers by βj(ω) = [λj−k2(ω)]1/2, and the corresponding solutions q̂j(ω,x, z) =
φj(x)e±βj(ω)z of the wave equation (2.5) are the evanescent modes.

From now on we consider the perturbed waveguide as described by (2.3)–(2.4).
We expand the time-harmonic field inside the randomly perturbed waveguide in terms
of the transverse eigenmodes of the unperturbed waveguide:

(2.7) p̂(ω,x, z) =

N(ω)∑
j=1

φj(x)p̂j(ω, z) +

∞∑
j=N(ω)+1

φj(x)q̂j(ω, z),

where p̂j is the amplitude of the jth propagating mode and q̂j is the amplitude of

the jth evanescent mode. For 1 ≤ j ≤ N(ω), let âj(ω, z) and b̂j(ω, z) represent
the amplitudes of the forward- and backward-propagating modes, with the forward
direction referring to the z-direction. They are given by

p̂j(ω, z) =
1√
βj(ω)

(
âj(ω, z)e

iβj(ω)z + b̂j(ω, z)e
−iβj(ω)z

)
,(2.8)

dp̂j(ω, z)

dz
= i
√
βj(ω)

(
âj(ω, z)e

iβj(ω)z − b̂j(ω, z)e
−iβj(ω)z

)
.(2.9)

We next make a change of the z variable by introducing the rescaled processes âεj(ω, z),

b̂εj(ω, z), j = 1, . . . , N(ω), given by

(2.10) âεj(ω, z) = âj

(
ω,

z

ε2

)
, b̂εj(ω, z) = b̂j

(
ω,

z

ε2

)
.
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By projecting the wave equation (2.5) on the transverse eigenmodes and by expressing
the amplitudes of the evanescent modes in terms of the amplitudes of the propagating
modes [5, 6], we obtain the following mode coupling equations for the amplitude

processes âε(ω, z) = (âεj(ω, z))j=1,...,N(ω) and b̂ε(ω, z) = (b̂εj(ω, z))j=1,...,N(ω):

dâε

dz
=

[
1

ε
H(aa) + G(aa)

](
ω,

z

ε2

)
âε +

[
1

ε
H(ab) + G(ab)

](
ω,

z

ε2

)
b̂ε,(2.11)

db̂ε

dz
=

[
1

ε
H(ab) + G(ab)

](
ω,

z

ε2

)
âε +

[
1

ε
H(aa) + G(aa)

](
ω,

z

ε2

)
b̂ε,(2.12)

with the two-point boundary conditions

(2.13) âεj(ω, 0) = 0, b̂εj(ω,L) = b̂inc
j (ω),

which correspond to a left-propagating wave incoming from the right homogeneous
waveguide. The matrices G describe coupling via evanescent modes [5]. The N(ω)×
N(ω) coupling matrices have entries of form

H
(aa)
jl (ω, z) =

ik2(ω)

2

Cjl(z)√
βjβl(ω)

ei(βl(ω)−βj(ω))z,(2.14)

G
(aa)
jl (ω, z) =

ik4(ω)

4

∑
l′>N(ω)

∫ ∞

−∞

Cjl′(z)Cll′(z + s)√
βjβ2

l′βl(ω)
eiβl(ω)(z+s)−iβj(ω)z−βl′ (ω)|s| ds,

H
(ab)
jl (ω, z) = −e−2iβj(ω)zH

(aa)
jl (ω, z), G

(ab)
jl (ω, z) = −e−2iβj(ω)zG

(aa)
jl (ω, z),(2.15)

Cjl(z) =

∫
D
φj(x)φl(x)ν(x, z) dx(2.16)

for j, l = 1, . . . , N(ω).

2.2. Channel coupled wave approximation. We use an invariant imbedding
step to convert the boundary value problem to an initial value problem with the
objective being to characterize the reflected and transmitted wave fields. Accordingly
we introduce the N(ω) ×N(ω) reflection and transmission matrices Rε and T ε by

(2.17) b̂ε(ω, 0) = T ε(ω, z)b̂ε(ω, z), âε(ω, z) = Rε(ω, z)b̂ε(ω, z).

Using (2.11)–(2.12) we find that these matrices solve the problems

d

dz
Rε = Hb,ε + Ha,εRε −RεHa,ε −RεHb,εRε,(2.18)

d

dz
T ε = −T ε

(
Ha,ε + Hb,εRε

)
,(2.19)

where we defined

Ha,ε(ω, z) =
1

ε
H(aa)

(
ω,

z

ε2

)
+ G(aa)

(
ω,

z

ε2

)
,

Hb,ε(ω, z) =
1

ε
H(ab)

(
ω,

z

ε2

)
+ G(ab)

(
ω,

z

ε2

)
,

and where Rε(ω, z) and T ε(ω, z) take initial values at z = 0

(2.20) T ε(ω, 0) = I, Rε(ω, 0) = 0.
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We remark that energy conservation leads to the reflection-transmission conservation
relation

(2.21) Rε†Rε + T ε†T ε = I,

where the sign † stands for the conjugate transpose [5].
The initial value problem (2.18) is a stochastic Riccati matrix equation, and it can

be analyzed in the limit ε → 0 using the theory of diffusion approximations [5, 10].
The matrix H(aa) contains rapidly varying phase factors and is centered with respect
to the randomness that fluctuates on the scale ε2 and is mixing in the z-direction. In
this white-noise scaling regime we can then identify the corresponding infinitesimal
generator and the associated white-noise model that describes the joint law of the
transmission and reflection matrices in the limit ε → 0.

3. The reflected wave field. We consider the problem of characterizing the
modal distribution of the reflected or transmitted waves. We consider in this section
the reflected waves, and we will address the transmitted waves in section 4.

3.1. The moments of the reflected time-harmonic field. We first consider
the time-harmonic reflected field for a single frequency ω. We can compute the limit
of the moments of the reflection matrix by using the diffusion approximation theory.

Proposition 3.1. Let p = {(j1, l1), . . . , (j|p|, l|p|)} ∈ {1, . . . , N(ω)}2|p| denote
a multi-index ( |p| is the number of index pairs in p). We introduce the moments of
elements Rε

jl of the reflection matrix:

Mε
p,q(ω, z) = E

[ ∏
(j,l)∈p

Rε
jl(ω, z)

∏
(m,n)∈q

Rε
mn(ω, z)

]
.

These moments converge as ε → 0 to the solution Mp,q of the system

(3.1)
dMp,q

dz
= Dp,q(ω)Mp,q +

[
Sω(M)

]
p,q

,

with the initial conditions

(3.2) Mp,q(ω, z = 0) = 10(|p|)10(|q|).

Here we have defined the linear operator Sω,[
Sω(M)

]
p,q

= −
∑

(j,l)∈p

d
(1)
jl Mp|{(j,l)|(l,j)},q −

∑
(j,l)∈q

d
(1)
jl Mp,q|{(j,l)|(l,j)}

−
∑

{(j,l),(j̃,l̃)}∈p

d
(2)
jl Mp|{(j,l),(j̃,l̃)|(j̃,j),(l,l̃)},q + d

(2)

j̃l̃
Mp|{(j,l),(j̃,l̃)|(j,j̃),(l̃,l)},q

−
∑

{(j,l),(j̃,l̃)}∈p

d
(1)

jl̃
Mp|{(j,l),(j̃,l̃)|(j̃,j),(l̃,l)},q + d

(1)

j̃l
Mp|{(j,l),(j̃,l̃)|(j,j̃),(l,l̃)},q

−
∑

{(j,l),(j̃,l̃)}∈p

[
d
(5)
jl + d

(5)

j̃l̃
+ d

(1)

jj̃
+ d

(1)

ll̃

]
Mp|{(j,l),(j̃,l̃)|(j̃,l),(j,l̃)},q

−
∑

{(j,l),(j̃,l̃)}∈q

d
(2)
jl Mp,q|{(j,l),(j̃,l̃)|(j̃,j),(l,l̃)} + d

(2)

j̃l̃
Mp,q|{(j,l),(j̃,l̃)|(j,j̃),(l̃,l)}
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−
∑

{(j,l),(j̃,l̃)}∈q

d
(1)

jl̃
Mp,q|{(j,l),(j̃,l̃)|(j̃,j),(l̃,l)} + d

(1)

j̃l
Mp,q|{(j,l),(j̃,l̃)|(j,j̃),(l,l̃)}

−
∑

{(j,l),(j̃,l̃)}∈q

[
d
(5)
jl + d

(5)

j̃l̃
+ d

(1)

jj̃
+ d

(1)

ll̃

]
Mp,q|{(j,l),(j̃,l̃)|(j̃,l),(j,l̃)}

+
∑

(j,l)∈p

∑
(j̃,l̃)∈q

d
(3)

jlj̃l̃
Mp|(j,l),q|(j̃,l̃)

+
∑

(j,l)∈p

∑
(j̃,l̃)∈q

N∑
k=1 �=j

[
d
(4)

jkj̃
Mp|{(j,l)|(k,l)},q|{(j̃,l̃)|(k,l̃)} + d

(4)

jkl̃
Mp|{(j,l)|(k,l)},q|{(j̃,l̃)|(j̃,k)}

]

