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The main goal of this paper is to study the addition of a new preprocessing step in order to

improve local feature descriptors and texture classification. The preprocessing is implemented
by using transformations which help highlight salient features that play a significant role in
texture recognition. We evaluate and compare four different competing methods: three different
anisotropic diffusion methods including the classical anisotropic Perona—Malik diffusion and
two subsequent regularizations of it and the application of a Gaussian kernel, which is the
classical multiscale approach in texture analysis. The combination of the transformed images
and the original ones are analyzed. The results show that the use of the preprocessing step does
lead to an improvement in texture recognition.

Keywords: Texture classification; anisotropic diffusion; image processing; texture enhancement.

PACS Nos.: 11.25.Hf, 123.1K.

1. Introduction

Computer vision has become an important tool for industrial, scientific and enter-

tainment applicat

ions. The use of image and video processing in order to automate
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activities that used to require significant amount of time and effort is the main reason
for this and justifies continued research towards better and better algorithms.
An important task in vision is pattern recognition. It can be performed by using
different characteristics of an image such as shape or color. Recently, the use of
22,18,10,6 WWhile a, precise

definition of texture is not agreed upon, humans naturally perceive it and, in fact,

texture as an image feature proved to be a viable alternative.

make use of it to recognize objects. It is therefore important to study its efficacy in
image recognition.

Over the years, many scientists have described methods to extract features from
texture. These can be divided into six main categories: statistical, stochastic, structural,
spectral, complexity- and agent-based methods.?® Each one analyzes the image in a
different way either by considering local patterns, Fourier spectrum, fractal dimension
or other relevant quantities. However, more can be done. Usually, texture extraction
methods are applied to the original dataset. If the image is not good and salient char-
acteristics are not pronounced, texture analysis methods may not work as desired.

In the latter case, one possibility is to enhance the image prior to attempting a
classification by texture. However, except in specific situations such as face recog-
nition,'!*? disease detection,®' or other studies focused on a specialized application,
little attention has been paid to studying the influence of smoothing on texture
classification. In this direction, in Ref. 25 images are smoothed by the use of Gabor
filters yielding encouraging classification results. In Ref. 28, the authors evaluate a
series of preprocessing methods to improve co-occurrence-based descriptors. Like our
paper, Ref. 9 uses Gaussian filters to process images in order to improve local
descriptors. However, in this case, the filter is applied only to the training set and
new test samples with blurred texture can or cannot be correctly classified. Aniso-
tropic diffusions are not considered.

This paper aims at filling this gap by applying preprocessing methods to the
original dataset and, subsequently, performing texture extraction by evaluating LBP
and its extensions, methods that usually give good results in texture classification.
Three databases are tested: Brodatz, Vistex and UspTex. While, here, the technique
is applied to classification, the approach can be utilized in combination with any
other task that requires texture features, such as segmentation, synthesis, detection
and prediction.

As mentioned before, the core of the proposed method is the application of a
preprocessing step. Inspired by physics, smoothing methods are an extension of the
heat equation. The latter describes the distribution of heat under a certain region
as a function of time t. Similarly, smoothing methods and the distribution of
intensities can be understood as temperatures over a region consisting of different
materials (represented by edges, intra-regions, among other aspects in a scene). The
usual isotropic diffusion is directly linked to the well-known heat equation (Eq. (1)),
where heat spreads uniformly over the surface. However, replacing the constant ¢ by
a function (related to the gradient, for instance), we can effectively control the
amount of diffusion applied according to the material u (or region in the texture,
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in this case).

5 cA?u. (1)

Therefore, different modalities of diffusion were chosen for this task in order to
check whether a multiscale technique, based on taking the output of the method at a
series of times (scales), improves feature extraction. The multiscale nature of vision
appears in the cortex area where receptive fields separate bars, corners, lines and
edges of an image.?® Usually, multiscale resolution is achieved by a Gaussian kernel
with different variances (i.e. values of o). When a Gaussian filter is used, however,
edges are altered, which are typically a very important feature of an image. Gaussian
filtering amounts to applying isotropic diffusion which is insensitive to direction and
hence to geometry. This problem can be overcome by the use of nonlinear anisotropic
diffusion. Edges are implicitly located by the method, which then prevents their
blurring, effectively confining the effect of diffusion within areas separated by the
detected edges.

