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1. I N T R O D U C T I O N  

The aim of  this paper is the study of  abstract Cauchy problems which are singular in the 
sense we are to explain. Let J = [0, T] for some T > 0 and J = (0, T]. Consider the 
Cauchy problem 

it + A ( t ) u  = f ( t ) ,  t ~ J (0.1) 

in a given Banach space Eo, where, for t > 0, the operators - A ( t )  are assumed to 
generate analytic C0-semigroups with a constant common domain of  definition satisfying 

(dom(A(t)), I1" Ih(,)) - E~ (0.2) 

for a given Banach space E~ '-. Eo. Suppose now that the family of generators A behaves 
like t -k (k e (1, oo)) as t tends to 0 in the topology of  £(E1, E0), that is, that there exists 
a generator Ao such that 

tkA(t)  --' A0 (t --, 0) in £(E~, E0). 

Then we are interested in finding conditions about the data for which the Cauchy problem 
(0.1) is solvable. It is well known (cf. the original works [1] and [2] or the monograph [3]) 
that if the family A satisfies the conditions 

(i) - A ( t )  generates an analytic Co-semigroup for each fixed t _> 0 and condition (0.2) 
is satisfied, 

(ii) A ~ CP(J, £ ( E  1 , Eo)) 
then there exists an evolution operator U = [U(t, r) I 0 __ r _< t _< T} which characterizes 
the solutions of  the following regular Cauchy problem 

it + A ( t ) u  = f ( t ) ,  t e J, u(0) = x. (0.3) 

Of course conditions concerning the data have to be imposed in order to obtain existence 
of a solution. But if a solution exists, then it is given by the so-called variation-of- 
constants-formula, that is by l' 

u(t) = U(t, O)x + U(t, r ) f ( r )  dr. (0.4) 
o 

Given a singular family of  generators A and ~ > 0, we may now assume that condition (ii) 
above is satisfied on [&, T]. In this case, fixing an arbitrary initial datum u~, we can 
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solve (0.1) in (8, T]. Then we know that the solution u(.,  8) is given by the variation-of- 
constants-formula 

u(t, ~) = U~(t, t~)u6 + U~(t, r)f(r) dr, (0.5) 
b 

where by U~ we denoted the evolution operator generated by A[t~.r ]. If we suppose, 
in addition, that the semigroups generated by the operators - A ( t ) ,  for t e J, and Ao 
are exponentially decaying at a common rate, then we are able to introduce a singular 
evolution operator for (0.1). The analysis of his properties will allow us to prove the 
validity of a singular variation-of-constants-formula for the singular Cauchy problem. 
Formally the formula may be obtained by taking the limit in (0.5) on the assumption that 
U~ converges to some UA, in some reasonable topology, as 5 tends to 0. In this case the 
limiting formula would indeed provide us with a candidate for the singular variation-of- 
constants-formula and UA with one for the singular evolution operator. This formal idea 
can be carried out in a rigorous way and leads to the following main proposition. 

MAIN PROPOSITION. Assume that a family of operators A and a function f a r e  given which 
satisfy the following properties: 

(i) - A ( t )  generates, for each t ~ J, a decaying (at a given fixed rate) analytic 
C0-semigroup, 

(ii) [t ~-. tkA(t)] ~ CP(J, £(E1, Eo) ) for some p e (0, 1), 
(iii) f ~  Ll,loc(J , Eo). 

Then there exists a unique singular evolution operator UA which characterizes the solution 
of the singular Cauchy problem (0.1). In other words: if u: J ~ Eo is a solution of (0.1), 
it is necessarily given by the singular variation-of-constants-formula for the singular 
evolution operator U A , that is by 

t u(t) = UA(t, r)f(z) dz. 
o 

In the next section we define the singular evolution operator and show it has all the 
properties we need to prove the main proposition. The proof rests on careful estimates for 
the singular propagator. The further analysis is based on the representation formula. 
Indeed it will be by a fixed point argument for the singular variation-of-constants-formula 
that the following main theorem concerning quasilinear singular Cauchy problems is 
proved in the last section. We renounce, at this point, to give the precise hypotheses 
concerning the data needed to prove the theorem. 