+
∑

(j,l)∈p

∑
(j̃,l̃)∈q

N∑
k=1 �=l

[
d
(4)

lkl̃
Mp|{(j,l)|(j,k)},q|{(j̃,l̃)|(j̃,k)} + d

(4)

lkj̃
Mp|{(j,l)|(j,k)},q|{(j̃,l̃)|(k,l̃)}

]

+
∑

(j,l)∈p

∑
(j̃,l̃)∈q

N∑
k1,k2=1

d
(2)
k1k2

Mp|{(j,l)|(j,k1),(k2,l)},q|{(j̃,l̃)|(j̃,k1),(k2,l̃)}

+
∑

(j,l)∈p

∑
(j̃,l̃)∈q

N∑
k1,k2=1

d
(5)
k1k2

Mp|{(j,l)|(j,k1),(k2,l)},q|{(j̃,l̃)|(j̃,k2),(k1,l̃)},

and we have used the following notation: If p is a multi-index and {(j1, l1), . . . ,
(jm, lm)} ⊂ p, then p|{(j1, l1), . . . , (jm, lm)|(j̃1, l̃1), . . . , (j̃n, l̃n)} denotes the new
multi-index obtained from p by removing the index pairs {(j1, l1), . . . , (jm, lm)} and
by adding the new index pairs {(j̃1, l̃1), . . . , (j̃n, l̃n)}. Finally, the coefficients Dp,q(ω)
and d(j)(ω), j = 1, . . . , 5, are defined by

Dp,q = i
∑

(j,l)∈p

(
κj + κl

)
− i

∑
(j,l)∈q

(
κj + κl

)
−

∑
(j,l)∈p

N∑
k=1

(
Γjk + Γlk + Γ̃jk + Γ̃lk

)
−

∑
(j,l)∈q

N∑
k=1

(
Γjk + Γlk + Γ̃jk + Γ̃lk

)
− 2

∑
{(j,l),(j̃,l̃)}∈p

(
Γ̌jj̃ + Γ̌ll̃

)
− 2

∑
{(j,l),(j̃,l̃)}∈q

(
Γ̌jj̃ + Γ̌ll̃

)
−

∑
(j,l)∈p

∑
(j̃,l̃)∈p

2	
(
Γ̌jl̃

)
−

∑
(j,l)∈q

∑
(j̃,l̃)∈q

2	
(
Γ̌jl̃

)
+ 2

∑
(j,l)∈p

∑
(j̃,l̃)∈q

(
Γ̌jl̃ + Γ̌lj̃ + Γ̌j̃j + Γ̌l̃l

)
,

d
(1)
jl (ω) = 2	

[
Γ̃jl(ω)

]
1j �=l, d

(2)
jl (ω) = 2	

[
Γjl(ω)

]
,

d
(3)

jlj̃l̃
(ω) = 2	

[
Γjl(ω)

]
1(j,l)=(j̃,l̃) or (j,l)=(l̃,j̃),

d
(4)

jkj̃
(ω) = 2	

[
Γ̃jk(ω)

]
1j=j̃ , d

(5)
k1k2

(ω) = 2	
[
Γk1k2(ω)

]
1k1 �=k2 ,

with 	(x) the real part of x, 1j �=l = 1 if j 
= l and 0 otherwise, and

Γ̌jl(ω) =
k4(ω)

4

∫∞
0

E[Cjj(0)Cll(s)] ds

βjβl(ω)
,(3.3)
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Γ̃jl(ω) =
k4(ω)

4

∫∞
0

ei(βj(ω)−βl(ω))s
E[Cjl(0)Cjl(s)] ds

βjβl(ω)
,(3.4)

Γjl(ω) =
k4(ω)

4

∫∞
0

ei(βj(ω)+βl(ω))s
E[Cjl(0)Cjl(s)] ds

βjβl(ω)
,(3.5)

κl(ω) =
k4(ω)

4

∑
l′>N(ω)

∫∞
−∞ E [Cll′ (0)Cll′ (s)] eiβl(ω)s−βl′ (ω)|s| ds

βlβl′(ω)
.(3.6)

We will discuss applications of this proposition in the next sections, but we first
give a generalization of the result for the two-frequency case. The proof of Proposi-
tion 3.1 is a simplified version of the proof of the next proposition, so we shall present
it only for this second proposition.

3.2. The transport equations for the two-frequency moments. We have
the following result, which is proved in Appendix A. We use the same notation as in
Proposition 3.1.

Proposition 3.2. We introduce the moments of elements Rε
jl of the reflection

matrix at two nearby frequencies:

(3.7) Uε
p,q(ω, h, z) = E

[ ∏
(j,l)∈p

Rε
jl(ω + ε2h/2, z)

∏
(m,n)∈q

Rε
mn(ω − ε2h/2, z)

]
,

where we set Rε
jl(ω± ε2h/2, z) = 0 if j or l is larger than N(ω± ε2h/2). The family

of Fourier transforms (in h)

(3.8) Wε
p,q(ω, τ, z) =

1

2π

∫
e−ih[τ−φp,q(ω)z]Uε

p,q(ω, h, z) dh

converges as ε → 0 to the solution Wp,q of the system of transport equations

(3.9)
∂Wp,q

∂z
+ φp,q(ω)

∂Wp,q

∂τ
= Dp,q(ω)Wp,q +

[
Sω(W)

]
p,q

,

with the initial conditions

(3.10) Wp,q(ω, τ, z = 0) = 10(|p|)10(|q|)δ(τ).

The coefficient φp,q(ω) is defined by

(3.11) φp,q(ω) =
1

2

∑
(j,l)∈p

(
β′
j(ω) + β′

l(ω)
)

+
1

2

∑
(j,l)∈q

(
β′
j(ω) + β′

l(ω)
)
,

with β′
j(ω) = dβj(ω)/dω, while the coefficient Dp,q(ω) and the operator Sω are given

in Proposition 3.1.
The set of transport equations (3.9) describes accurately the reflected wave field,

and it is the key tool in analyzing various applications with waves in random wave-
guides. The corresponding transport equations in the layered case with one-dimen-
sional medium variations were first obtained in [1]. They have played a crucial role
in the analysis of a wide range of applications, and they have been generalized to
describe a wide range of propagation scenarios in [5]. The transport equations given
in Proposition 3.2 provide a rigorous tool for studying qualitatively and quantitatively
the multiple scattering effects in a nonlayered random medium.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EFFECTIVE TRANSPORT EQUATIONS IN RANDOM WAVEGUIDES 1581

Remark. The convergence of Wε and the existence and uniqueness of the so-
lution W to the system of transport equations (3.9) are established in the space
C([0, L], S′

H), where S′
H is a generalization of the space of distributions introduced

in [12] to study the analogous problem with N = 1 (randomly layered media).
The space S′

H can be identified as the dual of the space SH of the test functions
λ = (λp,q(τ))p∈{1,...,N(ω)}2|p|,q∈{1,...,N(ω)}2|q|,τ∈R, where the λp,q(τ) are infinitely dif-
ferentiable in τ and are rapidly decaying as functions of τ , |p| and |q|. The convergence
of Mε in Proposition 3.1 is established in the space C([0, L], S′

M ), where S′
M is the

dual of the space SM of the test sequences λ = (λp,q)p∈{1,...,N(ω)}2|p|,q∈{1,...,N(ω)}2|q|

which are rapidly decaying in |p| and |q|.
3.3. Interpretation of the transport equations. We make the five following

observations regarding the system of transport equations.
(1) By integrating the solution of the system of transport equations in τ , it is

straightforward to see that the integral quantity is the solution of the system (3.1).
This shows that we have

(3.12) Mp,q(ω, z) =

∫
Wp,q(ω, τ, z) dτ.

Therefore, the following remarks stated in terms of the family Wp,q hold true for the
family of moments Mp,q as well.

(2) Consider the set of moments Wp,q such that |p| − |q| = c with c a nonzero
integer. These moments form a closed subfamily with each member satisfying a zero
initial condition. Therefore, these moments vanish and only moments having the same
number of conjugated and unconjugated terms |p| = |q| survive in the limit ε → 0.

(3) Consider the case when

(3.13) Cjl(z) ≡ 0 for j 
= l.

