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The main goal of this paper is to study the addition of a new preprocessing step in order to

improve local feature descriptors and texture classi¯cation. The preprocessing is implemented

by using transformations which help highlight salient features that play a signi¯cant role in
texture recognition. We evaluate and compare four di®erent competing methods: three di®erent

anisotropic di®usion methods including the classical anisotropic Perona–Malik di®usion and

two subsequent regularizations of it and the application of a Gaussian kernel, which is the
classical multiscale approach in texture analysis. The combination of the transformed images

and the original ones are analyzed. The results show that the use of the preprocessing step does

lead to an improvement in texture recognition.
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1. Introduction

Computer vision has become an important tool for industrial, scienti¯c and enter-

tainment applications. The use of image and video processing in order to automate
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activities that used to require signi¯cant amount of time and e®ort is the main reason

for this and justi¯es continued research towards better and better algorithms.

An important task in vision is pattern recognition. It can be performed by using

di®erent characteristics of an image such as shape or color. Recently, the use of

texture as an image feature proved to be a viable alternative.22,18,10,6 While a precise

de¯nition of texture is not agreed upon, humans naturally perceive it and, in fact,

make use of it to recognize objects. It is therefore important to study its e±cacy in

image recognition.

Over the years, many scientists have described methods to extract features from

texture. These can be divided into sixmain categories: statistical, stochastic, structural,

spectral, complexity- and agent-based methods.26 Each one analyzes the image in a

di®erent way either by considering local patterns, Fourier spectrum, fractal dimension

or other relevant quantities. However, more can be done. Usually, texture extraction

methods are applied to the original dataset. If the image is not good and salient char-

acteristics are not pronounced, texture analysis methods may not work as desired.

In the latter case, one possibility is to enhance the image prior to attempting a

classi¯cation by texture. However, except in speci¯c situations such as face recog-

nition,11,33 disease detection,31 or other studies focused on a specialized application,

little attention has been paid to studying the in°uence of smoothing on texture

classi¯cation. In this direction, in Ref. 25 images are smoothed by the use of Gabor

¯lters yielding encouraging classi¯cation results. In Ref. 28, the authors evaluate a

series of preprocessing methods to improve co-occurrence-based descriptors. Like our

paper, Ref. 9 uses Gaussian ¯lters to process images in order to improve local

descriptors. However, in this case, the ¯lter is applied only to the training set and

new test samples with blurred texture can or cannot be correctly classi¯ed. Aniso-

tropic di®usions are not considered.

This paper aims at ¯lling this gap by applying preprocessing methods to the

original dataset and, subsequently, performing texture extraction by evaluating LBP

and its extensions, methods that usually give good results in texture classi¯cation.

Three databases are tested: Brodatz, Vistex and UspTex. While, here, the technique

is applied to classi¯cation, the approach can be utilized in combination with any

other task that requires texture features, such as segmentation, synthesis, detection

and prediction.

As mentioned before, the core of the proposed method is the application of a

preprocessing step. Inspired by physics, smoothing methods are an extension of the

heat equation. The latter describes the distribution of heat under a certain region

as a function of time t. Similarly, smoothing methods and the distribution of

intensities can be understood as temperatures over a region consisting of di®erent

materials (represented by edges, intra-regions, among other aspects in a scene). The

usual isotropic di®usion is directly linked to the well-known heat equation (Eq. (1)),

where heat spreads uniformly over the surface. However, replacing the constant c by

a function (related to the gradient, for instance), we can e®ectively control the

amount of di®usion applied according to the material u (or region in the texture,
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in this case).

@u

@t
¼ c�2u: ð1Þ

Therefore, di®erent modalities of di®usion were chosen for this task in order to

check whether a multiscale technique, based on taking the output of the method at a

series of times (scales), improves feature extraction. The multiscale nature of vision

appears in the cortex area where receptive ¯elds separate bars, corners, lines and

edges of an image.23 Usually, multiscale resolution is achieved by a Gaussian kernel

with di®erent variances (i.e. values of �). When a Gaussian ¯lter is used, however,

edges are altered, which are typically a very important feature of an image. Gaussian

¯ltering amounts to applying isotropic di®usion which is insensitive to direction and

hence to geometry. This problem can be overcome by the use of nonlinear anisotropic

di®usion. Edges are implicitly located by the method, which then prevents their

blurring, e®ectively con¯ning the e®ect of di®usion within areas separated by the

detected edges.

Beside isotropic di®usion, the paper also uses three di®erent anisotropic

di®usion methods: Perona et al. anisotropic di®usion,30 and two regularizations of it

proposed by Guidotti et al.: a forward–backward regularization (FBR) of Perona–

Malik13 and another using fractional derivatives (NL).12 Experiments are per-

formed with all methods and comparisons are presented. Without any prior

hypothesis on whether isotropic or anisotropic methods are the best, the goal is to

determine what preprocessing method enhances which characteristics analyzed by

feature extraction.