MAIN THEOREM. Let, for each 0 e (0, 1), Eo be a suitable interpolation space between E 0 
and E 1. Let 0 < fl _< o~ < 1 and assume that X ,  is an open subset of E~ containing 0. 
Suppose further that 

and 
A : J x X,~ "--+ £ ( E 1 ,  Eo)  , (t, u) ~. A(t ,  u) 

f :  J × X~ ~ E~, (t, u) ~ F(t, u) 

satisfy appropriate hypotheses. Then the quasilinear Cauchy problem 

f4 + A(t,  u)u = F(t, u), t e J (O.6) 
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possesses a unique local solution u on [0, T÷], for some T÷ > 0, with u e C([0, T÷], X, ) .  
It is the unique fixed point of  the singular variation-of-constants-formula 

u(t) = UAe,.~(t, r)F(r, u(r)) dr. 
o 

Moreover the solution u enjoys the following regularity properties 

Ca([0, T], Ec) n c((o, TI, El) n c l ( (0 ,  T], Eo), 

provided that e, O e (0, 1) satisfy e >-- 1 - 1/k  and J < e/x (1 - e). 

In the concluding section we turn our interest to singular initial boundary value 
problems, which can be solved using the abstract result of the previous sections. 

Remark  O. 1. Let us say a word concerning the reasons why the above introduced class of  
singular evolutionary equations deserve some attention. When studying free boundary 
problems characterized by the onset of  a phase one is naturally led to singular Cauchy 
problems by trying to transform the problem to an initial value problem in a fixed 
domain. As a consequence of  the topological change of the domain this may namely only 
be done at the expense of  allowing a singular coordinate transformation which is, in its 
turn, reflected in the singular behaviour of the obtained Cauchy problem. For a concrete 
application to a free boundary problem possessing the sketched features we refer to [4]. 

Remark  0.2. A wider class of  singular Cauchy problems has already been studied in the 
literature. We mention in particular the works of Favini (cf. [5, 6] and the references 
therein), where the author (and co-authors) discuss existence and regularity of a broad 
class of  singular Cauchy problems, not necessarily of  parabolic type, but always linear 
or semilinear. However, the approach we shall present in this paper seems to be new 
and applies to more general situations in the sense explained below. On the one hand, 
it has the advantage of relying on an "explicit" formula for the solution (cf. the main 
proposition). On the other hand it provides a natural way of  studying the quasilinear 
version of  (1.3)(A,f), which has not been considered in the literature so far. Lastly it allows 
good estimates about the dependence of  the solution on the singular behaviour of  family 
of generators. This turns out to be of  paramount importance in concrete applications 
(cf. [4]). 

1. T H E  S I N G U L A R  E V O L U T I O N  O P E R A T O R  

We first specify the class of  singular Cauchy problems, in which we are interested and 
fix the notation which we shall need throughout the paper. 

Definition. Let J C IP ÷ be a nontrivial interval containing the origin and set J := J\10}. 
Assume also that E is a normed vector space and F a subset of  E. Then, for given m e ~+ 
and k e (1, oo), we put 

C~'(J, F)  := I f  e cm(J,  F)  l t ~ tk f ( t )  ~ Cm(J, F)l.  
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If  F is a subspace of E then C~'(J, F) becomes a normed vector space, if endowed with 
the norm 

Ilfllc~" := Iltkf(t)llC ", f ~ C~'(J,E). 

If E is complete and F a closed subspace then C~'(J, F) becomes a Banach space with 
respect to the above norm. It may be viewed as the space "(1/tk)cm(J, F)". 

Let now E0 and E~ be Banach spaces with E~ a E0. Then 3C(E1, Eo) denotes the set 
of negative generators A of analytic Co-semigroups on E0 with 

(dom(h), II" 112 - 

where H'HA stands for the graph norm on dora(A). Lastly the subset of 3~(Ei,Eo) 
consisting of  the negative generators of exponentially decaying semigroups is denoted by 
~ - ( E I ,  E0). Let k > 1. We assume that 

A ~ CR(J, ~-(E~,  Eo)) (1.1) 

for some p e (0, 1) and that 

f ~ Ck_ i(J, Eo). (1.2) 

Remark 1.1. Let m, l e (1, oo). We observe that Cm(J, Eo) C CA J, Eo) for m _< l, whereas 

CPm(J, ~-(E~,  Eo) ) f) Cf(J, ~-(E~,  Eo)) = (~ 

for m ;~ I in general. In fact, it follows from 1 > m and from 

A e CroP(J, ~ - (E~ ,  Eo)) 

that limt-.o ttA(t) = 0. Thus, if El ~ Eo, 

A Cf(J, Eo)), 
since 0 ~ ~2-(E~, Eo). 