This corresponds to the situation where modes with different modal wavenumbers are
not coupled. This is the case particularly when the inhomogeneities of the waveguide
do not have lateral variations ν(x, z) = ν(z). It then follows that

Γ̃jl(ω) = Γ̃
(0)
j (ω)1j=l, Γ̃

(0)
j (ω) =

k4(ω)

2β2
j (ω)

∫ ∞

−∞
E[ν(0)ν(s)] ds,(3.14)

Γjl(ω) = Γ
(0)
j (ω)1j=l, Γ

(0)
j (ω) =

k4(ω)

4β2
j (ω)

∫ ∞

0

E[ν(0)ν(s)]ei2βj(ω)s ds.(3.15)

This simplification gives d
(1)
jl = 0, d

(2)
jl = 2Γ

(0)
j 1j=l, d

(3)

jlj̃l̃
= 2Γ

(0)
j 1j=l=j̃=l̃, d

(4)

jj̃k
=

2Γ̃
(0)
j 1j=j̃=k, and d

(5)
k1k2

= 0. The analysis of the system shows that the solution has
the form

Wp,q(ω, τ, z) =

{
W

(1)
p1 ∗ · · · ∗W (N)

pN (ω, τ, z) if p = q = {(1, 1)p1 , . . . , (N,N)pN },
0 otherwise,

where ∗ stands for the convolution in τ and for each j = 1, . . . , N the family (W
(j)
p )p∈N

is the solution of the closed system of transport equations

(3.16)
∂W

(j)
p

∂z
+ 2pβ′

j(ω)
∂W

(j)
p

∂τ
= 2p2	

[
Γ

(0)
j (ω)

] (
W

(j)
p+1 + W

(j)
p−1 − 2W (j)

p

)
,
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with the initial conditions W
(j)
p (ω, τ, z = 0) = 10(p)δ(τ). We therefore obtain that

the backward and forward jth modes are uncoupled from the other modes, but their
moments are coupled together according to the system that governs the propagation
of one-dimensional waves in random media [1]. This is not qualitatively surprising,
but this analysis shows that a sufficient criterion for this reduction is (3.13).

(4) If the two-point statistics of the process ν(x, z) are such that

(3.17) Γjl(ω) ≡ 0 for all j, l = 1, . . . , N(ω),

then d(2) = d(3) = d(5) = 0. Consequently there is coupling in the system of transport
equations only for indices (p,q) and (p′,q′) such that |p| = |p′| and |q| = |q′|. Since
the initial conditions are zero for all nonempty indices (p,q), the moments Wp,q are
zero as soon as |p| or |q| is positive. In other words, Rε

jl → 0 for all j, l = 1, . . . , N
in distribution as ε → 0. This shows that the forward scattering approximation is
valid as soon as the condition (3.17) is fulfilled. This approximation is frequently used
in the literature; it consists in neglecting coupling between forward- and backward-
propagating modes, while retaining the coupling between forward-going modes and the
implicit coupling to the evanescent modes. Here we give the necessary and sufficient
condition (3.17) for the validity of this approximation.

(5) In the full system (2.18) we do not have“reciprocity” in that in general
Rε

jl 
= Rε
lj because of the coupling with the evanescent modes modeled by the matrices

G. However, the following symmetry relation is satisfied:

Wp,q = Wp̃,q̃

for p̃n = (ln, jn) with pn = (jn, ln) and q̃ correspondingly defined. This means
that reciprocity is satisfied in the limit ε → 0, and this follows from the following
observations:

• The initial condition in (3.10) depends on the multi-index only through
|p| and |q|.

• The coupling matrices G(aa) and G(ab) in (2.18) affect only the diagonal
coefficients Dp,q in a symmetric way in the problem for Wp,q.

• We have the symmetry relations(
H(aa)

)T
= −H(aa),

(
H(ab)

)T
= H(ab)

in the coupling matrices in (2.18).

3.4. Enhanced backscattering. In this section we consider the case where the
forward coupling is strong while the coupling between the forward- and backward-
going modes is weak. As seen above, the forward scattering approximation consists
in neglecting completely the latter coupling, and it is valid when the matrix Γ is zero.
Here we assume that Γ is not zero but Γ is small compared to Γ̃. This allows us to
simplify significantly the system of transport equations and to present very interest-
ing results. In particular, we show in the following proposition that the enhanced
backscattering phenomenon extensively discussed in the physical literature can be
exhibited from the particular structure of the reflected time-harmonic wave field.

We denote by Pjl the mean reflected power of the mode j when the input wave
is a mode l:

P(1)
jl (ω, z) = M(j,l),(j,l)(ω, z) = lim

ε→0
E[|Rε

jl(ω, z)|2], j, l = 1, . . . , N(ω),
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for a random waveguide with length z.
Proposition 3.3. If the matrix norm of 	[Γ(ω)] is small compared to 1/L and

the positive spectral gap (3.20) of the operator Lω in (3.18) below, which is defined in

terms of Γ̃(ω), is large compared to 1/L, then the mean reflected mode powers are

P(1)
jl (ω,L) =

{
P0(ω) if j 
= l,
2P0(ω) if j = l,

where P0(ω) is given by

P0(ω) =
2

N(ω)(N(ω) + 3)

[∑
j �=l

	[Γjl(ω)] + 2
∑
j

	[Γjj(ω)]

]
L.

The first condition “	[Γ(ω)L]  1” means that the coupling between backward-
and forward-going modes is weak. The second condition about the spectral gap means
that the coupling between forward-going modes is strong (as well as the coupling
between backward-going modes). The most striking result of this proposition is that,
if the incident wave is a pure mode l, then the mean reflected power of the lth mode

P(1)
ll is twice the mean reflected power of any other mode P(1)

jl , j 
= l.
First, this result shows that the reflected wave has a memory of the initial con-

ditions. This is in contrast to the transmitted wave field in the same regime, where
the equipartition of energy means that the mean transmitted mode powers acquire
a uniform distribution over the modes, independently of the initial conditions (see
section 4.4).

Second, since a mode corresponds to a particular wavevector angle, this result
means that we observe a uniform mean reflected power in all outgoing directions,
except in the backscattered direction (corresponding to the input one), where we
observe twice as much power. The physical reason for this enhancement of backscat-
tered power is the constructive interference between the direct and reverse paths in
the backscattering direction. Enhanced backscattering was first predicted in three-
dimensional random media in [2] and was detected by several groups [9, 15, 17]. It is
also referred to as the weak localization effect. The most popular techniques amongst
physicists for analyzing the weak localization effect, and more generally for taking into
account interference effects, are based on diagrammatic expansions [16]. Here we give
a mathematical derivation of this phenomenon in the context of random waveguides.

Proof. The initial conditions for the solution Wp,q of the system of transport
equations is zero as soon as |p| > 0 or |q| > 0. Since the coupling terms from |p|
to |p| ± 1 and from |q| to |q| ± 1 are proportional to 	(Γ), this shows that the only
coefficients Wp,q of order 	(Γ) are the ones with |p| = 1 and |q| = 1. Up to terms of
higher order, we find that

Wp,q(ω, τ, z) =

⎧⎨⎩
δ(τ) if p = q = ∅,
Wjl(ω, τ, z) if {p = (j, l), q = (j, l)} or {p = (j, l), q = (l, j)},
0 otherwise,

where Wjl is the solution of

∂Wjl

∂z
+
[
β′
j(ω) + β′

l(ω)
]∂Wjl

∂τ
= (LωW )jl + 2	

[
Γjl(ω)

]
δ(τ),

with the initial conditions Wjl(ω, τ, z) = 0. Here Lω is the linear operator from R
N×N

into R
N×N defined by
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(3.18) (LωP)jl =

⎧⎪⎪⎨⎪⎪⎩
∑
k �=j

γ̃jk(Pkl − Pjl) +
∑
k �=l

γ̃kl(Pjk − Pjl) − 2γ̃jlPjl if j 
= l,

2
∑
k �=j

γ̃jk(2Pjk − Pjj) if j = l,

where γ̃jl(ω) = 2	[Γ̃jl(ω)]. By integrating in τ and using (3.12), we obtain the system
for the mean reflected powers

(3.19)
dP(1)

jl

dz
= (LωP(1))jl + 2	

[
Γjl(ω)

]
.

Interpreting Lω as an N2(ω) × N2(ω) matrix acting on N2(ω)-dimensional vectors,
it is straightforward to check that the vector P∗(ω) defined by

P∗
jl(ω) =

⎧⎪⎪⎨⎪⎪⎩
1√

N(ω)(N(ω) + 3)
if j 
= l,

2√
N(ω)(N(ω) + 3)

if j = l

is a unit eigenvector of Lω associated with the eigenvalue zero. Additionally, using
the positivity of the matrix 	(Γ̃) and the Perron–Frobenius theorem, one can show
that zero is a simple eigenvalue and all other eigenvalues are negative. Let us denote
by λ(N2)(ω) ≤ · · · ≤ λ(2)(ω) < 0 these eigenvalues and by Q(N2)(ω), . . . ,Q(2)(ω) the
corresponding unit eigenvectors. The spectral gap mentioned in the proposition is
|λ(2)(ω)|, which is also given by

(3.20) |λ(2)(ω)| = inf
P∈RN2(ω), 〈P,P∗(ω)〉=0

−〈P,LωP〉
〈P,P〉 ,

where 〈·, ·〉 denotes the scalar product in R
N2(ω). The integration of (3.19) gives

(3.21) P(1)
jl (ω, z) = P∗

jl 〈P∗, 2	(Γ)〉 z +

N2∑
k=2

Q(k)
jl

〈
Q(k), 2	(Γ)

〉 exp(λ(k)z) − 1

λ(k)
.

If |λ(2)|z is much larger than 1, then the first term of the right-hand side is much
larger than the other terms. This gives the desired result.

3.5. Fluctuation theory for the reflected mode powers. The previous sec-
tion describes the mean reflected powers. It is important to study the fluctuations of
the reflected powers in order to predict under which conditions the enhanced backscat-
tering can be observed. Propositions 3.1–3.2 allow us to study the fluctuations of the
reflected mode powers by looking at their second moments:

P(2)
jl,mn(ω, z) = lim

ε→0
E
[
|Rε

jl(ω, z)|2|Rε
mn(ω, z)|2

]
.