Recently, deep learning networks have been used for many machine learning tasks

such as image recognition. This is an important achievement for computer science

but it does not solve all the problems and does not ¯t all situations. Many applica-

tions such as medical disease detection and biological analysis require public au-

thorization from patients or the acquisition of images is manual and can be slow.

Therefore, the amount of images is not suitable for deep learning networks since

the number of weights that need to be calibrated is too high as compared to the

training set.

Also, in some applications, it is important to understand the features being an-

alyzed. In the neural network approach, these are implicit and not available to the

developer and researcher. These are some of the reasons why handcrafted feature

extraction procedures are still needed to create a meaningful representations of the

texture. With this in mind, this paper has the goal of enhancing one of the most

widely known and well-posed descriptors, the Local Binary Pattern method, pro-

posed in 2002 by Ojala et al.29 LBP, has become well known as a descriptor in

computer vision due its e®ectiveness and simplicity. Even though it was proposed

almost 16 years ago, the method is still being studied, applied and used as an in-

spiration in the development of other feature extraction methods.2,7,20,24,32

Enhancing LBP by preprocessing via anisotropic di®usion
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This paper uses these local pattern extractors and attempts to enhance them by

using preprocessed images. The main contributions of this paper are the following:

. Analyze the in°uence of the application of four di®usion methods including the

classical isotropic and the Perona–Malik method to enhance feature extraction by

six di®erent local extractors.

. Study the in°uence of the iteration parameter in each dataset to analyze the

limitations of enhancement a di®usion method can deliver.

. Compare the proposed framework to the traditional approach where no pre-

processing method is used.

The paper is structured as follows: Section 2 presents the texture description

methods used: LBP, CLBP, LBPV, LBPFH, LTP and CSLBP, as well as brie°y

introduces the four di®usion methods. Section 3 details the proposed approach

combining preprocessing with the descriptor methods along a classi¯er. Section 4

shows the results for texture classi¯cation using four datasets and, ¯nally, Sec. 5

draws the main conclusions of our work.

2. Background

Di®erent feature extraction methods will be used in order to test the possible

advantages of applying di®usion methods prior to feature extraction. These

descriptors along with the four preprocessing methods are described in this section.

2.1. Feature extraction methods

2.1.1. Local binary pattern

The core of all the methods described below is the analysis of pixels' neighborhood.

The basic technique used to capture local features is the so-called Local Binary

Pattern. In this method, all the pixels are used once as the main gc, the pixel in

the center of the window, and the sum of the di®erences to its P neighbors

chosen within a radius r is used as a pattern. It is denoted by LBPP ;r and is shown

in Eq. (2):

LBPP ;rðIxgc ; Iygc Þ ¼
XP�1

p¼0

sðgp � gcÞ 2p; sðxÞ ¼ 1; x � 0

0; x < 0

�
: ð2Þ

As we want to create a 1D representation of the texture for classi¯cation, the LBP

feature descriptor computes the histogram of the image output in Eq. (2) following

the equation below:

HðkÞ ¼
XM
i¼1

XN
j¼1

boolðLBPP ;rði; jÞ; kÞ; ð3Þ

M. B. Neiva, P. Guidotti & O. M. Bruno
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where k 2 ½0;K�, K is the maximum gray scale of the image, and

boolðx; yÞ ¼ 1; x ¼ y;

0; otherwise:

�
ð4Þ

The basic approach uses a 3� 3 window, i.e. P ¼ 8, r ¼ 1. Therefore, the histo-

gram, and, consequently, the feature vector, has 28 ¼ 256 entries. The method

decodes the quantities of borders, corners and smoothed regions in the patterns

histogram but can be sensitive to rotations. Some variations of the classical LBP

overcome this problem, such as the one below.

2.1.2. Local binary pattern variance

In order to provide rotation invariant features, Ojala et al.29 proposed a method that

combines all basic LBP patterns into a single pattern if they only di®er by a rotation.

This is done by counting the number of bits that change from 0 to 1 or from 1 to 0.

These patterns are computed based on a metric that checks uniformity:

UðLBPP ;rÞ ¼
XP�1

p¼1

jsðgpþ1 � gcÞ � sðgp � gcÞj: ð5Þ

Therefore, uniform rotation invariant LBP is computed by

LBP riu2
P ;r ði; jÞ ¼

XP�1

p¼0

sðgp � gcÞ; if UðLBPP ;rði; jÞÞ < 2;

P þ 1; otherwise:

8><
>: ð6Þ

Then, in order to add contrast information to LBP riu2
P ;r , Guo et al.17 proposed the

use of variance in combination with the uniform rotation invariant descriptor. It

is computed by

VARP ;r ¼
1

P

XP�1

p¼0

gp �
1

P

XP�1

p¼0

gp

 !" #
2

ð7Þ

In practice, variance is used to compute the strength of each pattern k 2 ½0;K� in the

LBP riu2
P ;r of an image I of size M �N :

LBPVP ;rðkÞ ¼
XM
i¼1

XN
j¼1

!ðLBP riu2
P ;r ði; jÞ; kÞ; k 2 ½0;K�; ð8Þ

!ðLBP riu2
P ;r ; kÞ ¼ VARP ;rði; jÞ; if LBP riu2

P ;r ¼ k

0; otherwise
;

�
ð9Þ

¯nally, LBPV is used as feature vector for the image I.