Definition. Let hypotheses (1.1) and (1.2) be satisfied. Then we call 

f~ + A(t)u = f(t),  t e J, (1.3)(A,f) 

a singular Cauchy problem of parabolic type. 

Remark 1.2. It will turn out that a continuous solution of  (1.3)(A,y) necessarily takes on 
the initial value 0. This explains why we do not prescribe any initial datum, but still call 
(1.3)(A,f) a Cauchy problem. 

In order to find solutions of  singular Cauchy problems we shall construct a "singular 
evolution operator" 

U A "-= [UA(t,r)[O <-- r<_ t ~ J ]  

for the singular family A, which characterizes the solution of (1.3)~a.y). 
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Terminology.  From now on we shall refer to evolution operators as regular evolution 
operators to distinguish them from the singular ones, which we are about to introduce. 
The same terminology will be used in connection with the corresponding generating 
families. 

It is known that in the regular case the evolution operator UA corresponding to a given 
family A may be obtained as the solution of a weakly singular Volterra integral equation. 
In fact UA solves the following equation 

UA(t, r) = e -(t-r)A(r) - -  UA(t, a)[A(a) - A(z)] e -(°-')A¢r) da,  (1.4) 
7 

or the equivalent 

I t UA(t, r) = e -(t-r)A(r) - e-(t-°)A(t)[A(t) - A(a)]UA(~7, r ) d a ,  (1.5) 
7 

in a suitably chosen Banach space of  operators. Here we denoted by 

[e-ra(t) [ Z --> 0] 

the semigroup generated by - A f t ) .  It turns out that equations (1.4) and (1.5) are uniquely 
solvable in that space. The following almost trivial remark will be useful later. 

R e m a r k  1.3. Let a regular family [A(t) [ t e J} be given. Then the value Ua(t, r) of  the 
generated evolution operator U A only depends on the values of  A in the interval [r, t]. 

Proof .  Consider the family [A(a) I a ~ Jr, t]]. It of  course generates a regular evolution 
operator OA on [r, t]. By uniqueness we infer from (1.4) or (1.5) that 

UA(S, a) = UA(S, a), r <_ a <_ s <_ t. • 

Since in many proofs we need to go back to the defining integral equation (1.4) for the 
evolution operator we fix some useful notation. We put 

u(t, z) := Un(t, r), a(t, r) := e -<t-T)mr), 
(1.6) 

h(t, r) := [A(r) - A(t)] e -<t-°A<~). 

Thus, setting 

we may rewrite (1.4) as 
I 

t 

u * h(t, r) := u(t, a)h(a,  r) de,  
T 

u = a + u * h  (1.7) 

in a suitably chosen Banach space of  operators. Solving (1.7) amounts to establishing the 
existence (in the chosen Banach space) of 

oo 

w : =  ~ h * . . . * h  (1.8) 
n = 1 t'/times 



672 P. Guidotti 

In other words, only the convergence of  the series in the topology of  the chosen space has 
to be established. This is due to the fact that a solution of  (1.7) is formally given by 

u = a + a * w .  (1.9) 

We now give a preliminary incomplete definition of the singular propagator. 

Definition. Let A be a singular family satisfying (1.1) and define, for J > 0, 

lUg(t, r) [ J _< r___ t ~ J }  

to be the propagator generated by {A(t) I t e J A [J, oo)1. It then follows from Remark 1.3 
that 

U~(t, r) = U~,(t, r), J v J ' < _ r _ < t e J .  

for strictly J and J ' ,  and thus it is meaningful to put 

UA(t, Z) := U~(t, r) 

f o r 0 <  r_< t e J a n d ,  o fcourse ,  J<_ r. 

In the next proposition we establish a fundamental property of UA, which will allow us 
to complete the above definition for r = 0 to obtain the singular evolution operator and 
which will also turn out to be very useful later. We now fix for the remainder of  the paper 
a family of  interpolation functors 

:= I( . ,  ")0l 0 ~ (o, 1)1 

with ( ' , ' )0  e [( ' ,  ")0,p, [ ' ,  "]0 [P e [1, oo)} for 0 e (0, 1). Here we denoted by ( . ,  ")o,p 
and by [ ' ,  "]0 the standard real and complex interpolation functors, respectively• Then, 

• . . d 

gwen a pair (E o, E~) of Banach spaces with E 1 ~ E o (from now on referred to as densely 
injected Banach couple), we define intermediate spaces by means of  the just introduced 
family of functors 

E~ := (E 0, E 0 , .  