We investigate the asymptotic correlation matrix (of size N2(ω) × N2(ω)) of the
reflected mode powers:

Corjl,mn(ω) = lim
ε→0

E

[
|Rε

jl(ω,L)|2|Rε
mn(ω,L)|2

]
− E

[
|Rε

jl(ω,L)|2
]
E

[
|Rε

mn(ω,L)|2
]

E

[
|Rε

jl(ω,L)|2
]
E

[
|Rε

mn(ω,L)|2
]

=
P(2)
jl,mn(ω,L) − P(1)

jl (ω,L)P(1)
mn(ω,L)

P(1)
jl (ω,L)P(1)

mn(ω,L)
.
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Proposition 3.4. If the matrix norm of 	[(Γ(ω)] is small compared to 1/L and

the positive spectral gap of the operator L(2)
ω given in 1–7 below, which is defined in

terms of Γ̃(ω), is large compared to 1/L, then the second moments of the reflected
mode powers satisfy

lim
N(ω)→∞

Corjl,mn(ω) =

{
0 if (j, l) 
= (m,n) and (j, l) 
= (n,m),
1 if (j, l) = (m,n) or (j, l) = (n,m).

The result for (j, l) 
= (m,n) shows that the reflected mode powers are asymptot-
ically uncorrelated as N → ∞. The result for (j, l) = (m,n) shows that they are not
statistically stable quantities as N → ∞, since their normalized variances are equal
to one. This means that the fluctuations of the reflected mode powers are of the same
order as their mean values. This implies that it is necessary to perform an averaging
in order to observe the enhanced backscattering. This averaging can be done by a
summation of the reflected mode powers over different experiments with different re-
alizations of the random medium, or with the same realization of the random medium
but with different frequencies of the input monochromatic wave.

Another interesting point is that the normalized variances of the background
reflected powers (i.e., Corjl,jl for j 
= l) are asymptotically equal to one and equal to
the normalized variance of the backscattered reflected power (i.e., Corjj,jj).

Proof. We apply the same strategy as in the proof of Proposition 3.3. Once
again, the fundamental argument is that the coupling terms from |p| to |p| ± 1 are
proportional to 	(Γ). Therefore, the lowest order terms in 	(Γ) of the coefficients
Wp,q with |p| = |q| = 2 are

Wp,q(ω, τ, z) =

⎧⎪⎪⎨⎪⎪⎩
Wjl,mn(ω, τ, z) if

p = {(j, l), (m,n)} and q = {(j, l), (m,n)}
or {(l, j), (m,n)} or {(j, l), (n,m)}
or {(l, j), (n,m)},

0 otherwise,

where Wjl,mn is the solution of

∂Wjl,mn

∂z
+(β′

j +β′
l +β′

m+β′
n)

∂Wjl,mn

∂τ
= (L(2)

ω W )jl,mn+2	(Γjl)Wmn+2	(Γmn)Wjl,

with the initial conditions Wjl,mn(ω, τ, z = 0) = 0. Here L(2)
ω is the linear operator

from R
N2×N2

into R
N2×N2

defined by the following:
1. If j = l = m = n,

(L(2)
ω P(2))jj,jj =

∑
k �=j

γ̃jk[16P(2)
jk,jj − 4P(2)

jj,jj ],

where γ̃jl(ω) = 2	[Γ̃jl(ω)].
2. If j = l = m 
= n,

(L(2)
ω P(2))jj,jn =

∑
k �=j

γ̃jk[4P(2)
jk,jn − 2P(2)

jj,jn] +
∑
k �=j

γ̃jk[P(2)
jj,kn − P(2)

jj,jn]

+
∑
k �=m

γ̃nk[P(2)
jj,jk − P(2)

jj,jn] − 6γ̃jnP(2)
jj,jn.

A formula of the same form holds true if j = l = n 
= m or j 
= l = m = n or
l 
= j = m = n.
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3. If j = l 
= m = n,

(L(2)
ω P(2))jj,nn =

∑
k �=j

γ̃jk[4P(2)
jk,nn − 2P(2)

jj,nn] +
∑
k �=n

γ̃nk[4P(2)
jj,kn − 2P(2)

jj,nn].

4. If j = m 
= l = n,

(L(2)
ω P(2))jl,jl =

∑
k �=j

γ̃jk[4P(2)
kl,jl−2P(2)

jl,jl]+
∑
k �=l

γ̃lk[4P(2)
jk,jl−2P(2)

jl,jl]−4γ̃jlP(2)
jl,jl.

A formula of the same form holds true if j = n 
= l = m.
5. If j = l 
= m 
= n,

(L(2)
ω P(2))jj,mn =

∑
k �=j

γ̃jk[4P(2)
jk,mn − 2P(2)

jj,mn] +
∑
k �=m

γ̃mk[P(2)
jj,kn − P(2)

jj,mn]

+
∑
k �=n

γ̃nk[P(2)
jj,mk − P(2)

jj,mn] − 2γ̃mnP(2)
jj,mn.

A formula of the same form holds true if m = n 
= j 
= l.
6. If j = m 
= l 
= n,

(L(2)
ω P(2))jl,jn =

∑
k �=j

γ̃jk[P(2)
kl,jn − P(2)

jl,jn] +
∑
k �=l

γ̃lk[P(2)
jk,jn − P(2)

jl,jn]

+
∑
k �=j

γ̃jk[P(2)
jl,kn − P(2)

jl,jn] +
∑
k �=n

γ̃nk[P(2)
jl,jk − P(2)

jl,jn]

− 2 [γ̃jl + γ̃jn + γ̃ln]P(2)
jl,jn.

A formula of the same form holds true if j = n 
= l 
= m or l = m 
= j 
= n or
l = n 
= j 
= m.

7. In the other cases,

(L(2)
ω P(2))jl,mn =

∑
k �=j

γ̃jk[P(2)
kl,mn − P(2)

jl,mn] +
∑
k �=l

γ̃lk[P(2)
jk,mn − P(2)

jl,mn]

+
∑
k �=m

γ̃mk[P(2)
jl,kn − P(2)

jl,mn] +
∑
k �=n

γ̃nk[P(2)
jl,mk − P(2)

jl,mn]

− 2 [γ̃jl + γ̃mn]P(2)
jl,mn.

By integrating in τ , we find the system for the second moments of the reflected powers:

(3.22)
dP(2)

jl,mn

dz
= (L(2)

ω P(2))jl,mn + 2	(Γjl)P(1)
mn + 2	(Γmn)P(1)

jl .

Interpreting L(2)
ω as an N4(ω) ×N4(ω) matrix acting on N4(ω)-dimensional vectors,

it is possible to check that the vector P(2),∗(ω) defined by

P(2),∗
jl,mn =

1√
T ∗

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

8 if j = l = m = n,
4 if j = l 
= m = n,

2 if

∣∣∣∣∣∣
j = m 
= l = n or j = n 
= l = m or j = l 
= m 
= n
or j 
= l 
= m = n or j = l = m 
= n or j = l = n 
= m
or j 
= l = m = n or l 
= j = m = n,

1 otherwise
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is the unit eigenvector of L(2)
ω associated with the eigenvalue zero, where T ∗ =

N4 +6N3 +15N2 +42N . The other eigenvalues are negative. As a result, taking into
account the expression in (3.21) for P(1), the integration of (3.22) gives

1

z2
P(2)
jl,mn(ω, z)

z→∞−→ P(2),∗
jl,mn

N∑
j̃,l̃,m̃,ñ=1

P(2),∗
j̃l̃,m̃ñ

(
	(Γj̃l̃)P

∗
m̃ñ + 	(Γm̃ñ)P∗

j̃l̃

)
〈P∗, 2	(Γ)〉 ,

which in turn gives the result of the proposition.

4. The transmitted wave field. We consider the problem of characterizing
the distribution of the transmitted field.

4.1. The moments of the transmitted time-harmonic field. We consider
the time-harmonic transmitted field for a frequency ω. We can compute the limit of
moments of the transmission matrix as in the case of the reflection matrix. We use
the same notation as in Proposition 3.1.