Beside isotropic diffusion, the paper also uses three different anisotropic
diffusion methods: Perona et al. anisotropic diffusion,*"
proposed by Guidotti et al.: a forward—backward regularization (FBR) of Perona—
Malik'® and another using fractional derivatives (NL).'” Experiments are per-
formed with all methods and comparisons are presented. Without any prior
hypothesis on whether isotropic or anisotropic methods are the best, the goal is to

and two regularizations of it

determine what preprocessing method enhances which characteristics analyzed by
feature extraction.

Recently, deep learning networks have been used for many machine learning tasks
such as image recognition. This is an important achievement for computer science
but it does not solve all the problems and does not fit all situations. Many applica-
tions such as medical disease detection and biological analysis require public au-
thorization from patients or the acquisition of images is manual and can be slow.
Therefore, the amount of images is not suitable for deep learning networks since
the number of weights that need to be calibrated is too high as compared to the
training set.

Also, in some applications, it is important to understand the features being an-
alyzed. In the neural network approach, these are implicit and not available to the
developer and researcher. These are some of the reasons why handcrafted feature
extraction procedures are still needed to create a meaningful representations of the
texture. With this in mind, this paper has the goal of enhancing one of the most
widely known and well-posed descriptors, the Local Binary Pattern method, pro-
posed in 2002 by Ojala et al.?’ LBP, has become well known as a descriptor in
computer vision due its effectiveness and simplicity. Even though it was proposed
almost 16 years ago, the method is still being studied, applied and used as an in-

spiration in the development of other feature extraction methods.>7-2%24:32

1850071-3



Int. J. Mod. Phys. C 2018.29. Downloaded from www.worldscientific.com
by UNIVERSITY OF CALIFORNIA, IRVINE on 06/12/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

M. B. Neiva, P. Guidotti & O. M. Bruno

This paper uses these local pattern extractors and attempts to enhance them by
using preprocessed images. The main contributions of this paper are the following:

e Analyze the influence of the application of four diffusion methods including the
classical isotropic and the Perona—Malik method to enhance feature extraction by
six different local extractors.

e Study the influence of the iteration parameter in each dataset to analyze the
limitations of enhancement a diffusion method can deliver.

e Compare the proposed framework to the traditional approach where no pre-
processing method is used.

The paper is structured as follows: Section 2 presents the texture description
methods used: LBP, CLBP, LBPV, LBPFH, LTP and CSLBP, as well as briefly
introduces the four diffusion methods. Section 3 details the proposed approach
combining preprocessing with the descriptor methods along a classifier. Section 4
shows the results for texture classification using four datasets and, finally, Sec. 5
draws the main conclusions of our work.

2. Background

Different feature extraction methods will be used in order to test the possible
advantages of applying diffusion methods prior to feature extraction. These
descriptors along with the four preprocessing methods are described in this section.

2.1. Feature extraction methods
2.1.1. Local binary pattern

The core of all the methods described below is the analysis of pixels’ neighborhood.
The basic technique used to capture local features is the so-called Local Binary
Pattern. In this method, all the pixels are used once as the main g., the pixel in
the center of the window, and the sum of the differences to its P neighbors
chosen within a radius r is used as a pattern. It is denoted by LBPp, and is shown
in Eq. (2):

P-1
LBPp,(I,, ,1,, ) s(g, — g0) 2%,  s(x) —{

p=0

1, x>0
0, <0’

(2)

As we want to create a 1D representation of the texture for classification, the LBP
feature descriptor computes the histogram of the image output in Eq. (2) following
the equation below:

M N
k)= “bool(LBPp,(i, ), k), (3)

i=1 j=1
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where k € [0, K], K is the maximum gray scale of the image, and

1, z=uy,
bool(@, y) = {O, otherwise. )
The basic approach uses a 3 x 3 window, i.e. P = 8, r = 1. Therefore, the histo-
gram, and, consequently, the feature vector, has 28 = 256 entries. The method
decodes the quantities of borders, corners and smoothed regions in the patterns
histogram but can be sensitive to rotations. Some variations of the classical LBP
overcome this problem, such as the one below.

2.1.2. Local binary pattern variance

In order to provide rotation invariant features, Ojala et al.?” proposed a method that
combines all basic LBP patterns into a single pattern if they only differ by a rotation.
This is done by counting the number of bits that change from 0 to 1 or from 1 to 0.
These patterns are computed based on a metric that checks uniformity:

P-1
U(LBPp,) = Y [s(gpe1 — g) — 5(9, — 90)I- (5)

p=1

Therefore, uniform rotation invariant LBP is computed by

P-1

LBPILuQ( ) _ Zos(gp - gc)v if U(LBPP,T(Z7J)) < 21 (6)
p=
P+1, otherwise.

