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Abstract. A family of 1-D moving boundary models describing the diffu-
sion of a finite amount of a penetrant in a glassy polymer is studied. Local
existence of a unique classical solution is obtained for a generic quasilinear
model. Specific data are then chosen which can be found in the literature
(cf. [6]) and global existence of the classical solution and its convergence to
an equilibrium solution are proven. Finally a rigorous proof is provided for a
formal perturbation argument proposed in [6] and used therein to estimate
the rate of convergence of the solution towards the equilibrium.

1 The model

We consider a set of equations which describe the diffusion taking place when a
polymer film is exposed to a finite amount of a smaller molecule capable of diffusing
in the polymer. The model was introduced by Cohen and Erneux in [6] along with
the corresponding model in the case when the polymer is exposed to a solvent kept
at a constant given concentration. The latter model was already studied in [8]. As
in that case one observes a sharp interface separating the two regions where the
concentration of the penetrant is positive and where it is zero, respectively. This
interface starts to move while a diffusive process takes place in the polymer region
where the smaller molecule is already present. The following are the equations set
up in [6] to describe this phenomenon:

CT −DCXX = 0 , 0 < X < S(T ) , T > 0 , (1.1)
CX = 0 , X = 0 , T > 0 , (1.2)

−DCX = (C +K)ST , X = S(T ) , T > 0 , (1.3)
ST = k1(C − C∗)n , X = S(T ) , T > 0 , (1.4)
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S(0) = Si > 0 , T = 0 . (1.5)
C(·, 0) = Ci , T = 0 . (1.6)

We used the same notation as in [6] where C and S are the unknown concentra-
tion of the solvent and the unknown front position, respectively. The constants
appearing are all positive physical parameters. In particular C∗ is the equilibrium
concentration and D the diffusivity. Consider to have a slab of polymer with im-
permeable faces into which, initially, a finite fixed amount Ci > C∗ of penetrant is
injected to a depth Si. The impermeable membrane is either removed or becomes
permeable when placed in a dissolving solution. Then (1.1) describes the diffu-
sion in the region where the penetrant is present, whereas equation (1.2) models
the impermeability of the left face of the slab. Equation (1.3) is a conservation
law at the front and (1.4) describes the kinetic of the moving interface in terms
of a phenomenological power law (where n ≥ 0 is typically an integer). These
equations were derived in connection with models for the formation and storage
of simple swelling controlled drug release system without volume change (cf. [6]).
The first models for diffusion in polymers go back to Alfrey-Gurnee-Lloyd [1] and
Astarita-Sarti [5].

Remark 1.1. We observe that, as was pointed out in [6], the system admits a
conservation relation which reads∫ S(T )

0
C dX +KS(T ) ≡ Q = (Ci +K)Si . (1.7)

If (1.3) is substituted by the above relation in (1.1)–(1.6) an equivalent system is
obtained. This fact will be used later. From (1.7) and (1.1)–(1.6) we deduce that
the system admits the equilibrium solution

(
C∗, Q

C∗+K

)
.

After introducing dimensionless variables as in [6] we may rewrite the system
as follows:

u̇− δuxx = 0 , 0 < x < L(t) , t > 0 (1.8)
ux = 0 , x = 0 , t > 0 , (1.9)

−δux = (u+ ε−1)L′ , x = L(t) , t > 0 , (1.10)
L′ = un , x = L(t) , t > 0 , (1.11)

L(0) =
ε

1 + ε
, t = 0 (1.12)

u(·, 0) = 1 , 0 ≤ x ≤ ε

1 + ε
, t = 0 (1.13)

where the parameters ε and δ are defined as

ε =
Ci −C∗
C∗ +K

, δ =
D

k1Q
(Ci −C∗)1−n .
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Remark 1.2. In [6] the Neumann boundary condition (1.10) is actually replaced
by the conservation relation, which now reads∫ L

0
u dx+

L

ε
= 1 , (1.14)

to obtain an equivalent system. For our purposes it is more convenient to work
with (1.10) instead.

In the new dimensionless variables the equilibrium solution becomes (u,L) =
(0, ε). Lastly we transform the system to a fixed domain problem which is more
easily dealt with. This is performed by the simple change of variables

(x, t) 7→ (y, τ) := (x/L(t), t) , û(y, τ) := u(L(τ)y, τ) .

One then obtains the system

˙̂u− δ

L2(t)
ûyy = y

L′(t)
L(t)

ûy , 0 < y < 1 , t > 0 (1.15)

ûy = 0 , y = 0 , t > 0 , (1.16)

−δûy = (û+ ε−1)L′(t)L(t) , y = 1 , t > 0 , (1.17)
L′(t) = ûn(1, t) , y = 1 , t > 0 , (1.18)

L(0) =
ε

1 + ε
, t = 0 (1.19)

û(·, 0) = 1 , 0 ≤ y ≤ 1 , t = 0 . (1.20)

We can now formulate the main results concerning the model.

Theorem 1.3. The system (1.15)–(1.20) possesses a unique classical global solution
(u,L). Moreover it converges towards the equilibrium solution (0, ε) in the sense
that (

û(t), L(t)
)
−→ (0, ε) as t→∞

in the topology of Cσ(0, 1)× R for some σ ∈ (0, 1).