Enhancing LBP by preprocessing via anisotropic di®usion
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2.2. Complete local binary pattern

One of the best extensions of classic LBP to date is the Complete Local Binary

Pattern descriptor. Proposed by Guo et al.,16 the technique improves the original

method by adding information of sign and magnitude of the local patterns.

The sign and magnitude are computed from matrix LSDMT, where each pixel p is

calculated as:

LSDMTp ¼ gc � gp; ð10Þ
where, similarly as in LBP, gc and gp are the intensity values of the central pixel of

the evaluated window and the value of the pixel at position p, respectively. Two

matrices are computed from LSDMT: CLBPS and CLBPM . The ¯rst contains the

sign of the entries of the original matrix, while the second is formed based on the

absolute values.

Finally, three di®erent quantities are used to generate the features: the image

itself (CLBPC), CLBPS that represents the same information contained in LBP,

and CLBPM . The latter is a matrix of decimals and is given by

CLBPP ;r
M ¼

XP�1

p¼0

tðjgp � gcj; cÞ2p; tðx; cÞ ¼ 1; x � c

0; x < c

�
; ð11Þ

where c is a threshold computed by the mean value of the jLSDMTP j matrix

and CSLBPC is given by

CSLBPC ¼ tðgc; cÞ: ð12Þ
Finally, a histogram computed by the concatenation of the three matrices above is

used as feature vector in this method. Results show that the descriptor yields high

recognition rates with the addition of sign and magnitude information of local pat-

terns. Like LBP, we choose P ¼ 8 and r ¼ 1 in experiments.

2.3. Local binary pattern histogram Fourier features

This method has the advantage of being locally and globally invariant with respect

to rotation,1 a feature that di®ers from the previous methods cited above. It ¯rst

computes the non-invariant LBP histograms and from them, the method calculates

the global rotationally invariant features from the basic approach. Like the classical

LBP, the method uses a 3� 3 window around the central pixel to extract binary

features but reduces the histogram by combining patterns that only di®er by rotation

into the same bin. Therefore, patterns such as 110 and 011 are identi¯ed by the

method. The paper states that, if the original image is rotated by a certain degree

� � ¼ a 360
P

� �
where P is the number of pixels evaluated in each window, the histo-

gram is also cyclically shifted. To reach global invariance, the Discrete Fourier

Transform is computed as:

Hðn;uÞ ¼
XP�1

p¼0

hðLBP riu2
P ;r Þe�i2�ur=P ; ð13Þ

M. B. Neiva, P. Guidotti & O. M. Bruno
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where LBP riu2
P ;r , de¯ned in Eq. (6), is obtained by separation of the pattern in uniform

and nonuniform categories. The uniform patterns are those with an up to three

transitions 0–1 or 1–0 in the binary pattern, totaling 58 possibilities. The nonuniform

patterns are reduced to one bin. Therefore, the feature vector is reduced from

256 to 59 bins, as shown in Ref. 17. Also, h(LBP riu2
P ;r ) is the histogram value for the

uniform pattern LBP riu2
P ;r , n is related to the number of 1's in the pattern computed

by UðLBPP ;rÞ in Eq. (5), and u 2 ½0;P � 1�. The original article shows that features
in spectrum domain are invariant to cyclic features and therefore rotationally

invariant.

2.4. Local ternary pattern

In this forth descriptor, the pattern considering a central pixel is not represented

with two bits but three di®erent values33: f�1; 0; 1g. In order to extract features

around a certain value gc with a small tolerance b and a neighboring pixel value gp,

thresholding is done as follows:

1; if gp > gc þ b;

0; if gp > gc � b and gp < gc þ b;

�1; if gp < gc � b:

8<
: ð14Þ

When computing the corresponding histogram, one notices that the number of

features is very high. Therefore, in order to minimize the ¯nal vector size, two

matrices are created collecting the negative values of the LTP image (lower patterns)

and another one gathering the positive ones (upper patterns). Therefore, the ¯nal

feature vector is the concatenation of the histograms of the lower and upper patterns.

The information of the signal now includes direction analysis into the descriptor and

can enhance the representation of LBP.

2.5. Center-symmetric local binary pattern

An additional local feature descriptor combines the power of LBP and the well-

known SIFT19 technique. The method ¯rst performs noise removal in each analyzed

window. The ¯lter is able to preserve edges while removing noise, improving the

feature extraction power of LBP.