Then, in order to add contrast information to LBP 7]‘;53;2’ Guo et al.'” proposed the

use of variance in combination with the uniform rotation invariant descriptor. It

is computed by
2
p=0

In practice, variance is used to compute the strength of each pattern k € [0, K] in the
LBP”“z of an image I of size M x N:

1 P-1
VARP,T == F Z
p=0

M N
LBPVPr(k) = Z Zw LBP,W? )7 k)v k € [Oa K]7 (8)
i=1 j=1
i VARp,(i,5), if LBP}? =k
(LBP PJ?’ k) = { o) otherwiZé ©)

finally, LBPYV is used as feature vector for the image I.
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2.2. Complete local binary pattern

One of the best extensions of classic LBP to date is the Complete Local Binary
Pattern descriptor. Proposed by Guo et al.,'® the technique improves the original
method by adding information of sign and magnitude of the local patterns.

The sign and magnitude are computed from matrix LSDMT, where each pixel p is
calculated as:

LSDMT[) = 9e — YGp> (10)

where, similarly as in LBP, g. and g, are the intensity values of the central pixel of
the evaluated window and the value of the pixel at position p, respectively. Two
matrices are computed from LSDMT: CLBPg and CLBP;;. The first contains the
sign of the entries of the original matrix, while the second is formed based on the
absolute values.

Finally, three different quantities are used to generate the features: the image
itself (CLBP.), CLBPg that represents the same information contained in LBP,
and CLBP,,. The latter is a matrix of decimals and is given by

P-1
1. z>c¢

CLBPL = S #(lg, — gl )2, t(a0) ={ wze (1)
pz:% 0, z<c

where ¢ is a threshold computed by the mean value of the |LSDMTp| matrix
and CSLBP is given by
CSLBP. = t(g., ¢). (12)

Finally, a histogram computed by the concatenation of the three matrices above is
used as feature vector in this method. Results show that the descriptor yields high
recognition rates with the addition of sign and magnitude information of local pat-
terns. Like LBP, we choose P = 8 and r = 1 in experiments.

2.3. Local binary pattern histogram Fourier features

This method has the advantage of being locally and globally invariant with respect
to rotation,' a feature that differs from the previous methods cited above. It first
computes the non-invariant LBP histograms and from them, the method calculates
the global rotationally invariant features from the basic approach. Like the classical
LBP, the method uses a 3 x 3 window around the central pixel to extract binary
features but reduces the histogram by combining patterns that only differ by rotation
into the same bin. Therefore, patterns such as 110 and 011 are identified by the
method. The paper states that, if the original image is rotated by a certain degree
a(a =a %) where P is the number of pixels evaluated in each window, the histo-
gram is also cyclically shifted. To reach global invariance, the Discrete Fourier
Transform is computed as:
P-1
H(n,u) =Y  h(LBPp)e 2m/P, (13)
=0
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where LBP g;‘f, defined in Eq. (6), is obtained by separation of the pattern in uniform
and nonuniform categories. The uniform patterns are those with an up to three
transitions 0—1 or 1-0 in the binary pattern, totaling 58 possibilities. The nonuniform
patterns are reduced to one bin. Therefore, the feature vector is reduced from
256 to 59 bins, as shown in Ref. 17. Also, h(LBP7:“?) is the histogram value for the
uniform pattern LBP:“?, n is related to the number of 1’s in the pattern computed
by U(LBPp,) in Eq. (5), and u € [0, P — 1]. The original article shows that features
in spectrum domain are invariant to cyclic features and therefore rotationally

invariant.

2.4. Local ternary pattern

In this forth descriptor, the pattern considering a central pixel is not represented
with two bits but three different values®’: {—1,0,1}. In order to extract features
around a certain value g, with a small tolerance b and a neighboring pixel value g,,,
thresholding is done as follows:

L, ifg,>g.+0b,
0, ifg,>g.—0bandg,<g.+b, (14)
-1, if g, <g.—b.

When computing the corresponding histogram, one notices that the number of
features is very high. Therefore, in order to minimize the final vector size, two
matrices are created collecting the negative values of the LTP image (lower patterns)
and another one gathering the positive ones (upper patterns). Therefore, the final
feature vector is the concatenation of the histograms of the lower and upper patterns.
The information of the signal now includes direction analysis into the descriptor and
can enhance the representation of LBP.

2.5. Center-symmetric local binary pattern

An additional local feature descriptor combines the power of LBP and the well-
known SIFT' technique. The method first performs noise removal in each analyzed
window. The filter is able to preserve edges while removing noise, improving the
feature extraction power of LBP.