Observe also that we always set (E 0, E~)j := Ej for j = 0, 1. 

Remark 1.4. From now on we shall assume, without loss of  generality, that the interval 
J is compact. As long as we are not interested in questions concerning global existence this 
is allowed. 

To prove the next proposition we need two lemmas. 

Notation. Let - A :  dom(A) C E ~ E be the generator of a Co-semigroup T. If M _> 1 and 
~o e [~ are constants for which the estimate 

Ily(t)ll~(~) ~ M e  ~t 

is valid, then we write A e g(E, M, ¢o). 
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LEMMA 1.5. Suppose that assumption (1.1) is met for the singular family A. Then there 
exist constants M >_ 1 and oa 0 > 0 such that 

tkA(t) ~ g(Ej ,M,  -o9o), t ~ J, j = O, 1. 

There exists, moreover, a neighbourhood ~ of [tkA(t) lt  ~ JI in the topology of  
£(E1,  Eo) in which the above property remains valid. 

Proof. The assertion is a consequence of the compactness of  J, the continuity of  
[t ~ tkA(t)], the Cauchy-Dunford  integral representation-formula for the semigroup and 
Theorem 1.1.3.1 in [3]. • 

LEMMA 1.6. Let (E 0, El) be a densely injected Banach couple, 5: be the above introduced 
family of  interpolation functors and A be a singular family of generators satisfying (1.1). 
Assume further that 0 _< fl _< o~ _< 1 and that fl < p A l /k ' ,  k' being the dual exponent 
of k. Then there exists a constant c > 0 with 

II uA(t, r)ll~-<~ -< c 
rk(~-~) 

(t - r) " -~ '  
t e J ,  re (O, t ] .  

Proof. We use the notation introduced in (1.6). In [3] it is proved that 

UA = a + a * w. (1.10) 

We estimate the terms implicitly present in (1.10) separately. Let 0 < r _< t _< T. 
(a) The first term is easily estimated by means of semigroup and interpolation theory 

as follows: 

r ~ < " - ~ )  f t-r~ 
Ha(t, r ) l l ~ . ,  = Ile-(('-:)"*)'*'4(')ll~.<, -< c (t - z)<~-~ e x p t - w °  ~ ) " (1.11) 

(fl) To be able to estimate w we first need to establish a good estimate for h. We 
proceed in the following way: 

Ilk(t, r)lIo~o --< I l t k A ( t ) ( t  - k  - r -k)  + r - k ( t k A ( t )  - rkA(r ) ) l l , .o t l  e - ( ' - 'A ( " l l o . ,  

(suplltkA(t)ll,,o ( t -  r)P'~ r k / t -  r~ 
--~ C/ ~T k k(t-  r)t k-1 ÷ c T j  ~ e x p t i ~ o 7  ) 

(t-r) 
<- c[t -t + (t - r)P-ll exp - o 9 o ~ -  • (1.12) 

Since, on the one hand, the estimate 

(t rr)l-~exp - o 9 o ~ - )  - < cexp 2 r k - , (1.13) 

is valid for fi := p A 1/k '  and 

(~)q ( t - r )  ( o g o t - r )  (114) exp - o 9 o ~ T -  < c e x p  2 ~ ' 
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for q > 0, on the other hand, we obtain that 

~ e x p ( - m o  ~ - - ~ )  < ~ exp( - (o0  ~ -~ ) 

= ( t -  r) ~-1 ( t -  rr)l-~exp - o % ~  

-< c(t - r )¢- lexp 2 ~ 

<_ c(t  - r) ¢-1 tk(~ ,_/9) exp 4 ~ ~- 

--- c ~ ( t  -- T? -1. 

Thus we conclude that (1.12) can be further estimated arriving at 

i. k((x-/9) 
lc I]h(t, r)[I/9~o -< [[h(t, r)[[o~o < c ~ ( t  - T) ~-1. 