Proposition 4.1. We introduce the joint moments of elements of the reflection
matrix along with a pair of elements of the transmission matrix:
(4.1)

Mt,ε
p,q(ω, z; j1, j2) = E

[
T ε
j1l1(ω, z)T ε

j2l2
(ω, z)

∏
(j,l)∈p

Rε
jl(ω, z)

∏
(m,n)∈q

Rε
mn(ω, z)

]

for t = (l1, l2). The family of moments Mt,ε
p,q converges as ε → 0 to the solution

Mt
p,q of the system

(4.2)
dMt

p,q

dz
= Dt

p,q(ω)Mt
p,q +

[
Sω(M)

]t
p,q

+
[
Zω(M)

]t
p,q

,

with the initial conditions Mt
p,q(ω, z = 0; j1, j2) = 10(|p|)10(|q|)1j1(l1)1j2(l2). The

linear operator Zω is defined by

[
Zω(M)

]t
p,q

=

N∑
k=1

d
(4)
l1kl2

M(k,k)
p,q

+

N∑
k1,k2=1

d
(2)
k1k2

M(k1,k1)
p∪{(k2,l1)},q∪{(k2,l2)} + d

(5)
k1k2

M(k2,k1)
p∪{(k1,l1)},q∪{(k2,l2)}

−
∑

(j,l)∈p

d
(6)
l1j

M(j,l2)
p|{(j,l)|(l1,l)},q + d

(6)
l1l

M(l,l2)
p|{n|(j,l1)},q

+
∑

(j,l)∈q

N∑
k=1

d
(4)
jkl1

M(k,l2)
p,q|{(j,l)|(k,l)} + d

(4)
lkl1

M(k,l2)
p,q|{(j,l)|(j,k)}

−
∑

(j,l)∈q

d
(6)
jl2

M(l1,j)
p,q|{(j,l)|(l2,l)} + d

(6)
ll2

M(l1,l)
p,q|{(j,l)|(j,l2)}

+
∑

(j,l)∈p

N∑
k=1

d
(4)
jkl2

M(l1,k)
p|{(j,l)|(k,l)},q + d

(4)
lkl2

M(l1,k)
p|{(j,l)|(j,k)},q

−
∑

(j,l)∈p

d
(2)
jl M

(j,l2)
p|{(j,l)|(l,l1)},q + d

(5)
jl M

(l,l2)
p|{(j,l)|(j,l1)},q
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−
∑

(j,l)∈q

d
(2)
jl M

(l1,j)
p,q|{(j,l)|(l,l2)} + d

(5)
jl M

(l1,l)
p,q|{(j,l)|(j,l2)}

+
∑

(j,l)∈q

N∑
k1,k2=1

d
(2)
k1k2

M(k1,l2)
p∪{(k2,l1)},q|{(j,l)|(j,k1),(k2,l)}

+
∑

(j,l)∈q

N∑
k1,k2=1

d
(5)
k1k2

M(k2,l2)
p∪{(k1,l1)},q|{(j,l)|(j,k1),(k2,l)}

+
∑

(j,l)∈p

N∑
k1,k2=1

d
(2)
k1k2

M(l1,k1)
p|{(j,l)|(j,k1),(k2,l)},q∪{(k2,l2)}

+
∑

(j,l)∈p

N∑
k1,k2=1

d
(5)
k1k2

M(l1,k2)
p|{(j,l)|(j,k1),(k2,l)},q∪{(k1,l2)}.

The coefficient Dt
p,q(ω) is defined by

Dt
p,q = Dp,q + i (κl1 − κl2) − Γkl1 − Γkl2 −

N∑
k=1

(
Γ̃kl1 + Γ̃l2k − 2Γ̌l1l21l1 �=l2

)
− 2

∑
(j,l)∈p

(
Γ̌jl11j �=l1 + Γ̌ll11l �=l1 − Γ̌jl21j �=l2 − Γ̌ll21l �=l2

)
+ 2

∑
(j,l)∈q

(
Γ̌jl11j �=l1 + Γ̌ll11l �=l1 − Γ̌jl21j �=l2 − Γ̌ll21l �=l2

)
.

The coefficient d(6)(ω) is given by

d
(6)
jl (ω) = 2	

[
Γ̃jl(ω)

]
.

The linear operator Sω and the coefficients Dp,q(ω), κl(ω), and d(j)(ω), j = 1, . . . , 5,
are defined in Proposition 3.1.

4.2. Transmission transport equations. We consider here the two-frequency
statistics of the transmitted field. We have the following result that is proved in
Appendix B.

Proposition 4.2. We introduce the joint moments of elements of the reflection
matrix at two nearby frequencies along with a pair of elements of the transmission
matrix:

Ut,ε
p,q(ω, h, z; j1, j2) = E

[
T ε
j1l1(ω + ε2h/2, z)T ε

j2l2
(ω − ε2h/2, z)(4.3)

×
∏

(j,l)∈p

Rε
jl(ω + ε2h/2, z)

∏
(m,n)∈q

Rε
mn(ω − ε2h/2, z)

]
for t = (l1, l2). The family of Fourier transforms

(4.4) Wt,ε
p,q(ω, τ, z; j1, j2) =

1

2π

∫
e−ih[τ−φp,q(ω)z]Ut,ε

p,q(ω, h, z; j1, j2) dh

converges as ε → 0 to the solution Wt
p,q of the system of transport equations

(4.5)
∂Wt

p,q

∂z
+ φt

p,q(ω)
∂Wt

p,q

∂τ
= Dt

p,q(ω)Wt
p,q +

[
Sω(W)

]t
p,q

+
[
Zω(W)

]t
p,q

,
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with the initial conditions Wt
p,q(ω, τ, z = 0; j1, j2) = 10(|p|)10(|q|)1j1(l1)1j2(l2)δ(τ).

The coefficient φt
p,q(ω) is given by

(4.6) φt
p,q(ω) = φp,q(ω) +

β′
l1

(ω) + β′
l2

(ω)

2
.

This generalized set of transport equations describes accurately the transmitted
wave field and is the key tool in analyzing various applications with wave propagation
in random waveguides. The corresponding transport equations in the layered case are
presented in [5].

4.3. Interpretation of the transmission transport equations. We make
the following observations regarding the system of transport equations.

(1) By integrating the solution of the system of transport equations in τ , it is
straightforward to see that the integral quantity is the solution of the system (4.2).
This shows that we have

(4.7) Mt
p,q(ω, z; j1, j2) =

∫
Wt

p,q(ω, τ, z; j1, j2) dτ.

Therefore, the following remarks stated in terms of the family Wt
p,q hold true for the

family of moments Mt
p,q as well.

(2) Consider the set of moments Wt
p,q such that |p| − |q| = c with c a nonzero

integer. These moments form a closed subfamily with each member satisfying a zero
initial condition. Therefore, these moments vanish, and again only moments having
the same number of conjugated and unconjugated terms survive in the small ε limit.

(3) Consider the case (3.13) when Cjl ≡ 0 for j 
= l, as described under (3) in
section 3.3. Recall that this corresponds to the situation where modes with different
modal wavenumbers are not coupled, which is the case particularly when the inhomo-
geneities of the waveguide do not have lateral variations. The analysis of the system
in (4.2) then shows that the solution has the form

Wt
p,q(ω, τ, z; j1, j2) = W (1)

p1
∗ · · · ∗W (l−1)

pl−1
∗ V (l)

pl
∗W (l+1)

pl+1
∗ · · · ∗W (N)

pN
(ω, τ, z)

if t = (j1, j2) = (l, l) and p = q = {(1, 1)p1 , . . . , (N,N)pN }, and Wt
p,q(ω, τ, z; j1, j2) =

0 otherwise. For each j, (W
(j)
p )p∈N is given by (3.16) and for each l, (V

(l)
p )p∈N is the

solution of the closed system of transport equations

∂V
(l)
p

∂z
+ (2p+ 1)β′

l(ω)
∂V

(l)
p

∂τ
= 2	

[
Γ

(0)
l (ω)

] [
(p+ 1)2(V

(l)
p+1 − V (l)

p ) + p2(V
(l)
p−1 − V (l)

p )
]
,

with the initial conditions V
(l)
p (ω, τ, z = 0) = 10(p)δ(τ). We therefore obtain that

the backward and forward jth modes are uncoupled from the other modes, but they
are coupled together according to the system that governs the propagation of one-
dimensional waves in random media [1].

4.4. Forward scattering approximation. To contrast with the fully coupled
case discussed above, we address in this section the forward scattering approximation
analyzed in detail in [5, 7]. As shown above, this approximation is valid when Γ is
zero or very small (in the sense that 	(Γ)L  1). The system of transport equations
of Proposition 4.2 can be dramatically simplified, since only the terms Wt

p,q with
p = q = ∅ contribute at the leading order, and these terms satisfy a closed system of
transport equations as described in the following proposition.
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Proposition 4.3. If Γ(ω) = 0, then the (transformed) autocorrelation function
of the transmission coefficients at two nearby frequencies,

Vε
jl(ω, τ, z) =

1

2π

∫
e−ih[τ−β′

l(ω)z]
E

[
T ε
jl(ω + ε2h/2, z)T ε

jl(ω − ε2h/2, z)
]
dh,

has a limit as ε → 0:

lim
ε→0

Vε
jl(ω, τ, z) = Vjl(ω, τ, z).

For any fixed l ∈ {1, . . . , N(ω)}, the subfamily (Vjl(ω, τ, z))j=1,...,N(ω) is the solution
of the system of transport equations

(4.8)
∂Vjl

∂z
+ β′

j(ω)
∂Vjl

∂τ
=
∑
n �=j

2	
[
Γ̃jn(ω)

]
(Vnl − Vjl) ,

with the initial conditions Vjl(ω, τ, z = 0) = δ(τ)1l(j). Here Γ̃(ω) is given by (3.4).
Let us introduce the mean transmitted power of the mode j when the input wave

is a mode l:

P(t)
jl (ω, z) = M(l,l)

∅,∅ (ω, τ, z; j, j) = lim
ε→0

E
[
|T ε

jl(ω, z)|2
]
.