After filtering, a pattern is extracted for each pixel in the image similarly to what
occurs in classic LBP. However, in this case, features are extracted comparing center-
symmetric pairs of pixels, i.e. comparing pixels that are in the opposite position
according to a radius around the central pixel. Thus, while LBP uses a 3 x 3 window
to produce 256 features, CSLBP computes a feature vector of only 16 values.
Additionally, the threshold used is set to a value T'(= 0.01 in experiments), in order
to improve the outcome in flat image regions:

P/2-1

CSLBP(z,y) = Z 5(9p = Gp+(r/2))2", (15)
p=0
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s(x) = {1, x>T, (16)

0, otherwise,

where g, and g,,, (p/2) are the symmetric pairs. In the experiments a grid of size 4 x 4
is used obtaining a final histogram of 256 features.

2.6. Diffusion methods

The key methods analyzed in this paper are diffusion algorithms and their influence
on texture recognition. Linear and nonlinear, isotropic and anisotropic diffusions are
used to create a new set of transformed images at different scales to be used as input
for the descriptors of Sec. 2.5. For reader’s convenience, a brief description of each of
them is given in the following section.

2.6.1. Isotropic diffusion

The simplest and oldest form of multiscale resolution is obtained by applying a
Gaussian kernel to the texture with varying smoothing parameter o. A 2D Gaussian
filter is calculated by convolution with

1 _ 2242

e 2. (17)

G(z,y) =

2mo?

For such an isotropic diffusion, smoothing is applied equally in all regions of the
image and in all directions. Consequently, information from edges and from smooth
regions get mixed up and shifted as the scale parameter o is increased. High fre-
quency areas such as edges and corners are, however, an important feature of texture
and this information is lost in the multiscale pyramid obtained by this filtering
procedure.

2.6.2. Perona—Malik’s anisotropic diffusion

Perona et al.>’ were among the first to propose and to develop nonlinear anisotropic
diffusion methods. Until then a multiscale resolution was obtained by convolving
the image intensity function with a family of Gaussian filters with different variances
(o values) leading to a sequence of images of varying levels of detail as explained
above. The higher the o, the coarser the details. Convolution with a Gaussian is
given by

Iz, y,t) = Ip(x,y) = G(z,y;1), (18)
which can be thought the solution to the heat equation:
It = VQI = I(I?.’L‘ + I (19)

Yy

with initial datum Ij(z,y) and, in this case, t = 2.

As mentioned before, using a Gaussian kernel to generate different levels of
details, however, leads to the disappearance of edges, which are a source of important
information on an image.

1850071-8
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A multiscale pyramid can be visualized by means of a tree, where, at one level,
the shape of the tree can be recognized, and, at the next level, branches and leaves are
added. Eventually, increasing the resolution level, all details including leaves’ veins
are present. Regardless of resolution, edges are present and well defined and, as such,
should be preserved for visual tasks.

This was one of the reasons which motivated Perona et al.*° to propose the
anisotropic diffusion given by

I, = div(ce(zx,y,t)VI). (20)

The goal was then to find a function ¢ that would result in the output image
satisfying three main requirements

Causality. No fake details should be generated in coarser resolutions.
Immediate Location. At each resolution, edges should be sharp and semanti-
cally meaningful to the actual resolution.

Piecewise Smoothing. Blurring should privilege intra-regions over inter-
regions.

If ¢ is constant, V¢ vanishes and the diffusion is linear and isotropic. As intra-region
blurring is to be privileged over inter-region blurring, ¢ should have a lower value at
inter-region boundaries. Thus, in Ref. 30, c is related to the gradient of the image
itself, which is used as an edge detector

C(xvyat) :g(|VI(x,y,t)|) (21)

The function g is taken to be related to the inverse of the gradient square and
controls the amount of diffusion applied in the region. Since, at inter-region
boundaries, the gradient is large, blurring is lower. One of the functions proposed in
Ref. 30 is given by

1

2
e

and will be used in the sequel. The parameter k is user-defined and represents the
threshold value beyond which sharp transitions are considered edges and are hence
preserved. According to the authors, the chosen form of g privileges large regions.

9(VI) = (22)

Figure 1 compares linear diffusion to the nonlinear, anisotropic diffusion in Ref. 30
applied in images of the Usptex dataset.® It is clear that edges are better maintained
by the latter. While fake details, such as staircasing, are produced by this type of
anisotropic diffusion, blur is effectively confined to regions between edges, delivering
on at least two of the three properties above.