By Cσ(0, 1) we mean the Banach space of Hölder continuous functions on
[0, 1] with norm

‖u‖ := ‖u‖∞ + sup
x6=y

|u(x)− u(y)|
|x− y|σ

for u ∈ Cσ(0, 1). To determine the rate of convergence of the front towards its
equilibrium position the authors in [6] perform some formal asymptotics. In par-
ticular they provide evidence to believe that the solutions (ûδ, Lδ) converge for
δ →∞ towards the solution (u∞, L∞) (only depending on time) of

L′∞ = un∞ , L∞(0) =
ε

1 + ε
, (1.21)(

u∞ +
1
ε

)
L∞ = 1 (1.22)
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A rigorous proof of this suggestion can be given. In the following theorem we
determine the system of ODEs which is satisfied by the limiting function (u∞, L∞)
and which can be showed to be equivalent to the above system suggested by Cohen
and Erneux.

Theorem 1.4. Let (ûδ, Lδ) be the solution of (1.15)–(1.20). Then we have

(ûδ(t), Lδ(t)) −→ (u∞(t), L∞(t)) , as δ → 0

in the topology of Cσ
(
I,W 1

p (0, 1)
)
×Cσ(I) for each compact subinterval I of (0,∞),

where (u∞, L∞) is the solution of the following system of ODEs

u̇∞ = −u
n
∞
L∞

(
1
ε

+ u∞) (1.23)

L′∞ = un∞ (1.24)
u∞(0) = 1 (1.25)

L∞(0) =
ε

1 + ε
(1.26)

The convergence is uniform on compact subintervals of (0,∞).

Corollary 1.5. The systems (1.21)–(1.22) and (1.23)–(1.26) are equivalent. The
solution (u∞, L∞) converges towards the equilibrium solution (0, ε) as t→∞.

Remark 1.6. Since (ûδ, Lδ) converges towards (u∞, L∞) as δ →∞, the behaviour
of Lδ at infinity can be compared to that of L∞ for δ large enough. This is precisely
what Cohen and Erneux do in their paper. The proofs of the above results are
postponed to the following sections of the paper. First we need to introduce some
useful notation and to fix the functional setting in which to work.

2 Local existence in the quasilinear case

In this section we shall prove local solvabilty of a generic quasilinear system of the
type (1.15)–(1.20). Local solvabilty of the latter will follow as a corollary. Consider

˙̂u− ∂y
(
a(û, L)∂yû

)
= f(û, ∂yû, L, L′) ,0 < y < 1 , t > 0 (2.1)

a(û, L)∂yû = g(û, L, L′) , y = 0 , t > 0 , (2.2)
−a(û, L)∂yû = h(û, L, L′) , y = 1 , t > 0 , (2.3)

L′(t) = k(û, L) , y = 1 , t > 0 , (2.4)
L(0) = L0 > 0 , t = 0 (2.5)
û(·, 0) = û0 , 0 ≤ y ≤ 1 , t = 0 (2.6)

Multiplying by a test function ϕ ∈ W 1(0, 1) and integrating by parts the second
term on the left-hand side of (2.1) and making use of the boundary conditions
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(2.2) and (2.3), we obtain

〈ût, ϕ〉+ 〈a∂yû, ∂yϕ〉 = 〈f, ϕ〉 − 〈g, ϕ(0)〉 − 〈h, ϕ(1)〉 , ϕ ∈W 1(0, 1) , (2.7)
û(0) = û0 , (2.8)

L′ = k(û, L) , L(0) = L0 (2.9)

where in the first equation we omitted the arguments of the nonlinearities involved.
We shall now interpret the above system as an abstract evolution equation in an
appropriate Banach space. To this end let W 2s

p (0, 1) be the space of the Sobolev-
Slobodevskii scale for positive s and

W 2s
p (0, 1) :=

(
W−2s
p′ (0, 1)

)′
,

for negative s. For our purposes we shall only consider these spaces for 2s ∈
(−2 + 1/p, 1 + 1/p). We observe that

W 2s
p (0, 1)

d
↪→ Lp

d
↪→W−2r

p (0, 1) (2.10)

for 2s ∈ (0, 1 + 1/p) and 2r ∈ (−2 + 1/p, 0). By

A(û, L) ∈ L
(
W 2s
p (0, 1),W 2s−2

p (0, 1)
)

we denote the operator induced by the Dirichlet form

a(û, L) ∈ L
(
W 2s
p (0, 1)×W 2−2s

p′ (0, 1),R
)

defined through

a(û, L)(v,w) := 〈a(û, L)∂yv, ∂yw〉 , v ∈W 2s
p (0, 1) , w ∈W 2−2s

p′ (0, 1) .

Moreover we define F by

F (û, L) = 〈f(û, ∂yû, L,K), ·〉+ 〈γ′0g(γ0û, L,K), ·〉+ 〈γ′1h(γ1û, L,K(û, L)), ·〉

and K by
K(û, L) = k(γ1û, L) .