(7) Next we turn to h *n := h • ... • h .  Let us first estimate h .2. 
n times 

It lib* h(t, r)l/9~o -< lib(t, a)llo-.ollh(a, 011/9~o da 
T 

I t akOx-/9) zk(a-/9) 
_< c 2 j~  t---~-~_ ~ (t - (7) ~ - I  a k ( . _  ~ ( a  - ~)~- i  d a  

= ( t  - T )2~ - IB ( ,~ ,  ~). 

Here we denoted by B the Euler Beta-function. It is then easily seen by induction that 

[[h*n(t, z)][/9.o <- c n ( t  - T) "~-1F(np ' )"  

(6) We may now use the last two steps to estimate the series for w. This gives 

/ z \  k("-/9) = (cF( f i ) ( t  - ~.),5)n-1 
IIw(t, ~)11/9~o -< c r ( ~ ) ( ~ )  (t - 0 ~-' E 

. = 1 r(nt~) 

C )  k(~-/9) 
_ c ~ (t - T) ~-l 

The convergence of the series follows from 

i n 1 nt~-le-n F(nfi) _ o n~-I e - ° d a  >_ = n  (1.15) 
o P 

by taking the (n - 1)th root of the last term of the above inequalities and observing that 
the result is a positive, strictly growing function of n. 
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(e) By the first and the preceding steps we infer now that 

I 
t 

IIuA(t, r)ll~ .~ - Ha(t, r ) l la . .  + Ila(t, ~)llo-~llwW, r)ll~-o da 
7 

rk(a- B) It Gka rk(a- B) 
_< c (t - r) ~-~ + c , ( t  ---~7) '~ akt,~-a) (a - r) ~-l da  

rk(~- ~) 
__<C 

(t - r) '~-e' 

provided fl < ft. This concludes the proof.  • 
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Remark 1.7. It will turn out that the condition fl < fi is not restrictive as far as the 
solvability of  singular Cauchy problems is concerned. We shall in fact see that fl may 
always be chosen arbitrary small. 

Remark 1.8. In the previous lemma the constant c only depends on J i f  the singular family 
is kept fixed. Otherwise it also depends on the H61der norm of  A (see estimate (1.12)). 
Nevertheless, with the help of  Lemma 1.5, it is easily seen that it can be chosen to be 
independent of  the particular singular family in a C~-neighbourhood of  A. 

PROPOSITION 1.9. Let A be a singular family of  generators. Then, for t > 0, 

UA(t, r) --' 0 in £ ( E  0 , E~), as r - ,  0, 

for ol ~ [0, 1]. 

Proof. The stated convergence is an easy consequence of  Lemma 1.6 provided 
o te  (0, 1]. If ~ = 0 we observe that, for 0 < 2e _< t, 

IluAt, ~)11o-o -< IluAt, 20llo-.ollUAEe, e)llo-~o. 

Thus by Lemma 1.6 the assertion is proved, if we verify that 

UA(2e, e) --' 0 in ~(Eo,  Eo), as e ~ 0. 

To see this we first infer from (1.11) that 

tla(2e, e)llo~o -< M e  -~°/~k-l. 

On the assumption that 

( c ° ° ( t - r ) - )  (1.16) IIw(t, r)llo-o -< c ( t  - 0 ~ - '  exp ~-z- ~ , 
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and following the steps of  the proof  of  Lemma 1.6 we then obtain the following estimate 
for a * w: 

Ila * w(2e,  e)llo~o -< Ila(2e, a)llo~oll w(cr, e)l lo~o d a  

l ( o,) (  o,o  ,)do _< c (2e - -  a ) P - l ( o "  - -  e) ~0-1 exp - ~e i- exp Te r 
c 

= ce2° e x p ( ~ ) .  

Thus, since UA = a + a * w, we are finished if we prove (1.16). To this end observe first 
that, for e _< tr _< 2e, 

IIh(a, e)llo~o -< c(la - el ~-1 + l / e ) exp  - ~ . 

This implies, as in the proof  of  the previous lemma, by means of  estimates (1.13) and 
(1.14) that 

IIh(a, ~)110~o -< cl~ - / ~ 1 ~ 0 - 1  exp ~-e~ . 