2.6.3. Forward—Backward regularization diffusion

In Ref. 15, it is noted that, while Perona et al.>’ method is an interesting and effective
model, it is not without shortcomings due to the generation of artificial edges,
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(a) Original Image (b) Gaussian Diffusion — o = 2.0

(c) Perona—Malik Diffusion — 15th iteration

Fig. 1. Comparison between classic Gaussian diffusion and classic nonlinear diffusion. Images smoothed
by Gaussian filter looses definition mainly in the edges. It can be useful for noise reduction but, if not used
carefully, important features of the texture can be missed.

a phenomenon known as staircasing. Therefore, the authors propose a regularization
characterized by two parameters p € (1,00) and § > 0 with the aim of avoiding
staircasing without completely discarding the edge sharpening power of the original
Perona—Malik model. The equation proposed reads as follows:

I,=V- <[HK;2|VI|2+6|VI|”_2}VI>. (23)

As this model is a regularization of PM, the parameter K plays the same role as in
Eq. (22), but is eventually overwhelmed by the é term for very large gradients (this is
precisely what prevents staircasing). According to the experiments in Ref. 15, best
results are obtained for a parameter p which is close (but not equal) to 1. The
addition of these two parameters allows the control of desired gradient growth and
also effectively bounds it to a maximal size. This is due to the forward—backward
nature of the equations and the fact that the backward regime is confined to
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1< |VI| < M(K,b,p)], where M is a function of the given variables (see Ref. 13).
As a consequence, staircasing is replaced by (micro-)ramping, the steepness of which
is controlled by the values of p and é. The right choice of the parameters is essential.
For p = 1, for instance, the backward regime is unbounded, leading to staircasing.
An experiment using p = 2 is shown in Ref. 13. Reference 15 shows good results when
employing Eq. (23) for denoising and deblurring and it will be tested here as a feature
enhancer for texture classification.

Figure 2 shows the comparison between the three approaches (applied on images from
dataset Usptex”) explained so far. The visual difference between Gaussian and aniso-
tropic methods is evident. However, comparing both anisotropic methods, it is hard to see
the micro-ramping versus staircasing while it does exist as can be seen in Ref. 15.

(a) Gaussian Diffusion — o = 2.0 (b) Perona—Malik Diffusion — 15th iteration

(¢) Forward-Backward Regularization
Diffusion — 15th iteration

Fig. 2. Comparison between classic Gaussian diffusion, classic nonlinear diffusion (PM) and a regulari-
zation of PM. The differences between images produced from isotropic and anisotropic diffusion are easier
to notice. While isotropic diffusion smooths the whole image equally, anisotropic methods can distinguish
between edges and smooth regions. However, there are still differences between the anisotropic diffusions.
Using the same parameter values (K = 1 and t = 15), it can be observed that intra-regions are less noisy in
Forward-Backward Regularization diffusion image (Fig. (c)) as compared to the output of PM.

1850071-11
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2.6.4. Nonlocal anisotropic diffusion

In Ref. 12, another approach is taken to regularize Perona—Malik and thus, effec-
tively avoid staircasing without reducing Perona—Malik intrinsic sharpening feature.
The trick is performed by the use of a fractional derivatives in the edge-detector

1

It = V<WVI>, where ¢ € (0, 1) (24)

The main advantages of Eq. (24) are its mathematical well-posedness, on the one
hand, and its simultaneous tendency to promote intra-region smoothing while solidly
preserving edges for a long time. Latter is due to the fact that, as stated in Guidotti
et al.,'? “.. piecewise constant functions or characteristic functions of smooth sets in
higher dimension can be shown to be equilibria for the evolution.”

(a) Gaussian Diffusion — o = 2.0 (b) Perona—Malik Diffusion — 15th iteration

(¢) NonLocal Anisotropic Diffusion — 15th iteration

Fig. 3. Comparison between classic Gaussian diffusion, classic nonlinear diffusion and the non local
diffusion. The same phenomena occur as in Fig. 2, when the output of anisotropic diffusion are compared.
The nonlocal anisotropic is also a regularization of the Perona—Malik algorithm and therefore intra-regions
are shown more smoothed due the reduction of the staircasing artifact.

1850071-12
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If e =0, the equation reduces to Perona—Malik. However, positive values of ¢
require the calculation of fractional derivatives. This can be done by means of the
Fourier transform considering periodic boundary conditions as follows:

[VI=2 1| = F~(diag[2n| k|| F(IV1])), (25)

where
F(I)(k) = / 2k [(2)dz, k€ 72, (26)
Q

and diag[(m},)rez2] denotes matrix multiplication with diagonal entries given by the
sequence (Mmy,)pez2-

This approach is capable of partially capturing nonlocal information due to the
use of the “wider support” fractional derivatives and thus enhancing edge detection
robustness in the presence of noise. This well-posed anisotropic diffusion can be
effectively used for denoising purposes due to its ability to differentiate between high
frequency global features (that really belong to the image) and local ones (noise).
Further explanations and proofs are found in Ref. 12.