After ¯ltering, a pattern is extracted for each pixel in the image similarly to what

occurs in classic LBP. However, in this case, features are extracted comparing center-

symmetric pairs of pixels, i.e. comparing pixels that are in the opposite position

according to a radius around the central pixel. Thus, while LBP uses a 3� 3 window

to produce 256 features, CSLBP computes a feature vector of only 16 values.

Additionally, the threshold used is set to a value T ð¼ 0:01 in experiments), in order

to improve the outcome in °at image regions:

CSLBPðx; yÞ ¼
XP=2�1

p¼0

sðgp � gpþðP=2ÞÞ2p; ð15Þ

Enhancing LBP by preprocessing via anisotropic di®usion
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sðxÞ ¼ 1; x > T ;

0; otherwise;

�
ð16Þ

where gp and gpþðP=2Þ are the symmetric pairs. In the experiments a grid of size 4� 4

is used obtaining a ¯nal histogram of 256 features.

2.6. Di®usion methods

The key methods analyzed in this paper are di®usion algorithms and their in°uence

on texture recognition. Linear and nonlinear, isotropic and anisotropic di®usions are

used to create a new set of transformed images at di®erent scales to be used as input

for the descriptors of Sec. 2.5. For reader's convenience, a brief description of each of

them is given in the following section.

2.6.1. Isotropic di®usion

The simplest and oldest form of multiscale resolution is obtained by applying a

Gaussian kernel to the texture with varying smoothing parameter �. A 2D Gaussian

¯lter is calculated by convolution with

Gðx; yÞ ¼ 1

2��2
e�

x2þy2

2�2 : ð17Þ

For such an isotropic di®usion, smoothing is applied equally in all regions of the

image and in all directions. Consequently, information from edges and from smooth

regions get mixed up and shifted as the scale parameter � is increased. High fre-

quency areas such as edges and corners are, however, an important feature of texture

and this information is lost in the multiscale pyramid obtained by this ¯ltering

procedure.

2.6.2. Perona–Malik's anisotropic di®usion

Perona et al.30 were among the ¯rst to propose and to develop nonlinear anisotropic

di®usion methods. Until then a multiscale resolution was obtained by convolving

the image intensity function with a family of Gaussian ¯lters with di®erent variances

(� values) leading to a sequence of images of varying levels of detail as explained

above. The higher the �, the coarser the details. Convolution with a Gaussian is

given by

Iðx; y; tÞ ¼ I0ðx; yÞ �Gðx; y; tÞ; ð18Þ
which can be thought the solution to the heat equation:

It ¼ r2I ¼ Ixx þ Iyy; ð19Þ
with initial datum I0ðx; yÞ and, in this case, t ¼ �2.

As mentioned before, using a Gaussian kernel to generate di®erent levels of

details, however, leads to the disappearance of edges, which are a source of important

information on an image.

M. B. Neiva, P. Guidotti & O. M. Bruno
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A multiscale pyramid can be visualized by means of a tree, where, at one level,

the shape of the tree can be recognized, and, at the next level, branches and leaves are

added. Eventually, increasing the resolution level, all details including leaves' veins

are present. Regardless of resolution, edges are present and well de¯ned and, as such,

should be preserved for visual tasks.

This was one of the reasons which motivated Perona et al.30 to propose the

anisotropic di®usion given by

It ¼ divðcðx; y; tÞrIÞ: ð20Þ
The goal was then to ¯nd a function c that would result in the output image

satisfying three main requirements

Causality. No fake details should be generated in coarser resolutions.

Immediate Location. At each resolution, edges should be sharp and semanti-

cally meaningful to the actual resolution.

Piecewise Smoothing. Blurring should privilege intra-regions over inter-

regions.

If c is constant, rc vanishes and the di®usion is linear and isotropic. As intra-region

blurring is to be privileged over inter-region blurring, c should have a lower value at

inter-region boundaries. Thus, in Ref. 30, c is related to the gradient of the image

itself, which is used as an edge detector

cðx; y; tÞ ¼ gðjrIðx; y; tÞjÞ: ð21Þ
The function g is taken to be related to the inverse of the gradient square and

controls the amount of di®usion applied in the region. Since, at inter-region

boundaries, the gradient is large, blurring is lower. One of the functions proposed in

Ref. 30 is given by

gðrIÞ ¼ 1

1þ jjrIjj
�

� �
2
; ð22Þ

and will be used in the sequel. The parameter � is user-de¯ned and represents the

threshold value beyond which sharp transitions are considered edges and are hence

preserved. According to the authors, the chosen form of g privileges large regions.

Figure 1 compares linear di®usion to the nonlinear, anisotropic di®usion in Ref. 30

applied in images of the Usptex dataset.8 It is clear that edges are better maintained

by the latter. While fake details, such as staircasing, are produced by this type of

anisotropic di®usion, blur is e®ectively con¯ned to regions between edges, delivering

on at least two of the three properties above.