An induction argument then gives 

,(np, F(/~)n " ( t ° ° ( a - e )  ) 2-E ~ IIh*n(a, e)llo-~0 -< e ~-7--~_, ta  - e)"~-I exp 

and hence 

~o ( t o o ( a _  e) ) 
Ilw(cr, c)llo~o -< E [[h*"(a, e)[[o~o -< c(a - e )  ' 5 - 1  exp ~e- E . 

n = l  

The convergence of  the series follows as in the previous lemma by (1.15). The proof  is now 
complete. • 

It now makes sense to put the following definition. 

Definition. Let A be a singular family of  operators satisfying (1.1). Then we call 

UA(t,z):= lU~(t,r), i f O < r _ < t ,  

i f r = O a n d t _ _ _ O  

the singular evolution operator generated by the singular family A. 
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Remark  1.10. Assume that the singular generator A has the special form 

1 
A( t )  = -s-~ B, 

for some generator - B  of an exponentially decaying Co-semigrou p T n and some function 
s ~ Ca(J, (0, 00)) satisfying "s(t) - t k ' '  for small times. Then the singular evolution 
operator U a generated by A is given explicitly by 

I(I/ ) T B (a) dt7 , i f 0 <  r_< t, 
UA(t, *) := 

0 if r = 0 and t _> 0. 

This follows immediately from the definition. 

Definition. 
(1.3)(A,f) if 

(i) 

(ii) 

2. THE SINGULAR VARIATION-OF-CONSTANTS-FORMULA 

We call a function u: J ~ Eo solution of the singular Cauchy problem 

u e c(J, go) n c~(J, Eo) 

u(t) E domA(t) ,  t e J and t~(t) + A(t )u( t )  = f ( t ) ,  t ~ J. 

The collected properties of the singular evolution operator are enough to prove the 
following fundamental characterization theorem for the solutions of the singular Cauchy 
problem (l.3)tA,f) . 

MAIN PROPOSITION. Let A be a singular family of generators satisfying (1.1) and 
f e Ll,loc(J, E0). Assume that u: J --, E o is a solution of the singular Cauchy problem 
(1.3)tA,f) 

ft + A( t )u  = f ( t ) ,  t ~ J, 

in the Banach space E 0. Then 

u(t) = UA(t, r)f(r) dr. (2.1) 
0 

In other words, if a solution of (1.3)(A,Z) exists then it is unique and is necessarily given 
by the singular variation-of-constants-formula. 

Proof .  It is well known that in the regular case the solution v of the following Cauchy 
problem (CP)6,x 

l f4 + B(t)u = f ( t ) ,  t > J > O, 

u ( ~ )  = x 

for a regular family [B(t) l t ~ J] is given by the variation-of-constants-formula, that is to 
say, by l' 

v(t) = UB(t, J)x + UB(t, z)f(r) dr. 



678 P. Guidot t i  

Thus, since, for T e  J, u~ := ult~,rl solves (CP)~,u(~) for A we see that 

u~(t) = UA(t, O)U(¢)) + UA(t, r ) f ( r )  dr. 
6 

Let now 6 >__ ~' > 0. Then, for t _> d, 

uv(t) = UA(t, (~)UA(d, ~')U(~') + UA(t, r ) f ( r )  dr + UA(t, r ) f ( r )  dr 

= UA(t, d) UA(d, d ' )u(~ ' )  + UA(& r)f(z)  d + UA(t, Of(r )  dr. (2.2) 
b' 6 

Thus, if we show that 

X u(~) = UA(~, ~')U(~') + UA(d, r ) f ( r )  dr, (2.3) 

we obtain 

u~(t) = uv(t),  t >__ ~, ~ _> ~' > 0. 

To see this observe that 

UA(d, ~')U(~') + UA(t, Of(r )  dr  

is the value at time ~ of the solution of  (CP)v, ,(v).  Since u Its, ' ir 1 is also a solution of  the 
same Cauchy problem we conclude that (2.3) is valid. By Lemma 1.9 it follows now that 

UA(t, ~)u(d) --' 0 in Eo, as ~ --' 0, 

since {u(~) I ~ e JI is bounded in the same space by assumption. On the other hand, it 
follows from 

UA(t, ") ~ L~(J, ~(E1, Eo)) 

that J~ UA (t, r ) f ( r )  dr  exists and hence we see that 

t l UA(t, r ) f ( r )  dr  ~ UAU, r ) f ( r )  dr, 
~ 0 

Thus the assertion is implied by the following diagram: 

u,(t) = UA ( t ,  ~)U((~) + 

II - -  0 

u ( t )  = 0 + 

as d ---, O. 

i t UA(t, 0 f ( r ) d r  
6 

I t UAU, r) f(r)dr.  • 
0 

Remark 2.1. It is an obvious consequence of  the previous proposition that a solution of 
(l.3)(A,f) necessarily takes 0 as initial value. 
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The last proposition, as in regular theory, motivates the following definition of "mild 
solution". 