Figure 3 shows results very comparable to what Fig. 2 demonstrates, where dif-
ferences between both anisotropic methods are very subtle, while compared to
Gaussian diffusion, the difference is high in terms of edge preservation. All images are
processed from Usptex dataset.®

3. Proposed Method

While typically used for deblurring and denoising purposes, Gaussian filters, Perona—
Malik and the enhanced counterparts (23) and (24) can also be used as a basic tool to
obtain multiresolutions of an image. For these algorithms, in fact, coarser and
coarser images are created over time. We will take advantage of this augmented
dataset to improve information to represent a single texture.

Motivated by human vision where dots, corners and lines are separated in the
cortex for object recognition,?! a multiscale resolution that can distinguish different
features of the image and use them separately can deliver a better and easier input to
feature extraction methods. At different iterations (denoted by the parameter it),
different features appear, and the one that better represents the dataset will hope-
fully give a higher texture classification rate.

The method works as follows:

(1) First, the original dataset images are preprocessed with one of the diffusion
methods presented above. This will create a pyramid with 150 (1 < it < 150)
new images for each one in the dataset with different levels of details.

(2) All images in the new dataset (original and smoothed ones) are submitted to a
feature extraction method which will transform the 2D matrix of pixels to a 1D
representation of the texture.
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(3) At each time, the concatenation of the feature vector produced by one iteration
v(I;t) of a diffusion method and the representation of the original image v(I) are
used to describe the texture.

Anisotropic methods are believed to have the advantage over isotropic ones to
smooth while keeping important structures of the images such as edges and
T-junctions. This advantage will be tested for feature extraction. Beyond just adding
a preprocessing method to feature extraction, this paper has also the goal to compare
the four different methods described above and analyze which one most enhances
each type of texture features. A diagram of the approach is presented in Fig. 4, where
all steps of the proposed method are represented. First, images are subjected to one of
the diffusion methods studied (Fig. 4(b)). This will result in a set of different images
at different iterations for each one of the original images in the dataset. Then, all the
smoothed images and the original texture are submitted to one of the local extractors
and generate 151 unidimensional vectors (Fig. 4(c)). Finally, we pick one of the
described preprocessed images, vgt, at iteration ¢t, and combine it with the original
image vector, v_{). The final feature vector of each texture in the dataset is then given
by vi = k}ié,vgt] (Fig. 4(d)). The final feature vectors v of each image i are evaluated

> Vlo J—
L (d) Final descriptor
im, | /> - —_— =
im'y vl —> Vg vy =y
imjz - -
imjo _V2_
. o o
imj149 - > V149 [> Cp
iml1 50 s [[>
—> | Viso
(e) Unknown image
- b) Prepr (c) Feature Vectors vector populates
(a) Original Image (b) ;‘:azzzssed of the smoothed feature space and
images and the classification task
original texture can be performed

Fig. 4. Diagram of the proposed method. (a) The original image 7 is preprocessed by one of the diffusion
methods previously described to obtain a multiscale resolution (b). Then, (c) all the images obtained in the
preprocessing step (in the experiments 150 iterations are output) and the original texture i are described
by one of the chosen feature extractor methods. The final vector (d) is composed by one of the feature
vectors obtained in the preprocessing step (in the example iteration 2 is chosen) and the descriptor of the
original image. Finally (e), the vector v of image i populates the feature space and classification can be
performed according to the machine learning algorithm scheme chosen.
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by a classifier to retrieve a corrected classification rate of recognition. In order to
evaluate the approach, all possible combinations of preprocessing method x
diffusion method x classifier (Fig. 4(e)) are tested. As each preprocessing method
output 150 smoothed images for a single texture (all feature vectorsvi = [v% ,0it] with
1 < it < 150) it means that, for each combination mentioned above, 150 CCR, and
the classification of the dataset with no preprocessing are output.

In the study, six feature extractions are analyzed chosen mainly by the impor-
tance of local binary pattern descriptor in the literature. The good results obtained
by this simple technique caught the interest of researchers and lead to attempts at
extending the method. This paper also offers a different approach in order to improve
the classical LBP, as well as some extensions of it. For the recognition step,
K-Nearest Neighbor and Naive Bayes will be applied as a simple yet powerful
classification model. Also, although SVM have been widely used for the community,
Ref. 3 shows that in many cases, the simple KNN, k& = 1 performs pretty well for
classification.