2.6.3. Forward–Backward regularization di®usion

In Ref. 15, it is noted that, while Perona et al.30 method is an interesting and e®ective

model, it is not without shortcomings due to the generation of arti¯cial edges,

Enhancing LBP by preprocessing via anisotropic di®usion
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a phenomenon known as staircasing. Therefore, the authors propose a regularization

characterized by two parameters p 2 ð1;1Þ and � > 0 with the aim of avoiding

staircasing without completely discarding the edge sharpening power of the original

Perona–Malik model. The equation proposed reads as follows:

It ¼ r � 1

1þK2jrIj2 þ �jrIjp�2

� �
rI

� 	
: ð23Þ

As this model is a regularization of PM, the parameterK plays the same role as in

Eq. (22), but is eventually overwhelmed by the � term for very large gradients (this is

precisely what prevents staircasing). According to the experiments in Ref. 15, best

results are obtained for a parameter p which is close (but not equal) to 1. The

addition of these two parameters allows the control of desired gradient growth and

also e®ectively bounds it to a maximal size. This is due to the forward–backward

nature of the equations and the fact that the backward regime is con¯ned to

(a) Original Image (b) Gaussian Di®usion – � ¼ 2:0

(c) Perona–Malik Di®usion – 15th iteration

Fig. 1. Comparison between classic Gaussian di®usion and classic nonlinear di®usion. Images smoothed
by Gaussian ¯lter looses de¯nition mainly in the edges. It can be useful for noise reduction but, if not used

carefully, important features of the texture can be missed.

M. B. Neiva, P. Guidotti & O. M. Bruno
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½1 < jrIj < MðK; �; pÞ�, where M is a function of the given variables (see Ref. 13).

As a consequence, staircasing is replaced by (micro-)ramping, the steepness of which

is controlled by the values of p and �. The right choice of the parameters is essential.

For p ¼ 1, for instance, the backward regime is unbounded, leading to staircasing.

An experiment using p ¼ 2 is shown in Ref. 13. Reference 15 shows good results when

employing Eq. (23) for denoising and deblurring and it will be tested here as a feature

enhancer for texture classi¯cation.

Figure 2 shows the comparison between the three approaches (applied on images from

dataset Usptex8) explained so far. The visual di®erence between Gaussian and aniso-

tropicmethods is evident.However, comparingboth anisotropicmethods, it is hard to see

the micro-ramping versus staircasing while it does exist as can be seen in Ref. 15.

(a) Gaussian Di®usion – � ¼ 2:0 (b) Perona–Malik Di®usion – 15th iteration

(c) Forward–Backward Regularization

Di®usion – 15th iteration

Fig. 2. Comparison between classic Gaussian di®usion, classic nonlinear di®usion (PM) and a regulari-
zation of PM. The di®erences between images produced from isotropic and anisotropic di®usion are easier

to notice. While isotropic di®usion smooths the whole image equally, anisotropic methods can distinguish

between edges and smooth regions. However, there are still di®erences between the anisotropic di®usions.
Using the same parameter values (K ¼ 1 and t ¼ 15), it can be observed that intra-regions are less noisy in

Forward–Backward Regularization di®usion image (Fig. (c)) as compared to the output of PM.

Enhancing LBP by preprocessing via anisotropic di®usion
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2.6.4. Nonlocal anisotropic di®usion

In Ref. 12, another approach is taken to regularize Perona–Malik and thus, e®ec-

tively avoid staircasing without reducing Perona–Malik intrinsic sharpening feature.

The trick is performed by the use of a fractional derivatives in the edge-detector

It ¼ r 1

1þK2jr1�"Ij2 rI

� 	
; where " 2 ð0; 1Þ: ð24Þ

The main advantages of Eq. (24) are its mathematical well-posedness, on the one

hand, and its simultaneous tendency to promote intra-region smoothing while solidly

preserving edges for a long time. Latter is due to the fact that, as stated in Guidotti

et al.,12 \. . .piecewise constant functions or characteristic functions of smooth sets in

higher dimension can be shown to be equilibria for the evolution."

(a) Gaussian Di®usion – � ¼ 2:0 (b) Perona–Malik Di®usion – 15th iteration

(c) NonLocal Anisotropic Di®usion – 15th iteration

Fig. 3. Comparison between classic Gaussian di®usion, classic nonlinear di®usion and the non local
di®usion. The same phenomena occur as in Fig. 2, when the output of anisotropic di®usion are compared.

The nonlocal anisotropic is also a regularization of the Perona–Malik algorithm and therefore intra-regions

are shown more smoothed due the reduction of the staircasing artifact.

M. B. Neiva, P. Guidotti & O. M. Bruno
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If " ¼ 0, the equation reduces to Perona–Malik. However, positive values of "

require the calculation of fractional derivatives. This can be done by means of the

Fourier transform considering periodic boundary conditions as follows:

jr1�"Ij ¼ F�1ðdiag½2�jkj�"�FðjrIjÞÞ; ð25Þ
where

FðIÞðkÞ ¼
Z
�

e�2�ik�xIðxÞdx; k 2 Z
2; ð26Þ

and diag½ðmkÞk2Z2 � denotes matrix multiplication with diagonal entries given by the

sequence ðmkÞk2Z2 .