By γj we denoted the trace operator at the boundary point j. Using these defini-
tions we may rewrite the system as follows:

˙̂u+A(û, L)û = F (û, L) , t > 0 , in W 2s−2
p (0, 1) , (2.11)

L′ = K(û, L) , t > 0 , (2.12)
û(0) = û0 , (2.13)
L(0) = L0 . (2.14)
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The latter may, in its turn, be viewed as

V̇ + AV = F(V ) , t > 0 , (2.15)
V (0) = V0 , (2.16)

in the Banach space E0 setting

V = (û, L) , E0 = W 2s−2
p (0, 1)× R , (2.17)

A(V ) =
[
A(û, L) 0

0 0

]
, F(V ) =

[
F (û, L)
K(û, L)

]
. (2.18)

We conculde that, by the general Theorem 12.1 in [3], there exists a unique local
solution V on an interval J = [0, T ] of the latter evolution equation with

(û, L) ∈ C1(J̇ ,E0
)
∩ C

(
J̇ ,E1

)
∩ Cρ

(
J̇ ,Xα

)
,

for some ρ ∈ (0, 1) and with J̇ := (0, T ], provided

(A1) A ∈ C1−(Xα,H(E1,E0)
)
.

(A2) F ∈ C1−(Xα,Eβ)
for some 0 < β < α < 1 and Xα

o
⊂ Eα. Some explanations about the notation

are in order. By Eα we denote the interpolation space obtained by the standard
real interpolation functor (·, ·)α,p. With

o
⊂ we mean “included as an open subset”.

Lastly
H
(
E1,E0

)
denotes the set of all negative generators of analytic C0-semigroups −A which
satisfy

dom(A) .= E1 ,

where E1 := W 2s
p (0, 1)×R and .= means “equal except (possibly) for an equivalent

norm”. The set H
(
E1,E0

)
is given the topology induced by L

(
E1,E0

)
, the space

of linear and continuous operators from E1 to E0.

Remark 2.1. It is to be pointed out that one has

Eα
.= W 2s−2+2α

p (0, 1)×R

for α ∈ (0, 1) except for α = 1− s.

The following lemma gives sufficient conditions for the validity of (A1) and
(A2).

Lemma 2.2. Assume the following hypotheses are satisfied:

(i) a ∈ C2−(O, [a, a]
)

for some O
o
⊂ R2 and some 0 < a < a.

(ii) f ∈ C1−(R4,R
)

such that ∂2f is polynomially bounded in the second variable.
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(iii) h, g ∈ C1−(R3,R
)
.

(iv) k ∈ C1−(R2,R
)
.

Then, setting

E0 = W 2s−2
p (0, 1)× R , E1 = W 2s

p (0, 1)×R
for an appropriate choice of 2s ∈ (1/p, 1 + 1/p)

Eβ = Eβ × R , Xα = Xα × pr2O and

Xα = Eα ∩W 2s−2+2α
p

(
(0, 1), pr1O

)
for 2s− 2 + 2α > 1/p ,

the conditions (A1) and (A2) are satisfied (provided of course α and β are not
singular values in the sense of Remark 2.1).

Proof. (α) We start by considering F. We recall

F (û, L) = 〈f(û, ∂yû, L,K), ·〉+ 〈γ′0g(γ0û, L,K), ·〉+ 〈γ′1h(γ1û, L,K), ·〉
= F1 + F2 + F3

for K defined as K(û, L) = k(γ1û, L) . First observe that the mapping[
(û, L) 7→ (û, ûy, L)

]
maps Xα into

Xα ×W 2s−3+2α
p (0, 1)× pr1O ↪→ C

(
[0, 1]

)
× Lq(0, 1)× pr1O ,

for q = 1/ε, if 2s is chosen such that 2s − 3 + 2α = 1/p − ε, which is possible
since α can be chosen arbitrary close to 1 and 2s to 1 + 1/p. Lemma 14.2 in [3]
concerning Nemitskii operators then implies that

F1 ∈ C1−
b

(
Xα, Lp(0, 1)

)
↪→ C1−(Xα, Eβ)

since Lp ↪→ W 2s−2+2β
p = Eβ provided β is chosen small enough as follows from

Remark 2.1. As to F2 and F3 we first observe that

γj ∈ L
(
W r
p′ ,R

)
, 1 + 1/p′ > r > 1/p′

which implies
γ′j ∈ L

(
R,W−rp

)
.

Thus, fixing r and choosing β small enough we infer from

Xα
(γj ,id)−→ O g,h,k∈C1−

−→ R
γ′j−→ Eβ

that
F2 , F3 ∈ C1−(Xα, Eβ) .

In the above diagram one has of course to set j = 0 if choosing g for the second
map or j = 1 if choosing h or k. Hereby we also showed that

K ∈ C1−(Xα,R) .
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(β) We infer again from Lemma 14.2 in [3] that[
(û, L) 7→ a(û, L)

]
∈ C1−(Cσ([0, 1],O), Cσ([0, 1], [a, a])

)
provided σ ∈ [0, 1) ∪ {1−}. On the other hand we see

Xα
C1−

↪→ Cσ([0, 1])× pr2O C1−
−→ H

(
E1,E0

)
V 7→ a(û, L) 7→ −A(û, L)

for an appropriate choice of σ ∈ (0, 1) (cf. Paragraph 8 in [3]). The embedding
follows from the fact that

Xα

o
⊂ Eα ↪→ C2s−2+2α−1/p([0, 1]

)
and that 2s may be chosen arbitrary close to 1 + 1/p and α to 1, which, in its
turn, implies that 2s− 2 + 2α− 1/p can be made almost 1. Thus

A ∈ C1−(Xα,H(E1,E0)
)
.

The fact that A(û, L) ∈ H
(
E1,E0

)
is implied by

a ≤ a(û, L) ≤ a ,

the regularity of [y 7→ a(û, L)(y)] and the generation Theorem 8.5 in [3].
The proof is now complete.