The next proposition shows the equipartition of energy of the transmitted wave.
Proposition 4.4. If Γ(ω) = 0, then the mean transmitted powers converge to

the uniform distribution, that is,

P(t)
jl (ω, z)

z→∞−→ 1

N(ω)
,

uniformly in j, l and exponentially in z.
Proof. By integrating (4.8) in τ , we get that, for any fixed l, the subfamily

(P(t)
jl (ω, z))j=1,...,N(ω) is the solution of the linear system

(4.9)
∂P(t)

jl

∂z
=

N(ω)∑
n=1

L(t)
jn(ω)P(t)

nl ,

starting from P(t)
jl (ω, z = 0) = 1l(j). Here L(t)(ω) is the N(ω) ×N(ω) matrix

L(t)
jn(ω) =

⎧⎪⎨⎪⎩
2	
[
Γ̃jn(ω)

]
if j 
= n,

−2
∑
m�=j

2	
[
Γ̃jm(ω)

]
if j = n.

Using the positivity of the coefficients 	[Γ̃jn] and the Perron–Frobenius theorem, we
find that the matrix L(t) has zero as an isolated eigenvalue, and all other eigenvalues
are negative. It is straightforward to check that the eigenvector corresponding to the
zero eigenvalue is the uniform vector, which establishes the proposition.

Appendix A. Derivation of channel reflection-transport equations.

A.1. Propagator equations. We prove here Proposition 3.2. Note first that
we can write the first equation in (2.18) in the form

(A.1)
d

dz
Rε = −ΦεHa,ε + RεΦεHa,εRε + Ha,εRε −RεHa,ε,
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where Φε(ω, z) is the N(ω) ×N(ω) diagonal matrix with diagonal entries:

Φε
jj(ω, z) = e−2iβj(ω)z/ε2 .

Our objective is now to compute cross moments of reflection matrix entries using
diffusion approximation, and we remark that the phase factors in Φε then act as
decoupling terms, decoupling the entries in (A.1). We introduce the quantities Uε

p,q

that give high-order products of elements Rε
jl of the reflection matrix at two nearby

frequencies:

(A.2) Uε
p,q(ω, h, z) =

∏
(j,l)∈p

Rε
jl(ω + ε2h/2, z)

∏
(m,n)∈q

Rε
mn(ω − ε2h/2, z).

It now follows from (2.18) that the Uε
p,q’s solve evolution equations of the form

(A.3)
∂Uε

p,q

∂z
=
[
Hε

U (Uε)
]
p,q

.

Here
[
Hε

U (Uε)
]
p,q

is a finite sum of Uε
p(1),q(1) , . . . , U

ε
p(m),q(m) , where the multi-indices

p(1),q(1), . . . ,p(N),q(N) are obtained from p and q by one or two replacements. We
have explicitly[

Hε
U (Uε)

]
p,q

=
∑

(j,l)∈p

Uε
p|(j,l),q

×
{
Hb,ε

jl −
N∑

k1,k2=1

Rε
jk1

Hb,ε
k1k2

Rε
k2l +

N∑
k=1

[
Ha,ε

jk Rε
kl −Rε

jkH
a,ε
kl

]}
ω+hε2/2

+
∑

(j,l)∈q

Uε
p,q|(j,l)

×
{
Hb,ε

jl −
N∑

k1,k2=1

Rε
jk1

Hb,ε
k1k2

Rε
k2l

+

N∑
k=1

[
Ha,ε

jk Rε
kl −Rε

jkH
a,ε
kl

]}
ω−hε2/2

,

which can also be written as

[
Hε

U (Uε)
]
p,q

=
∑

(j,l)∈p

{
Hb,ε

jl Uε
p|(j,l),q −

N∑
k1,k2=1

Hb,ε
k1k2

Uε
p|{(j,l)|(j,k1),(k2,l)},q

+

N∑
k=1

[
Ha,ε

jk Uε
p|{(j,l)|(k,l)},q −Ha,ε

kl Uε
p|{(j,l)|(j,k)},q

]}
ω+hε2/2

+
∑

(j,l)∈q

{
Hb,ε

jl Uε
p,q|(j,l) −

N∑
k1,k2=1

Hb,ε
k1k2

Uε
p,q|{(j,l)|(j,k1),(k2,l)}

+

N∑
k=1

[
Ha,ε

jk Uε
p,q|{(j,l)|(k,l)} −Ha,ε

kl Uε
p,q|{(j,l)|(j,k)}

]}
ω−hε2/2

.(A.4)

Next we observe that
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Ha,ε
jl |ω±ε2h/2 ∼ αε

jl (ω, h, z) e
i(βl(ω)−βj(ω))z/ε2e±i(β′

l(ω)−β′
j(ω))zh/2

≡ α±,ε
jl (ω, h, z) ei(βl(ω)−βj(ω))z/ε2 ,

Hb,ε
jl |ω±ε2h/2 ∼ −αε

jl (ω, h, z)e
−i(βl(ω)+βj(ω))z/ε2e∓i(β′

l(ω)+β′
j(ω))zh/2

≡ α̃±,ε
jl (ω, h, z) e−i(βl(ω)+βj(ω))z/ε2

as ε → 0 for

αε
jl(ω, h, z) =

ik2(ω)

2ε

Cjl

(
z
ε2

)√
βjβl(ω)

+
ik4(ω)

4

∑
l′>N(ω)

∫ ∞

−∞

Cjl′
(

z
ε2

)
Cll′

(
z
ε2 + s

)√
βjβ2

l′βl(ω)
eiβl(ω)s−βl′ (ω)|s| ds.

Using this notation, we get from (A.4)

[
Hε

U (Uε)
]
p,q

=
∑

(j,l)∈p

{
α̃+,ε
jl Uε

p|(j,l),qe
−i(βl+βj)z/ε

2

+

N∑
k=1

[
α+,ε
jk Uε

p|{(j,l)|(k,l)},qe
i(βk−βj)z/ε

2 − α+,ε
kl Uε

p|{(j,l)|(j,k)},qe
i(βk−βl)z/ε

2
]

−
N∑

k1,k2=1

α̃+,ε
k1k2

Uε
p|{(j,l)|(j,k1),(k2,l)},qe

i(βk1
+βk2

)z/ε2
}

+
∑

(j,l)∈q

{
α̃−,ε
jl Uε

p,q|(j,l)e
i(βj+βl)z/ε

2

+

N∑
k=1

[
α−,ε
jk Uε

p,q|{(j,l)|(k,l)}e
i(βj−βk)z/ε2 − α−,ε

kl Uε
p,q|{(j,l)|(j,k)}e

i(βl−βk)z/ε2
]

−
N∑

k1,k2=1

α̃−,ε
k1k2

Uε
p,q|{(j,l)|(j,k1),(k2,l)}e

−i(βk1
+βk2

)z/ε2
}
,(A.5)

where the βj ’s are evaluated at ω.

A.2. The homogeneous propagator equations. In order the eliminate the
h-dependence in the coefficients of (A.5), we now introduce the transformation

(A.6) V ε
p,q(ω, τ, z) =

1

2π

∫
e−ih[τ−φp,q(ω)z]Uε

p,q(ω, h, z) dh,

where φp,q(ω) is given by (3.11). We then obtain from (A.5) that V ε solves the
infinite-dimensional system of partial differential equations

∂V ε
p,q

∂z
+ φp,q(ω)

∂V ε
p,q

∂τ
=
[
Hε

V (V ε)
]
p,q

,

with the initial conditions V ε
p,q(ω, τ, z = 0) = 10(|p|)10(|q|)δ(τ). The source term

now has the form
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[
Hε

V (V ε)
]
p,q

=
∑

(j,l)∈p

{
−αε

jlV
ε
p|(j,l),qe

−i(βj+βl)z/ε
2

+

N∑
k1,k2=1

αε
k1k2

V ε
p|{(j,l)|(j,k1),(k2,l)},qe

i(βk1
+βk2

)z/ε2

+

N∑
k=1

αε
jkV

ε
p|{(j,l)|(k,l)},qe

i(βk−βj)z/ε
2

−
N∑

k=1

αε
klV

ε
p|{(j,l)|(j,k)},qe

i(βk−βl)z/ε
2

}
+

∑
(j,l)∈q

{
−αε

jlV
ε
p,q|(j,l)e

i(βj+βl)z/ε
2

+

N∑
k1,k2=1

αε
k1k2

V ε
p,q|{(j,l)|(j,k1),(k2,l)}e

−i(βk1
+βk2

)z/ε2

+

N∑
k=1

αε
jkV

ε
p,q|{(j,l)|(k,l)}e

i(βj−βk)z/ε2

−
N∑

k=1

αε
klV

ε
p,q|{(j,l)|(j,k)}e

i(βl−βk)z/ε2
}
,(A.7)

where the βj ’s are evaluated at ω.

A.3. Transport equations. We next apply the diffusion approximation to get
transport equations for the moments; see [5] for background material on and related
to applications of the diffusion approximation theory. Observe that the function Hε

V

is linear and the random coefficients are rapidly fluctuating. Those coefficients whose
amplitudes are of order ε−1 are centered and fluctuate on the scale ε2; moreover, they
are assumed to be rapidly mixing, giving a white-noise scaling situation. We can thus
apply diffusion approximation results to obtain transport equations for the moments
E[V ε

p,q] in the limit ε → 0:

Wp,q(ω, τ, z) = lim
ε→0

E[V ε
p,q(ω, τ, z)].