This approach is capable of partially capturing nonlocal information due to the

use of the \wider support" fractional derivatives and thus enhancing edge detection

robustness in the presence of noise. This well-posed anisotropic di®usion can be

e®ectively used for denoising purposes due to its ability to di®erentiate between high

frequency global features (that really belong to the image) and local ones (noise).

Further explanations and proofs are found in Ref. 12.

Figure 3 shows results very comparable to what Fig. 2 demonstrates, where dif-

ferences between both anisotropic methods are very subtle, while compared to

Gaussian di®usion, the di®erence is high in terms of edge preservation. All images are

processed from Usptex dataset.8

3. Proposed Method

While typically used for deblurring and denoising purposes, Gaussian ¯lters, Perona–

Malik and the enhanced counterparts (23) and (24) can also be used as a basic tool to

obtain multiresolutions of an image. For these algorithms, in fact, coarser and

coarser images are created over time. We will take advantage of this augmented

dataset to improve information to represent a single texture.

Motivated by human vision where dots, corners and lines are separated in the

cortex for object recognition,21 a multiscale resolution that can distinguish di®erent

features of the image and use them separately can deliver a better and easier input to

feature extraction methods. At di®erent iterations (denoted by the parameter it),

di®erent features appear, and the one that better represents the dataset will hope-

fully give a higher texture classi¯cation rate.

The method works as follows:

(1) First, the original dataset images are preprocessed with one of the di®usion

methods presented above. This will create a pyramid with 150 (1 � it � 150)

new images for each one in the dataset with di®erent levels of details.

(2) All images in the new dataset (original and smoothed ones) are submitted to a

feature extraction method which will transform the 2D matrix of pixels to a 1D

representation of the texture.

Enhancing LBP by preprocessing via anisotropic di®usion
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(3) At each time, the concatenation of the feature vector produced by one iteration

vðIitÞ of a di®usion method and the representation of the original image v(I) are

used to describe the texture.

Anisotropic methods are believed to have the advantage over isotropic ones to

smooth while keeping important structures of the images such as edges and

T-junctions. This advantage will be tested for feature extraction. Beyond just adding

a preprocessing method to feature extraction, this paper has also the goal to compare

the four di®erent methods described above and analyze which one most enhances

each type of texture features. A diagram of the approach is presented in Fig. 4, where

all steps of the proposed method are represented. First, images are subjected to one of

the di®usion methods studied (Fig. 4(b)). This will result in a set of di®erent images

at di®erent iterations for each one of the original images in the dataset. Then, all the

smoothed images and the original texture are submitted to one of the local extractors

and generate 151 unidimensional vectors (Fig. 4(c)). Finally, we pick one of the

described preprocessed images, �vi
it, at iteration it, and combine it with the original

image vector, �vi
0 . The ¯nal feature vector of each texture in the dataset is then given

by �vi ¼ ½ �vi
0 ;

�vi
it� (Fig. 4(d)). The ¯nal feature vectors �vi of each image i are evaluated

(a) (b) (c)
(e)

(d)

Fig. 4. Diagram of the proposed method. (a) The original image i is preprocessed by one of the di®usion

methods previously described to obtain a multiscale resolution (b). Then, (c) all the images obtained in the

preprocessing step (in the experiments 150 iterations are output) and the original texture i are described

by one of the chosen feature extractor methods. The ¯nal vector (d) is composed by one of the feature
vectors obtained in the preprocessing step (in the example iteration 2 is chosen) and the descriptor of the

original image. Finally (e), the vector �vi of image i populates the feature space and classi¯cation can be

performed according to the machine learning algorithm scheme chosen.

M. B. Neiva, P. Guidotti & O. M. Bruno
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by a classi¯er to retrieve a corrected classi¯cation rate of recognition. In order to

evaluate the approach, all possible combinations of preprocessing method�
diffusion method� classifier (Fig. 4(e)) are tested. As each preprocessing method

output 150 smoothed images for a single texture (all feature vectors �vi ¼ ½ �vi
0 ;

�vi
it� with

1 � it � 150) it means that, for each combination mentioned above, 150 CCR and

the classi¯cation of the dataset with no preprocessing are output.

In the study, six feature extractions are analyzed chosen mainly by the impor-

tance of local binary pattern descriptor in the literature. The good results obtained

by this simple technique caught the interest of researchers and lead to attempts at

extending the method. This paper also o®ers a di®erent approach in order to improve

the classical LBP, as well as some extensions of it. For the recognition step,

K-Nearest Neighbor and Naive Bayes will be applied as a simple yet powerful

classi¯cation model. Also, although SVM have been widely used for the community,

Ref. 3 shows that in many cases, the simple KNN, k ¼ 1 performs pretty well for

classi¯cation.