4. Experimental Results
4.1. Datasets

Three texture datasets are used to evaluate the approach:

e Brodatz Dataset:* A well known, widely used dataset to test texture related
algorithms. The set contains 1110 images from 111 different classes. Images are
grayscale and of size 200 x 200. Brodatz is characterized by a lack of illumination,
scale, and viewpoint variation.” As a well-known database of textures, it should be
tested anyway.

e Vistex Dataset:” The Vistex dataset contains a total of 864 RGB color images,
16 in each class.’” It contains variations in illumination, conditions, and scale.
Images are converted to grayscale using only the luminance component and have
size of 128 x 128.

e UspTex Dataset:° The dataset contains 12 color images per class for a total of
2292 images of size 128 x 128.* Each class set is generated by taking nonover-
lapping windows of an original 512 x 384 image. All images are converted to
grayscale maintaining only image luminance and removing hue and saturation
information prior to preprocessing.

4.2. Performance evaluation

For simplicity and efficiency, KNN (k = 1) and Naive Bayes are used. A cross vali-
dation (10-fold) was performed to get a more reliable classification rates. For each

2Images from Brodatz dataset available at: http://multibandtexture.recherche.usherbrooke.ca.
bVistex dataset available at: http://vismod.media.mit.edu; .
¢Usptex dataset available at: http://scg.ifsc.usp.br.
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dataset and preprocessing method, 150 new images in different scales were generated
(1 < it <150).

For isotropic diffusion, o starts at 0.5 and is incremented by 0.5 in each iteration
(0 = 0.5 xit). For the first anisotropic method, the implementation was done fol-
lowing Ref. 30 with g as in (22). For FBR (Sec. 2.6.3), parameters were chosen to be
6 = 0.1, p = 1.1 and finally, for nonlocal anisotropic diffusion presented in Sec. 2.6.4,
¢ was set to 0.1. The time derivation for convolution was set to 0.25 and K = 1 for all
methods. It is important to notice that it is not possible to strictly compare the
values of iteration for different diffusion methods, since they have inner parameters
and their own characteristics. However, the higher the iteration is, the coarser the
image becomes, a phenomenon that occurs in all smoothing methods. In this paper,
we are willing to analyze what the limit of time is, for which each preprocessing
method can enhance intrinsic features capture d by the descriptors and which one is
the best iteration. However, further experiments could be done evaluate the influence
of the parameter set of each diffusion algorithm.

Each scale is evaluated separately in order to analyze which one better improves
feature extraction (Fig. 4). We combine the original image feature vector and the
smoothed image vector from iteration it to use as input for the KNN classification
space. As datasets have different characteristics, each method works in a different
way and the it scale that yields the best improvement in feature extraction is dif-
ferent.

Analyzing the results for each dataset, the easiest, Brodatz, shows the best per-
formance when FBR is combined with the CLBP descriptor. It can be noted that any
combination shown in Tables 1 and 2 improves the correct classification rate (CCR)
when compared to the traditional approach. The largest benefit is observed for
CSLBP with a gain of 5.94%. In general, FBR is the method that most improves the
classification rate for this dataset for both classifications.

The second dataset, Vistex, yields the best classification rate combining FBR and
CLBP (KNN, k£ =1). Similarly to Brodatz, images are better characterized when
FBR is applied even though all combinations result in enhanced texture classifica-
tion. The method with the highest benefit in this case is LBPHF with an improve-
ment of up to 11.23%.

Finally, for Usptex, the improvement in texture recognition obtained with the
addition of images preprocessed by FBR method was 6.33% for the same CLBP
method. This set was the one that was most benefited from the addition of the
processed images. The difference between CCR, output by the addition of a diffusion
and the CCR output by any traditional approach, descriptors applied on the original
images, are higher compared to other datasets. The average improvement is of
10.25% with a lowest gain of around 6%, when considering all descriptors tested in
this experiment.