We then obtain from (A.7) that Wp,q solves the infinite-dimensional system of partial
differential equations

∂Wp,q

∂z
+ φp,q(ω)

∂Wp,q

∂τ
= i
[ ∑
(j,l)∈p

(
κj + κl

)
−

∑
(j,l)∈q

(
κj + κl

)]
Wp,q +

[
H(W)

]
p,q

,

with the initial conditions Wp,q(ω, τ, z = 0) = 10(|p|)10(|q|)δ(τ), and where we
defined κl(ω) (which is real) by (3.6). The source term now takes the form

(A.8)
[
H(W)

]
p,q

=

6∑
k=1

Ik,

and we next identify the coupling terms Ik. We remark that in applying the diffusion
approximation there is no coupling between terms that contain phase modulation of
the type exp[i(βj − βl)z/ε

2] with terms that contain phase modulation of the type
exp[i(βm +βn)z/ε2] since the rapid phases then cannot cancel. There are eight terms
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in the expression for Hε
V in (A.7); we label the first four associated with the multi-

index p by 1p, . . . , 4p and the last by four by 1q, . . . , 4q. First we consider the cross
interaction of the terms 1p and 2p and also the corresponding combination 1q and 2q
that is associated with complex conjugate coefficients. We label their contribution by
the term I1, which is given by

I1 = −
∑

{(j,l),(j̃,l̃)}∈p

2	
(
Γjl

) (
Wp|{(j,l),(j̃,l̃)|(j̃,j),(l,l̃)},q + Wp|{(j,l),(j̃,l̃)|(j̃,l),(j,l̃)},q1j �=l

)
−

∑
{(j,l),(j̃,l̃)}∈p

2	
(
Γj̃l̃

) (
Wp|{(j,l),(j̃,l̃)|(j,j̃),(l̃,l)},q + Wp|{(j,l),(j̃,l̃)|(l,j̃),(l̃,j)},q1j̃ �=l̃

)
−

∑
{(j,l),(j̃,l̃)}∈q

2	
(
Γjl

) (
Wp,q|{(j,l),(j̃,l̃)|(j̃,j),(l,l̃)} + Wp,q|{(j,l),(j̃,l̃)|(j̃,l),(j,l̃)}1j �=l

)
−

∑
{(j,l),(j̃,l̃)}∈q

2	
(
Γj̃l̃

) (
Wp,q|{(j,l),(j̃,l̃)|(j,j̃),(l̃,l)} + Wp,q|{(j,l),(j̃,l̃)|(l,j̃),(l̃,j)}1j̃ �=l̃

)

−
∑

(j,l)∈p

N∑
k=1

(Γjk + Γlk)Wp,q −
∑

(j,l)∈q

N∑
k=1

(
Γjk + Γlk

)
Wp,q,

where Γ is defined by (3.5).
Next we consider the cross interaction of the terms 1p and 2p with the terms 1q

and 2q. We label their contribution by the term I2, which is given by

I2 =
∑

(j,l)∈p

∑
(j̃,l̃)∈q

2	
(
Γjl

)
Wp|(j,l),q|(j̃,l̃)1(j,l)∼=(j̃,l̃)

+
∑

(j,l)∈p

∑
(j̃,l̃)∈q

N∑
k1,k2=1

2	
(
Γk1k2

)
Wp|{(j,l)|(j,k1),(k2,l)},q|{(j̃,l̃)|(j̃,k1),(k2,l̃)}

+
∑

(j,l)∈p

∑
(j̃,l̃)∈q

N∑
k1,k2=1

2	
(
Γk1k2

)
Wp|{(j,l)|(j,k1),(k2,l)},q|{(j̃,l̃)|(j̃,k2),(k1,l̃)}1k1 �=k2 ,

where (j, l) ∼= (j̃, l̃) if (j, l) = (j̃, l̃) or (j, l) = (l̃, j̃).
We have completed the analysis of the terms associated with phase modulation

of the form exp[i(βj + βl)z/ε
2] and consider now terms associated with phases of the

form exp[i(βj −βl)z/ε
2]. Consider first the interaction of the terms 3p, 4p, 3q, and 4q

with themselves. We label this contribution by I3, which is given by

I3 = −
{

2
∑

{(j,l),(j̃,l̃)}∈p

[
Γ̌jj̃ + Γ̌ll̃

]
+

∑
(j,l)∈p

N∑
k=1

[
Γ̃jk + Γ̃lk

]}
Wp,q

− 2
∑

{(j,l),(j̃,l̃)}∈p

[
1j �=j̃	

(
Γ̃jj̃

)
+ 1l �=l̃	

(
Γ̃ll̃

)]
Wp|{(j,l),(j̃,l̃)|(j̃,l),(j,l̃)},q

−
{

2
∑

{(j,l),(j̃,l̃)}∈q

[
Γ̌jj̃ + Γ̌ll̃

]
+

∑
(j,l)∈q

N∑
k=1

[
Γ̃jk + Γ̃lk

]}
Wp,q

− 2
∑

{(j,l),(j̃,l̃)}∈q

[
1j �=j̃	

(
Γ̃jj̃

)
+ 1l �=l̃	

(
Γ̃ll̃

)]
Wp,q|{(j,l),(j̃,l̃)|(j̃,l),(j,l̃)},
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where Γ̌ and Γ̃ are defined by (3.3)–(3.4).
Next, we deal with the cross interaction between the terms 3p and 4p and corre-

spondingly between 3q and 4q. We label this contribution by I4 and obtain

I4 = −
{ ∑

(j,l)∈p

∑
(j̃,l̃)∈p

2Γ̌jl̃

}
Wp,q −

∑
(j,l)∈p

2	
(
Γ̃jl

)
Wp|{(j,l)|(l,j)},q1j �=l

− 2
∑

{(j,l),(j̃,l̃)}∈p

	
(
Γ̃jl̃

)
1j �=l̃Wp|{(j,l),(j̃,l̃)|(l̃,l),(j̃,j)},q

− 2
∑

{(j,l),(j̃,l̃)}∈p

	
(
Γ̃j̃l

)
1j̃ �=lWp|{(j,l),(j̃,l̃)|(l,l̃),(j,j̃)},q

−
{ ∑

(j,l)∈q

∑
(j̃,l̃)∈q

2Γ̌jl̃

}
Wp,q −

∑
(j,l)∈q

2	
(
Γ̃jl

)
Wp,q|{(j,l)|(l,j)}1j �=l

− 2
∑

{(j,l),(j̃,l̃)}∈q

	
(
Γ̃jl̃

)
1j �=l̃Wp,q|{(j,l),(j̃,l̃)|(l̃,l),(j̃,j)}

− 2
∑

{(j,l),(j̃,l̃)}∈q

	
(
Γ̃j̃l

)
1j̃ �=lWp,q|{(j,l),(j̃,l̃)|(l,l̃),(j,j̃)}.

Now we consider the cross interaction between the terms 3p and 3q and corre-
spondingly between 4p and 4q. We label this contribution by I5 and obtain

I5 =
∑

(j,l)∈p

∑
(j̃,l̃)∈q

[
2Γ̌j̃jWp,q +

N∑
k=1 �=j

2	
[
Γ̃jk

]
Wp|{(j,l)|(k,l)},q|{(j̃,l̃)|(k,l̃)}1j=j̃

]

+
∑

(j,l)∈p

∑
(j̃,l̃)∈q

[
2Γ̌l̃lWp,q +

N∑
k=1 �=l

2	
(
Γ̃lk

)
Wp|{(j,l)|(j,k)},q|{(j̃,l̃)|(j̃,k)}1l=l̃

]
.

Finally, we analyze the cross interaction between the terms 3p and 4q and corre-
spondingly between 4p and 3q. We label this contribution by I6 and obtain

I6 =
∑

(j,l)∈p

∑
(j̃,l̃)∈q

[
2Γ̌jl̃Wp,q +

N∑
k=1 �=j

2	
(
Γ̃jk

)
Wp|{(j,l)|(k,l)},q|{(j̃,l̃)|(j̃,k)}1j=l̃

]

+
∑

(j,l)∈p

∑
(j̃,l̃)∈q

[
2Γ̌lj̃Wp,q +

N∑
k=1 �=l

2	
(
Γ̃lk

)
Wp|{(j,l)|(j,k)},q|{(j̃,l̃)|(k,l̃)}1l=j̃

]
.

We can now assemble the terms in the source term H for the transport equation, and
this completes the proof of Proposition 3.2.