4. Experimental Results

4.1. Datasets

Three texture datasets are used to evaluate the approach:

. Brodatz Dataset:a A well known, widely used dataset to test texture related

algorithms. The set contains 1110 images from 111 di®erent classes. Images are

grayscale and of size 200� 200. Brodatz is characterized by a lack of illumination,

scale, and viewpoint variation.5 As a well-known database of textures, it should be

tested anyway.

. Vistex Dataset:b The Vistex dataset contains a total of 864 RGB color images,

16 in each class.27 It contains variations in illumination, conditions, and scale.

Images are converted to grayscale using only the luminance component and have

size of 128� 128.

. UspTex Dataset:c The dataset contains 12 color images per class for a total of

2292 images of size 128� 128.4 Each class set is generated by taking nonover-

lapping windows of an original 512� 384 image. All images are converted to

grayscale maintaining only image luminance and removing hue and saturation

information prior to preprocessing.

4.2. Performance evaluation

For simplicity and e±ciency, KNN (k ¼ 1) and Naive Bayes are used. A cross vali-

dation (10-fold) was performed to get a more reliable classi¯cation rates. For each

aImages from Brodatz dataset available at: http://multibandtexture.recherche.usherbrooke.ca.
bVistex dataset available at: http://vismod.media.mit.edu/.
cUsptex dataset available at: http://scg.ifsc.usp.br.
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dataset and preprocessing method, 150 new images in di®erent scales were generated

(1 � it � 150).

For isotropic di®usion, � starts at 0.5 and is incremented by 0.5 in each iteration

(� ¼ 0:5 � it). For the ¯rst anisotropic method, the implementation was done fol-

lowing Ref. 30 with g as in (22). For FBR (Sec. 2.6.3), parameters were chosen to be

� ¼ 0:1, p ¼ 1:1 and ¯nally, for nonlocal anisotropic di®usion presented in Sec. 2.6.4,

" was set to 0.1. The time derivation for convolution was set to 0.25 andK ¼ 1 for all

methods. It is important to notice that it is not possible to strictly compare the

values of iteration for di®erent di®usion methods, since they have inner parameters

and their own characteristics. However, the higher the iteration is, the coarser the

image becomes, a phenomenon that occurs in all smoothing methods. In this paper,

we are willing to analyze what the limit of time is, for which each preprocessing

method can enhance intrinsic features capture d by the descriptors and which one is

the best iteration. However, further experiments could be done evaluate the in°uence

of the parameter set of each di®usion algorithm.

Each scale is evaluated separately in order to analyze which one better improves

feature extraction (Fig. 4). We combine the original image feature vector and the

smoothed image vector from iteration it to use as input for the KNN classi¯cation

space. As datasets have di®erent characteristics, each method works in a di®erent

way and the it scale that yields the best improvement in feature extraction is dif-

ferent.

Analyzing the results for each dataset, the easiest, Brodatz, shows the best per-

formance when FBR is combined with the CLBP descriptor. It can be noted that any

combination shown in Tables 1 and 2 improves the correct classi¯cation rate (CCR)

when compared to the traditional approach. The largest bene¯t is observed for

CSLBP with a gain of 5.94%. In general, FBR is the method that most improves the

classi¯cation rate for this dataset for both classi¯cations.

The second dataset, Vistex, yields the best classi¯cation rate combining FBR and

CLBP (KNN, k ¼ 1). Similarly to Brodatz, images are better characterized when

FBR is applied even though all combinations result in enhanced texture classi¯ca-

tion. The method with the highest bene¯t in this case is LBPHF with an improve-

ment of up to 11.23%.

Finally, for Usptex, the improvement in texture recognition obtained with the

addition of images preprocessed by FBR method was 6.33% for the same CLBP

method. This set was the one that was most bene¯ted from the addition of the

processed images. The di®erence between CCR output by the addition of a di®usion

and the CCR output by any traditional approach, descriptors applied on the original

images, are higher compared to other datasets. The average improvement is of

10.25% with a lowest gain of around 6%, when considering all descriptors tested in

this experiment.

Figures 5–10 show that the use of a Gaussian kernel, the classical preprocessing

approach, resulted in a CCR gain only for small iterations, low values of �, such as

shown in Figs. 6 and 7. This is due the fact that edges disappear at higher scales,

M. B. Neiva, P. Guidotti & O. M. Bruno
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an inherent property of the method. In Figs. 8–10 almost no iteration (excluding few

cases in Vistex and Usptex) results in an improvement compared to the traditional

approach. In the case of LBP, LBPV, LTP and CSLBP, all 150 iterations of ani-

sotropic image processing improve texture extraction and increase the recognition

(a) Brodatz (b) Usptex

(c) Vistex

Fig. 5. (Color online) Results of each iteration when preprocessing methods are combined with LBP

(Naive Bayes).