Corollary 2.3. Assume that the hypotheses of the above lemma are satisfied. Then
the system (2.1)–(2.6) possesses for each V0 = (û0, L0) ∈ Xα a unique local weak
solution V = (û, L) (on an interval J) which enjoys the following regularity:

û ∈ C(J̇ , E1) ∩ C1(J̇ , E0) ∩ C(J,Xα) , L ∈ C1(J,R)

Proof. The assertion are a direct consequence of the previous lemma and Theorem
12.1 in [3].

Remark 2.4. If all data are smooth it can be shown that the local weak solution
is in fact a classical solution. The proof is based on boot-strapping arguments as
it is described in Paragraph 14 of [3].

Remark 2.5. It follows also from [3, Thm. 12.1] that the sistem (2.1)–(2.4) gener-
ates a local semiflow on Xα.

Corollary 2.6. The special system (1.15)–(1.20) possesses a unique local classical
solution (û, L).

Proof. In this case we set

O := (0,∞)× (L0/2, 2L0)

for L0 := ε
1+ε and easily check that the following are satisfied
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(i) a ∈ C2−(O, [ δ
2L2

0
, 2δ
L2

0
]
)
.

(ii) f ∈ C1−(R4,R
)

and is polynomially bounded in second variable.

(iii) g, h ∈ C1−(R3,R
)
.

(iv) k ∈ C1−(R2,R
)
.

Thus we are in the situation of Corollary 2.3 and conclude by Remark 2.4 that the
assertion is true.

Remark 2.7. It follows from the theory summarized in [3] that the solution of
the system under consideration may be seeked as the unique fixed point of the
variation-of-constants-formula, that is, of

V (t) = UV (t, 0)V0 +
∫ t

0
UV (t, τ)F

(
V (τ)

)
dτ

for the evolution operator UV generated by the family −A(V ) (for fixed V chosen
in an appropriate set). In particular for the first component of V we have

û(t) = Uu,L(t, 0)û0 +
∫ t

0
Uû,L(t, τ)F

(
û(τ), L(τ)

)
dτ

for the propagator generated by −A(û, L).

Remark 2.8. In the special case of equations (1.15)–(1.20) we can modify the
Dirichlet form to

a(û, L)(v,w) :=
δ

L2 〈∂yv, ∂yw〉 −
ûn(1, t)
L(t)

〈y∂yv,w〉 ,

v ∈W 2s
p (0, 1) , w ∈W 2−2s

p′ (0, 1) (2.19)

without loosing the generation properties of the previously defined Dirichlet form
(the new term is a lower order perturbation) and the nonlinearity to

F (û, L) =
γ1û

n

L
〈γ′1(γ1û

n + ε−1), ·〉

improving its mapping properties (the first derivative of u is not present in the new
nonlinearity). This allows to apply again [3, Thm. 12.1] to obtain a local semiflow
on X := W r

p ∩
{
u ∈ C[0, 1] |u ≥ 0

}
×R+ for r ∈ (1/p, 1), which will be important

in the next section.
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3 Global existence and asymptotic behaviour

In this section we shall prove that the solution (û, L) of (1.15)–(1.20) exists globally
and converges to the equilibrium solution (0, ε). To this end we need first a couple
of lemmas.

Lemma 3.1. Let (u,L) be the solution of (1.8)–(1.13). Then

0 <u(x, t) ≤ 1 , x ∈ [0, L(t)] ,
0 <L′(t) ≤ 1 , t ≥ 0 ,
ε

ε+ 1
≤ L(t) ≤ ε , t ≥ 0 .

Remark 3.2. It is straightforward that any estimate obtained for u immediately
translates into one for û.

Proof. Since u satisfies (1.8)–(1.13) it follows from (1.8) that u takes its mini-
mum/maximum on the parabolic boundary

t = 0 and x ∈ [0, L0] or t > 0 and x = 0, L(t) .

Suppose now that u becomes 0 at some point, then of course, that must occur
at x = 0 or at x = L(t) for a strictly positive time. As consequence of (1.9) this
cannot happen at x = 0. From this we can conclude by (1.11) that L′(t) = 0, which
entails together with the conservation relation (1.14) that u(t) ≡ 0. From this and
the maximum principle we infer that u(·, t) ≡ 0 for all t ≤ t0, which contradicts
(1.13). Thus we conclude that u > 0. Next assume that u takes a maximum which
is strictly larger than 1 at some time t0 > 0. This must happen on the parabolic
boundary. Once more it can be excluded by (1.9) that this occurs at x = 0, so, by
(1.11), we see that

L′(t0) = un(L(t0), t0) > 1 .

But the strong maximum principle requires that

0 > −δux(L(t0), t0) =
(
u(L(t0), t0) + 1/ε

)
L′(t0) ,

thus we have to conclude that

u(L(t0), t0) + 1/ε < 0 ,

which is of course impossible. So we have to reject the assumption and we obtain
the desired inequality u ≤ 1. From the inequalities for u and (1.11) it follows
that 0 < L′(t) ≤ 1. Lastly, using the bounds obtained for u and the conservation
relation (1.14), it is easily seen that the last assertion concerning L is valid. This
finishes the proof.

Next we establish bounds for ux.
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Lemma 3.3. The solution u of (1.8)–(1.13) satisfies

−1 + ε

δε
≤ ux(x, t) ≤ 0 , 0 < x < L(t) , t > 0 .