Appendix B. Derivation of channel transmission-transport equations.
We consider next the wave field that has been transmitted through the waveguide and
develop a family of transport equations that generalize those we derived above for the
characterization of the reflected field. The transmitted field can be characterized
by the transmission operator in (2.17). Recall that the transmission and reflection
matrices solve (2.18). In order to obtain a closed system of transport equations, we
introduce the quantities

U t,ε
p,q(ω, h, z; j1, j2) = T ε

j1l1(ω + ε2h/2, z)T ε
j2l2

(ω − ε2h/2, z)Uε
p,q(ω, h, z)
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for t = (l1, l2). Then we find, using (A.3),

∂U t,ε
p,q

∂z
=
[
Hε

U (U t,ε)
]
p,q

− Uε
p,q

{
T ε
j2l2

}
ω−hε2/2

{ N∑
k1=1

T ε
j1k1

(
Ha,ε

k1l1
+

N∑
k2=1

Hb,ε
k1k2

Rε
k2l1

)}
ω+hε2/2

− Uε
p,q

{
T ε
j1l1

}
ω+hε2/2

{ N∑
k1=1

T ε
j2k1

(
Ha,ε

k1l2
+

N∑
k2=1

Hb,ε
k1k2

Rε
k2l2

)}
ω−hε2/2

,

with Hε
U defined in (A.5). We remark that the family of coefficients U t,ε

p,q(ω, h, z; j1, j2)
for fixed j1 and j2 form a closed subfamily, which allows us to rewrite the previous
system as

∂U t,ε
p,q

∂z
=
[
Hε

U (U t,ε)
]
p,q

+
[
Hε,1

U (Uε)
]t
p,q

+
[
Hε,2

U (Uε)
]t
p,q

,(B.1)

[
Hε,1

U (Uε)
]t
p,q

= −
N∑

k=1

({
Ha,ε

kl1

}
ω+hε2/2

U (k,l2),ε
p,q +

{
Ha,ε

kl2

}
ω−hε2/2

U (l1,k),ε
p,q

)
,

[
Hε,2

U (Uε)
]t
p,q

= −
N∑

k1,k2=1

({
Rε

k2l1H
b,ε
k1k2

}
ω+hε2/2

U (k1,l2),ε
p,q

+
{
Rε

k2l2
Hb,ε

k1k2

}
ω−hε2/2

U (l1,k1),ε
p,q

)
.

B.1. Homogeneous propagator equations in the transmission case. In
order the eliminate the h-dependence in the coefficients of (B.1), we introduce the
transformation

(B.2) V t,ε
p,q(ω, τ, z; j1, j2) =

1

2π

∫
e−ih[τ−φt

p,q(ω)z]U t,ε
p,q(ω, h, z; j1, j2) dh,

with φt
p,q(ω) defined in (4.6). We then obtain from (B.1) that V t,ε

p,q solves the infinite-
dimensional system of partial differential equations

(B.3)
∂V t,ε

p,q

∂z
+ φt

p,q(ω)
∂V t,ε

p,q

∂τ
=
[
H̃ε

V (V ε)
]t
p,q

,

with the initial conditions V t,ε
p,q(ω, τ, z = 0; j1, j2) = 10(|p|)10(|q|)1j1(l1)1j2(l2)δ(τ).

We decompose the source term as

(B.4) H̃ε
V = Hε

V + Hε,1
V + Hε,2

V ,

with Hε
V defined in (A.7) and the specific transmission source terms given by

[
Hε,1

V (V ε)
]t
p,q

= −
N∑

k=1

[
αε
kl1

V (k,l2),ε
p,q ei(βk−βl1

)z/ε2 + αε
kl2V

(l1,k),ε
p,q ei(βl2

−βk)z/ε2
]
,

(B.5)

[
Hε,2

V (V ε)
]t
p,q

=

N∑
k1,k2=1

[
αε
k1k2

V
(k1,l2),ε
p∪{(k2,l1)},qe

i(βk1
+βk2

)z/ε2

+ αε
k1k2

V
(l1,k1),ε
p,q∪{(k2,l2)}e

−i(βk1
+βk2

)z/ε2
]
,(B.6)

where the βj ’s are evaluated at ω.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EFFECTIVE TRANSPORT EQUATIONS IN RANDOM WAVEGUIDES 1597

B.2. Transport equations. We now apply the diffusion approximation to get
transport equations for the above modified moments that are relevant in the trans-
mission case. That is, we deduce transport equations for the moments E[V t,ε

p,q] in the
limit ε → 0:

Wt
p,q(ω, τ, z; j1, j2) = lim

ε→0
E[V t,ε

p,q(ω, τ, z; j1, j2)].

We then obtain from (B.3) that Wt
p,q solves the infinite-dimensional system of partial

differential equations

∂Wt
p,q

∂z
+ φt

p,q(ω)
∂Wt

p,q

∂τ
= i

[
κl1 − κl2 +

∑
(j,l)∈p

(
κj + κl

)
−

∑
(j,l)∈q

(
κj + κl

)]
Wt

p,q

+
[
H(Wt)

]
p,q

+
[
H1(W)

]t
p,q

,

with the initial conditions Wt
p,q(ω, τ, z = 0; j1, j2) = 10(|p|)10(|q|)1j1(l1)1j2(l2)δ(τ).

The source term H is defined in (A.8), and the specific transmission source term has
the form

(B.7)
[
H1(W)

]t
p,q

=

4∑
k=1

Ĩk,

and we next identify the coupling terms Ĩk.
First, we consider the terms that correspond to the interaction of the terms Hε,1

V

in (B.5) with themselves. This contribution is

Ĩ1 = 2

N∑
k=1

	
(
Γ̃kl1

)
W(k,k)

p,q 1l1=l2 −
N∑

k=1

[
Γ̃kl1 + Γ̃l2k − 2Γ̌l1l2

]
Wt

p,q1l1 �=l2 .

Then, we consider the cross interaction of the terms in Hε,2
V in (B.5). This gives

the contribution

Ĩ2 = 2

N∑
k1,k2=1

	
(
Γk1k2

) [
W(k1,k1)

p∪{(k2,l1)},q∪{(k2,l2)} + W(k2,k1)
p∪{(k1,l1)},q∪{(k2,l2)}1k2 �=k1

]
.

The terms in Hε,1
V interact with those in Hε

V having phase modulations of the form
exp[i(βj − βl)z/ε

2], giving the following contribution to the diffusion approximation:

Ĩ3 = −2
∑

(j,l)∈p

[
Γ̌jl11j �=l1 + Γ̌ll11l �=l1 − Γ̌jl21j �=l2 − Γ̌ll21l �=l2

]
Wt

p,q

+ 2
∑

(j,l)∈q

[
Γ̌jl11j �=l1 + Γ̌ll11l �=l1 − Γ̌jl21j �=l2 − Γ̌ll21l �=l2

]
Wt

p,q

− 2
∑

(j,l)∈p

[
	
(
Γ̃l1j

)
W(j,l2)

p|{(j,l)|(l1,l)},q + 	
(
Γ̃l1l

)
W(l,l2)

p|{(j,l)|(j,l1)},q

]

+ 2
∑

(j,l)∈q

N∑
k=1

[
	
(
Γ̃jk

)
W(k,l2)

p,q|{(j,l)|(k,l)}1j=l1 + 	
(
Γ̃lk

)
W(k,l2)

p,q|{(j,l)|(j,k)}1l=l1

]
− 2

∑
(j,l)∈q

[
	
(
Γ̃jl2

)
W(l1,j)

p,q|{(j,l)|(l2,l)} + 	
(
Γ̃ll2

)
W(l1,l)

p,q|{(j,l)|(j,l2)}

]

+ 2
∑

(j,l)∈p

N∑
k=1

[
	
(
Γ̃kj

)
W(l1,k)

p|{(j,l)|(k,l)},q1j=l2 + 	
(
Γ̃kl

)
W(l1,k)

p|{(j,l)|(j,k)},q1l=l2

]
.
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Finally, we consider the cross interaction of the terms in Hε,2
V with those in Hε

V .
This gives the contribution

Ĩ4 = −
N∑

k=1

Γkl1Wt
p,q − 2

∑
(j,l)∈p

	
(
Γjl

) [
W(j,l2)

p|{(j,l)|(l,l1)},q + W(l,l2)
p|{(j,l)|(j,l1)},q1j �=l

]

−
N∑

k=1

Γkl2Wt
p,q − 2

∑
(j,l)∈q

	
(
Γjl

) [
W(l1,j)

p,q|{(j,l)|(l,l2)} + W(l1,l)
p,q|{(j,l)|(j,l2)}1j �=l

]

+ 2
∑

(j,l)∈q

N∑
k1,k2=1

	
(
Γk1k2

)
W(k1,l2)

p∪{(k2,l1)},q|{(j,l)|(j,k1),(k2,l)}

+ 2
∑

(j,l)∈q

N∑
k1,k2=1

	
(
Γk1k2

)
W(k2,l2)

p∪{(k1,l1)},q|{(j,l)|(j,k1),(k2,l)}1k1 �=k2

+ 2
∑

(j,l)∈p

N∑
k1,k2=1

	
(
Γk1k2

)
W(l1,k1)

p|{(j,l)|(j,k1),(k2,l)},q∪{(k2,l2)}

+ 2
∑

(j,l)∈p

N∑
k1,k2=1

	
(
Γk1k2

)
W(l1,k2)

p|{(j,l)|(j,k1),(k2,l)},q∪{(k1,l2)}1k1 �=k2
.

We can now assemble the terms in the source term H1 for the transport equation,
and this completes the proof of Proposition 4.2.
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