(a) Brodatz (b) Usptex

Fig. 6. (Color online) Results of each iteration when preprocessing methods are combined with CSLBP

(Naive Bayes).
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rate. However, for LBPHF some iterations output a negative result for Brodatz and

Vistex. In addition, graphs show a high similarity among preprocessing methods PM

and FBR. However, as stated in Ref. 14, the classic anisotropic di®usion results in

images with evident staircasing e®ect and, eventually, lower recognition rates.

(c) Vistex

Fig. 6. (Continued )

(a) (b)

(c)

Fig. 7. (Color online) Results of each iteration when preprocessing methods are combined with LBPV

(Naive Bayes).
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4.3. Parameter evaluation

As noticed in the previous tables, while all iterations were tested, we only present

the best results for each combination set ¼ fdataset, di®usion method, feature ex-

tractor, classi¯erg. Therefore, one can think that the bene¯t is only because

(a) Brodatz (b) Usptex

Fig. 9. (Color online) Results of each iteration when preprocessing methods are combined with LTP

(Naive Bayes).

(a) Brodatz (b) Usptex

(c) Vistex

Fig. 8. (Color online) Results of each iteration when preprocessing methods are combined with LBPHF
(Naive Bayes).
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choosing the iteration that was set exactly to improve the most improved result.

However, it is possible to check in Figs. 5–8, and 10 that, especially for anisotropic

di®usion, the most smoothed images in any level of details enhance intrinsic features

of the texture.

(c) Vistex

Fig. 9. (Continued )

(a) Brodatz (b) Usptex

(c) Vistex

Fig. 10. (Color online) Results of each iteration when preprocessing methods are combined with CLBP

(Naive Bayes).
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Furthermore, in order to quantify this analysis, we took the average iteration, ît,

for each combination of di®usion method plus feature extractor algorithm for a given

classi¯er and evaluated the images using �vi ¼ ½ �vi
0 ;

�vi
ît
�. Results are shown in Table 3.

Note that the results with the addition of a preprocessed image are better in any

dataset.

For Vistex, for instance, the best result achieved using an average iteration is

99.19% against 99.80% considering the best iteration with FBRþ CLBP. Usptex, a

challenging dataset, exhibited its best results diverging in only 0.13% regarding both

(best and average approaches), an insigni¯cant amount considering the standard

deviation.

Another observation is that, in general, FBR is the most stable method to en-

hance features in the study. In all tables, it was the method that, in general,

presented the highest gain in terms of CCR comparing the result with and without

the preprocessing step. However, Gaussian ¯ltering, the isotropic di®usion, appears

as the most instable ¯lter. This is due to its tendency to shift and distort edges and

homogeneous regions as the iteration count grows. The result of Perona–Malik

method, PM, is also very similar to what occurs for FBR, which is good even though

it is not a mathematically well-posed method.

In summary, the addition of the preprocessing method, especially by anisotropic

di®usion, have been proved as a good approach to improve texture recognition even

when the iteration parameter is not set speci¯cally for a dataset. The use of an

average iteration as an additional information to the image enhanced the intrinsic

features of the image and higher CCRs were output.

5. Conclusion

This paper evaluates the in°uence of di®erent di®usion methods, three of which are

nonlinear and anisotropic, and one of which is linear and isotropic, as a preprocessing

tool generating extended feature vectors for known texture classi¯ers. The goal is to

verify whether the use of such a preprocessing step prior to feature extraction can

enhance image characteristics and consequently increase texture recognition. Six

texture analysis algorithms were tested (LBP, LBPV, CLBP, LBPHF, LTP and

CSLBP) in combination with two di®erent classi¯ers (KNN with k ¼ 1 and Naive

Bayes).

The experiments demonstrate that the use of any of these preprocessing methods

can indeed improve texture extraction and pattern recognition. In particular, the

combination of FBR and CLBP delivers the highest gain across all datasets. We also

analyzed the stability with respect to parameter choices and, Figs. 5–10 as well as

Table 3 indicate that anisotropic di®usion methods are very constant in terms of

results regarding the preprocessed image used but, for Gaussian ¯ltering, the itera-

tion count cannot be very high due to edge distortion and loss of important image

features.
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LBP and its extended methods (cited in Sec. 2.1) analyze the contrast of

texture and the use of anisotropic di®usion proves helpful in improving these

features while removing unnecessary artifacts, which is very useful for pattern

recognition. As for the question of which methods to use in practice, Tables 1

and 2 help in identifying a good candidate for the feature extraction methods

considered in this paper. The area under ROC curve, F-measure and precision do

not give us much information since the ¯rst is very close to 1 for almost all

experiments, while precision and F-measure are very similar to the CCR results.

More in general, however, if one chooses a feature extraction not considered here,

the tip would be to ¯rst apply linear isotropic di®usion with small number of scales

and check the results.
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