Proof. It is easily seen that v := ux satisfies

v̇ − δvxx = 0 , 0 < x < L(t) , t > 0 ,
v = 0 , x = 0 , t > 0 ,

From the validity of the first equation we infer that v attains its maximum and
its minimum on the parabolic boundary. There we have v ≡ 0 for t = 0, v = 0 for
x = 0 and, by the previous lemma and the boundary condition (1.10),

−ε+ 1
εδ
≤ v(L(t), t) ≤ 0 .

Since we have obtained bounds on the whole parabolic boundary the claim follows.

As a consequence of the previous lemmas we obtain the following

Corollary 3.4. If (û, L) is a weak solution of the system (1.15)–(1.20) then it exists
globally.

Proof. Corollary 2.6 imply that the solution is classical. Further we know from
Remark 2.8 that the system under consideration (in the transformed variables,
that is, in the fixed domain) generates a local semiflow ϕ on

X := W r
p ∩

{
u ∈ C[0, 1] |u ≥ 0

}
× R+

for r ∈ (1/p, 1). The bounds obtained in the previous lemmas imply that{
(u(t), L(t)) : t ≥ 0

}
is relatively compact in X and that (u(t), L(t)) can not

converge in finite time to the boundary of X, thus the solution must exist glob-
ally.

Remark 3.5. The system (1.15)–(1.20) is equivalent to the system obtained by
replacing the boundary condition (1.17) by

(∫ 1

0
û dy + ε−1)L = 1 .

Proof. This follows from the discussion following Remark 1.1.

Proposition 3.6. The solution (û, L) of the initial boundary value problem (1.15)–
(1.20) converges towards the equilibrium solution (0, ε) in the topology of Cσ[0, 1]×
R for an appropriate σ ∈ (0, 1).
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Proof. We divide the proof into two steps corresponding to the two assertions of
the proposition.
(α) If (û, L) is a solution of the stationary problem then û = 0 and the conservation
relation (1.14) implies L

ε = 1. The convergence remains to be proved.
(β) As noticed in Remark 2.5 the system generates a local semiflow ϕ on the set
X specified there. It is further a consequence of the conservation relation that

V (û, L) :=
∫ 1

0
û dy

is a Lyapunov function for ϕ. In fact,

V (û, L)′(t) = −L
′(t)

L2(t)
≤ 0 .

In particular it is a Lyapunov function on M where M := γ+(û0, L0) is the orbit
starting at (û0, L0). The previous lemmas imply that M is relatively compact in
X and a simple maximum principle argument that

{(0, ε)} = {x ∈M : lim
t→0

1
t
(V (t · x)− V (x)) = 0}

where t·x is the value at time t of the solution to the initial datum x. The assertion
is thus a consequence of La Salle principle (cf. for instance [2, Cor. 18.4]) and the
embedding X ↪→ Cσ[0, 1]× R, which is valid for σ > 0 small enough.

4 Rigorous proof of the formal asymptotics

This last section is devoted to the formal asymptotics performed in [6]. The next
theorem provides a rigorous proof for it which uses a result about singular pertur-
bations of non autonomous Cauchy problems. We shall postpone the proof of the
latter to the appendix

Theorem 4.1. Let (ûδ, Lδ) be the unique solution of (1.15)–(1.20) for each δ > 0.
Then (ûδ, Lδ) converges towards (u∞, L∞) in the topology of

Cρ
(
I,W 1

p (0, 1)
)
× Cρ(I)

for an appropriate ρ ∈ (0, 1) and for each compact subinterval I of (0,∞). The
function (u∞, L∞) is the unique solution of the following system of ODEs:

u̇∞ = − u
n
∞
L∞

(
1
ε

+ u∞) , u∞(0) = 1 , (4.1)

L′∞ = un∞ , L∞(0) =
ε

1 + ε
. (4.2)
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Proof. We recall that in the functional setting introduced in Section 2 (see in
particular Remark 2.7) it is possible to represent the solution (ûδ, Lδ) of the system
under consideration by the variation-of-constants-formula, that is, by

ûδ(t) = TN
(∫ t

0

δ

L2(σ)
dσ
)
u0 +

∫ t

0
TN
(∫ t

τ

δ

L2(σ)
dσ
)
Fδ(τ) dτ

Lδ(t) = L0 +
∫ t

0
ûn(1, τ) dτ .

By TN we denoted the semigroup generated by −AN = (−∂xx, γ0∂x, γ1∂x), the
Neumann Laplacian, on the phase space E0 = W 2s−2

p (0, 1) for an appropriate s ∈
(1/p, 1+1/p) (cf. Section 2) and by Fδ the inhomogeneity obtained by substituting
the solution (ûδ, Lδ) into the nonlinearity of the equation (as defined in Section
2), that is,

Fδ =
L′

L
〈yûδy − γ′1γ1û

δ − 1
ε
, ·〉 ∈ Cρ

(
(0,∞),W 2s−2

p (0, 1)
)
,

for an existing ρ ∈ (0, 1) as follows from Theorem 12.1 in [3]. It follows from well-
known spectral properties of the generator −A that TN admits the decomposition

TN (t) =
[
id 0
0 T̃N (t)

]
on PW 2s−2

p ⊕ (1− P )W 2s−2
p , where P is the continuous projection

Pv := 〈v,1〉
[
=
∫ 1

0
v dx

]
, v ∈W 2s−2

p

onto the kernel of the generator −AN . By 1 we denoted the constant function
with value 1 and the equality in brackets is only valid for v ∈ Lp. Furthermore
the semigroup induced by TN on (1 − P )E0 := PcE0 is exponentially decaying.
The system of integral representations may thus be splitted as follows by using
the decomposition of TN :

Pûδ(t) = Pû0 +
∫ t

0
PFδ(τ) dτ

Pcû
δ(t) = T̃N

(∫ t

0

δ

Lδ(σ)
dσ
)
û0 +

∫ t

0
T̃N
(∫ t

τ

δ

Lδ(σ)
dσ
)
PcFδ(τ) dτ

Lδ(t) = Lδ +
∫ t

0
(γ1û

δ(τ))n dτ .