Figures 5-10 show that the use of a Gaussian kernel, the classical preprocessing
approach, resulted in a CCR gain only for small iterations, low values of o, such as
shown in Figs. 6 and 7. This is due the fact that edges disappear at higher scales,
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Fig. 5. (Color online) Results of each iteration when preprocessing methods are combined with LBP
(Naive Bayes).

an inherent property of the method. In Figs. 8—10 almost no iteration (excluding few
cases in Vistex and Usptex) results in an improvement compared to the traditional
approach. In the case of LBP, LBPV, LTP and CSLBP, all 150 iterations of ani-
sotropic image processing improve texture extraction and increase the recognition
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Fig. 6. (Color online) Results of each iteration when preprocessing methods are combined with CSLBP
(Naive Bayes).
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rate. However, for LBPHF some iterations output a negative result for Brodatz and
Vistex. In addition, graphs show a high similarity among preprocessing methods PM
and FBR. However, as stated in Ref. 14, the classic anisotropic diffusion results in

P. Guidotti & O. M. Bruno
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Fig. 6. (Continued)

images with evident staircasing effect and, eventually, lower recognition rates.
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Fig. 8. (Color online) Results of each iteration when preprocessing methods are combined with LBPHF
(Naive Bayes).

4.3. Parameter evaluation

As noticed in the previous tables, while all iterations were tested, we only present
the best results for each combination set = {dataset, diffusion method, feature ex-
tractor, classifier}. Therefore, one can think that the benefit is only because
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Fig. 9. (Color online) Results of each iteration when preprocessing methods are combined with LTP
(Naive Bayes).
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Fig. 9. (Continued)

choosing the iteration that was set exactly to improve the most improved result.
However, it is possible to check in Figs. 58, and 10 that, especially for anisotropic
diffusion, the most smoothed images in any level of details enhance intrinsic features
of the texture.
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Fig. 10. (Color online) Results of each iteration when preprocessing methods are combined with CLBP
(Naive Bayes).
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Furthermore, in order to quantify this analysis, we took the average iteration, it,
for each combination of diffusion method plus feature extractor algorithm for a given
classifier and evaluated the images using v’ = ﬁ}%,v?t]. Results are shown in Table 3.
Note that the results with the addition of a preprocessed image are better in any
dataset.

For Vistex, for instance, the best result achieved using an average iteration is
99.19% against 99.80% considering the best iteration with FBR + CLBP. Usptex, a
challenging dataset, exhibited its best results diverging in only 0.13% regarding both
(best and average approaches), an insignificant amount considering the standard
deviation.

Another observation is that, in general, FBR is the most stable method to en-
hance features in the study. In all tables, it was the method that, in general,
presented the highest gain in terms of CCR comparing the result with and without
the preprocessing step. However, Gaussian filtering, the isotropic diffusion, appears
as the most instable filter. This is due to its tendency to shift and distort edges and
homogeneous regions as the iteration count grows. The result of Perona—Malik
method, PM, is also very similar to what occurs for FBR, which is good even though
it is not a mathematically well-posed method.

In summary, the addition of the preprocessing method, especially by anisotropic
diffusion, have been proved as a good approach to improve texture recognition even
when the iteration parameter is not set specifically for a dataset. The use of an
average iteration as an additional information to the image enhanced the intrinsic
features of the image and higher CCRs were output.

5. Conclusion

This paper evaluates the influence of different diffusion methods, three of which are
nonlinear and anisotropic, and one of which is linear and isotropic, as a preprocessing
tool generating extended feature vectors for known texture classifiers. The goal is to
verify whether the use of such a preprocessing step prior to feature extraction can
enhance image characteristics and consequently increase texture recognition. Six
texture analysis algorithms were tested (LBP, LBPV, CLBP, LBPHF, LTP and
CSLBP) in combination with two different classifiers (KNN with k£ = 1 and Naive
Bayes).

The experiments demonstrate that the use of any of these preprocessing methods
can indeed improve texture extraction and pattern recognition. In particular, the
combination of FBR and CLBP delivers the highest gain across all datasets. We also
analyzed the stability with respect to parameter choices and, Figs. 510 as well as
Table 3 indicate that anisotropic diffusion methods are very constant in terms of
results regarding the preprocessed image used but, for Gaussian filtering, the itera-
tion count cannot be very high due to edge distortion and loss of important image
features.
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LBP and its extended methods (cited in Sec. 2.1) analyze the contrast of
texture and the use of anisotropic diffusion proves helpful in improving these
features while removing unnecessary artifacts, which is very useful for pattern
recognition. As for the question of which methods to use in practice, Tables 1
and 2 help in identifying a good candidate for the feature extraction methods
considered in this paper. The area under ROC curve, F-measure and precision do
not give us much information since the first is very close to 1 for almost all
experiments, while precision and F-measure are very similar to the CCR results.
More in general, however, if one chooses a feature extraction not considered here,
the tip would be to first apply linear isotropic diffusion with small number of scales
and check the results.
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