From Lemmas 3.1 and 3.3 and the compact embedding

BUC1([0, T ]
)
↪−↪→ BUCσ

(
[0, T ]

)
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which is valid for any T > 0 we conclude that we may substract from Lδ a con-
verging subsequence Lδk with

Lδk −→ L∗ in BUCσ
(
[0, T ]

)
(k →∞) . (4.3)

The given space decomposition entails

AN =
[
0 0
0 ÃN

]
. Setting ÃN (t, δ) =

δ

L2
δ(t)

ÃN

it thus follows that[
(δ, t) 7→ δ−1ÃN (t, δ)

]
∈ Cσ

(
[δ0,∞]× [0, T ],H−(PE1, PE0)

)
and that

δ−1
k ÃN (t, δk) −→ ÃN

L∗(t)
as k tends to infinity. Observe now that

Fδ(τ) =
L′δ(τ)
Lδ(τ)

〈yûδy(τ)− γ′1γ1û
δ(τ)− ε−1, ·〉 ∈W s−2+2ε

p (0, 1)

from which we infer, since (ûδ, Lδ) is a classical solution, that

PFδ(τ) =
L′δ(τ)
Lδ(τ)

[
〈yûδy(τ),1〉 − 〈γ1û

δ(τ), 1〉 − ε
]

=
L′δ(τ)
Lδ(τ)

[
Pûδ(τ)− ε−1] .

Hereby we used that

P 〈yûδy, ·〉 =
∫ 1

0
yûy dy = ûδ(1, τ)− Pûδ(τ)

and that
P 〈γ′1γ1û

δ, ·〉 = ûδ(1, τ) .

Thus, on the other hand, we have

(1− P )Fδ(τ) =
L′δ(τ)
Lδ(τ)

[
〈yûδy(τ)− γ′1γ1û

δ − ε−1, ·〉 − ûδ(1, τ)− Pûδ(τ)
]
.

Using the convergence (4.3) and the bounds obtained in Lemmas 3.1 and 3.3 for
u and ux in L∞ ↪→ Lp we see that

1
δk

(1− P )Fδk(τ) −→ 0 (k →∞)

uniformly with respect to t ∈ [0,∞). We are now in a position to apply Theorem
A.5 of the appendix to conclude that

(1− P )ûδk(t) −→ 0 (k →∞)

uniformly on compact subsects of (0,∞). Observe then that the relation∫ 1

0
ûδ(t) dx =

1
Lδ(t)

−−1
ε



Vol. 6, 1999 Diffusion in Glassy Polymers: Sorption of a Finite Amount of Solvent 311

entails the convergence of Pûδk in BUCσ(0,∞) toward some u∗, since we have
already established in Lemmas 3.1 and 3.3 that ε

1+ε ≤ Lδ(t) ≤ ε and that 0 ≤
L′δ(t) ≤ 1 for t > 0. Recall now that

Pûδ(t) = Pû0 +
∫ t

0
PFδ(τ) dτ = 1 +

∫ t

0

L′δ(τ)
Lδ(τ)

[
Pûδ − 1

ε

]
.

We conclude that

u∗(t) = 1 +
∫ t

0

L′∗(τ)
L∗(τ)

(
u∗(τ)− 1

ε

)
.

Furthermore

γ1û
δk(t) = γ1(1− P )ûδk(t) + γ1Pû

δk(t) −→ u∗(t)

uniformly on compact subintervals of (0,∞), which by (1.11) entails

L′∗(t) = un∗ (t) .

Finally we can conclude that(
ûδk , Lδk

)
(t) −→ (u∗, L∗)(t)

uniformly on compact subintervals of (0,∞) and (u∗, L∗) solves (4.1)–(4.2). Thus
(u∗, L∗) = (u∞, L∞). Assume now that the convergence only takes place for the
subsequence Lδk . Then there exists a neighbourhood U of L∞ in BUCσ and a
different subsequence Lδ′k which has empty intersection with U . The boundedness
of the original net in C1 implies that a further subsequence of Lδ′k converges
towards a limit in BUCσ. The above arguments then show that this limit has
to be L∞ which is of course a contradiction. Thus we conclude that Lδ → L∞,
which, in its turn, entails, as we showed above, that Puδ → u∗ and the proof is
complete.

Appendix: Singular perturbations

In this section we are concerned with singular perturbations of abstract evolution
equations. We first need to fix some useful notation. Given two Banach spaces

E0 and E1 with E1
d
↪→ E0 we write H−(E1, E0) ⊂ H(E1, E0) for the subset

of all negative generators −A of analytic, strongly continuous and exponentially
decaying semigroups on E0 with dom (A) .= E1 and endowe it with the induced
topology of L(E1, E0). As in Section 2

Eα = (E0, E1)α , α ∈ (0, 1) , p ∈ (0,∞)

denotes the interpolation space obtained by the standard real interpolation functor.
We also recall that J = [0, T ] for some T ∈ (0,∞) and that J̇ = (0, T ]. Consider
now the following Cauchy problem on J in the Banach space E0:

u̇+A(t, ε)u = f(t, ε) , u(0) = x ∈ E0 . (A.2)ε
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We are of course interested in the limit when ε tends to zero. The next proposition
deals with the simple case when A is time independent.

Proposition A.1. Assume that, for fixed ε0 > 0,[
ε 7→ εA(ε)

]
∈ C

(
[0, ε0],H−(E1, E0)

)
,

that ρ ∈ (0, 1), and that f0 ∈ Cρ(J,E0) and f : J × (0, ε0] → E0. Let, moreover,
A satisfy the following conditions:

(i) f(·, ε) ∈ Cρ(J,E0) for ε ∈ (0, ε0] ;
(ii) εf(·, ε) −→ f0 in C(J,E0) as ε→ 0 ;
(iii) εA(ε) −→ A0 in L(E1, E0) as ε→ 0 .

Now let u(·, ε) be the unique solution of the Cauchy problem

v̇ +A(ε)v = f(t, ε) , 0 < t ∈ J, v(0) = x ∈ E0

in E0. Then for each α ∈ [0, 1):

u(t, ε) −→ A−1
0 f0(t) in Eα as ε→ 0

uniformly with respect to t ∈ J̇ .

Proof. We know from the abstract theory of Cauchy Problems (cf. Paragraph II.2
in [4] for instance) that the solution of (CP )ε is given by the variation-of-constants-
formula, that is,

u(t, ε) = e−tA(ε)x+
∫ t

0
e(t−τ)A(ε)f(τ, ε) dτ. (A.3)

On the other hand it is known from semigroup theory (cf. e. g. [10] and [7]) that
the resolvent of a generator −A is given by the Laplace transform of the generated
semigroup TA. This means that, for Re(λ) > type(−A)

(λ+A)−1x =
∫ ∞

0
e−λσTA(σ)xdσ , x ∈ E0 .

In our case we can choose λ = 0 and obtain for fixed t > 0

A−1
0 f0(t) =

∫ ∞
0

TA0(σ)f0(t) dσ =
∫ ∞

0
e−σA0f0(t) dσ.

Observe now that we can rewrite (A.3) as follows

u(t, ε) = e−tA(ε)x+
∫ t

ε

0
e−σεA(ε)εf(t− εσ, ε) dσ,
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performing the elementary change of variables σ := t−τ
ε . Thus we have to prove

that ∫ ∞
0

e−σA0f0(t) dσ −
∫ t

ε

0
e−σεA(ε)εf(t− εσ, ε) dσ − e−tA(ε)x

ε→0−→ 0

in the topology of Eα. The above left-hand side may also be written in the following
manner:∫ ∞

0

(
e−σA0 − e−σεA(ε))f0(t) dσ +

∫ ∞
t
ε

e−σεA(ε)f0(t) dσ +

∫ t
ε

0
e−σεA(ε)(f0(t)− f0(t− εσ)

)
dσ +∫ t

ε

0
e−σεA(ε)(f0(t− εσ)− εf(t− εσ, ε)

)
dσ− e− tε εA(ε)x =: I + II + III + IV + V .

The first term may be rewritten as

I =
{

(A0)−1 − (εA(ε))−1}f0(t) .

Thus its convergence is implied by the assumptions. The remaining terms are easily
seen to vanish for ε→ 0 using the assumptions on A, f and f0. Term V prevents
the convergence from being uniform up to the initial time.

We now turn to the more involved case of a generating family which is time
dependent. In order to be able to prove a similar result as in Proposition A.1 we
need two lemmas.

Lemma A.2. Let A be such that[
(t, ε) 7→ εA(t, ε)

]
∈ Cρ

(
J × [0, ε0],H−(E1, E0)

)
for some ρ ∈ (0, 1) and ε0 > 0. Denote by Uε the evolution operator generated by
A(·, ε). Then, for α ∈ [0, 1) and t > 0,

‖Uε(t, τ)‖0→α ≤ c
εα

(t− τ)α
e−ω

t−τ
ε

provided τ ∈ [0, t) .

Proof. We recall (cf. [4], II.2.2) that the evolution operator satisfies the following
weakly singular Volterra integral equation:

UA(t, τ) = e−(t−τ)A(τ) −
∫ t

τ

UA(t, σ)[A(σ) −A(τ)]e−(σ−τ)A(τ) dσ , (A.4)
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If we set

a(t, τ) = e−(t−τ)A(τ) , h(t, τ) = [A(τ)−A(t)]e−(t−τ)A(τ)

and

w =
∞∑
n=1

h ∗ ... ∗ h︸ ︷︷ ︸
n times

,

it is well known (cf. Theorem II.3.2.2 in [4]) that the unique solution u of the above
integral equation is given by

u = a+ a ∗ w ,
where

a ∗w(t, τ) :=
∫ t

τ

a(t, σ)w(σ, τ) dσ .

Thus, setting

aε(t, τ) := e−(t−τ)A(τ,ε) , hε := [A(τ, ε)−A(t, ε)]aε(t, τ)

and

wε :=
∞∑
n=1

hε ∗ ... ∗ hε︸ ︷︷ ︸
n times

,

we obtain
Uε(t, τ) = aε(t, τ) + aε ∗ wε(t, τ) =: Iε + IIε .

It is easily seen that the assumptions imply

‖Iε‖β→α =
∥∥e− t−τε εA(τ,ε)

∥∥
β→α ≤ c

εα−β

(t− τ)α−β
e−ω

t−τ
ε .

As for the second term we first observe that

‖hε‖0→0 ≤ ε−1
∥∥εA(t, ε)− εA(τ, ε)

∥∥
1→0

∥∥e− t−τε εA(τ,ε)
∥∥

0→1

≤ ε−1|t− τ |ρ ε

t− τ e
−ω t−τε = c |t− τ |ρ−1e−ω

t−τ
ε .

We then inductively obtain for h∗nε := hε ∗ ... ∗ hε︸ ︷︷ ︸
n times

‖h∗nε (t, τ)‖β→0 ≤ cne−ω
t−τ
ε (t− τ)nρ−1 Γ(ρ)n

Γ(nρ)
,

which leads to
‖wε(t, τ)‖β→0 ≤ c e−ω

t−τ
ε
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and to
IIε ≤ c

εα

(t− τ)α
e−ω

t−τ
ε .

Thus we finally see that

‖Uε(t, τ)‖0→α ≤ c
εα

(t− τ)α
e−ω

t−τ
ε .

The assertion now easily follows. We observe that the given proof follow the steps
of the proof of Lemma 1.6 in [9] with only slight modifications. We thus refrained
from giving all the details.

Lemma A.3. Assume that[
(t, ε) 7→ εA(t, ε)

]
∈ Cρ

(
J × [0, ε0],H−(E1, E0)

)
for some ρ ∈ (0, 1) and ε0 > 0 and that f ∈ Cρ(J,E0) . Let again Uε denote the
evolution operator generated by A(·, ε) and α ∈ (0, 1) . Then

1
ε

∫ t

0

(
Uε(t, τ)− e−A(t,ε)(t−τ))f(τ) dτ −→ 0 , ε→ 0 ,

in the topology of Eα .

Proof. Observe that Uε also satisfies the following Volterra equation equivalent to
(A.4):

Uε(t, τ) = e−(t−τ)A(t,ε) −
∫ t

τ

e−(t−σ)A(t,ε)[A(t, ε)−A(σ, ε)]Uε(σ, τ) dσ .

It follows by Theorem II.3.2.2 in [4] that

Uε(t, τ)− e−A(t,ε)(t−τ) =
∫ t

τ

wε(t, σ)e−A(τ,ε)(σ−τ) dσ

for

wε(t, τ) :=
∞∑
n=1

hε ∗ ... ∗ hε︸ ︷︷ ︸
n times

and
hε(t, τ) := e−(t−τ)A(t,ε)[A(t, ε)−A(τ, ε)] .

Thus the estimate∥∥ε−1Uε(t, τ)− ε−1e−A(t,ε)(t−τ)
∥∥

0→α ≤
c

ε

∫ t

τ

εα

(σ − τ)α
e−ω

t−σ
ε e−ω

σ−τ
ε dσ

≤ cεα−1e−ω
t−τ
ε ≤ c εα−δ

(t− τ)1−δ
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is valid for each δ ∈ (0, α) , since it is easily seen that for wε the same estimates
hold as for wε. The assertion now follows from

∥∥1
ε

∫ t

0

(
Uε(t, τ)− e−A(t,ε)(t−τ))f(τ) dτ

∥∥
α
≤ c

∫ t

0

εα−δ

(t− τ)1−δ ‖f(τ)‖0 dτ

≤ c δ−1‖f‖C(J,E0)ε
α−δtδ .

Remark A.4. It is easily seen by the last estimate in the above proof that the con-
vergence stated in the preceding lemma is uniform on bounded subsets of C(J,E0)
for f .

We are now ready for the following

Theorem A.5. Let the assumptions of Proposition A.1 be satisfied and assume, in
addition, that

[
(t, ε) 7→ εA(t, ε)

]
∈ Cρ

(
J × [0, ε0],H−(E1, E0)

)
for some ρ ∈ (0, 1)

and given ε0 > 0. Suppose that

εA(t, ε) −→ A0(t) as ε→ 0

in L(E1, E0) on J. Denote by u(·, ε) the unique solution of the Cauchy problem
(A.2)ε in E0 with u0 ∈ E0. Then:

u(t, ε) −→ A0(t)−1f0(t) in Eα as ε→ 0

uniformly with respect to t in compact subintervals of J̇.

Proof. Let t > 0 be fixed. The value u(t, ε) of the solution at time t is given by

u(t, ε) = Uε(t, 0)x+
∫ t

0
Uε(t, τ)f(τ, ε) dτ

= Uε(t, 0)x+
∫ t

0

{
Uε(t, τ)− e−(t−τ)A(t,ε)}f(τ, ε) dτ

+
∫ t

0
e−(t−τ)A(t,ε)f(τ, ε) dτ =: Iε + IIε + IIIε .

Lemmas A.2 and A.3 imply that

Iε , IIε −→ 0 in Eα , as ε→ 0 .

On the other hand we can apply Proposition A.1 to obtain

IIIε −→ A0(t)−1f0(t) in Eα , as ε→ 0 .

The Theorem is thus proved.
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