D e f i n i t i o n .  We call u: J ~ E a mild solution of (1.3)(A,f) if 

u( t )  = UA(t ,  r)f(r) dz, 
0 

i.e. if the singular variation-of-constants-formula exists in E. 

Proposition 2 also has a series of important consequences, which we partly summarize 
in the following. 

COROLLARY 2.2. The singular variation-of-constants-formula implies that: 
(i) The solution of the singular Cauchy problem (1.3)(A,f) enjoys all the nice regularizing 

properties of regular Cauchy problems of parabolic type. 
(ii) As far as global existence is concerned, all the known general results for the 

parabolic case apply. 

P r o o f .  This is a consequence of the fact that, once the local existence for the singular 
Cauchy problem is established, the further analysis, i.e. for positive times, does not differ 
any longer from that of the regular parabolic case. More precisely it suffices then to 
consider the local solution u of the singular Cauchy problem (1.3)~A.f) as a solution of the 
parabolic Cauchy problem 

b + A ( t ) v = f ( t ) ,  t > J ,  v ( J ) =  u(J), 

where J > 0 is taken in the existence interval of u. This means that the variation-of- 
constants-formula established in Lemma 2 has "except at the origin" the same properties 
as parabolic propagators, that is to say, evolution operators for parabolic Cauchy 
problems. • 

R e m a r k  2 .3 .  For a comprehensive treatment of the topics we referred to in the preceding 
corollary we refer to the books [3, 7]. 

Next we prove an important smoothing property of the singular variation-of-constants- 
formula, on which the further analysis of the solvability of singular Cauchy problems will 
be based. We begin with a useful lemma. 

LEMMA 2.4. Assume that A is a singular family of generators satisfying (1.1) and that 
e (0, 1). Then the following estimate 

]IUA(t, v) - UA(r,  T ) l l o ~  <- c(t ,  r, r)rk'~(t -- r) ~ 

is valid for the corresponding singular propagator UA if e < c~ /X (1 -- o0, where 

I 1 c ( t , r ,  r) =cons t  ( t  - r)~(r  - r) ~ + (t  - r ) t - ~ - e ( r  - r) t -~  + 1 . 
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P r o o f .  Assume without loss of  generality that r _< t. Then 

II u,~(t, r) - U A ( r ,  r ) l l o . ~  < Ila(t, r) - a ( r ,  r) l lo-~ 

+ Ila * w(t,  ~) - a * w(r,.z)l[o_.~ 

= :  I + II. 

Let us first estimate I. 

I = [ l e x p ( - ( t  - O A ( O )  - e x p ( - ( r  - z)A(r))llo-.,, 

= I .o,o  - 

l 
( t -  ~.)/~.k 

j ( r - O / r  k 

zk~(t -- r) ~ 
< ¢  

( t -  r ) ~ ( r -  z) ~" 

Hereby we wrote TB to indicate the semigroup generated by the operator  - B .  Furthermore 
we made use of  the semigroup estimate 

IIgTB(t)l[o-.~ <- ct-l-% 

which is obtained by interpolation f rom 

IIBTB(t)llo-o <- ct -1, 

and 

[IBTs(t)[[o-.~ = IlBZrB(t)[Io~o <- ct -z .  

As to the second term we have 

IIN f:* I II = aft,  a ) w ( a ,  r) d e  - ~)w(e, r) d~ 
7 0 - ' * 6  

=: III  + IV. 

Then by (1.11) and step (~) in the proof  of  Lemma 1.6 

I t  Ok~ zk~ rk~(t  _ r ) l -~  
III  < c  r ( t ~ o ' ) " O  " k ~ ( ° ' -  r) ~ - l d o =  C ( r -  z) 1-~ 

Observing now that 

ak" ( t  -- r) ~ 
Ha(t, a) - a(r, --- c 

(t - cr)~(r - a)  '~ 
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is implied by the established es t imate  for  I, we arrive at 

IV _< Ila(t, o.) - a(r ,  o.)llo~JI w~a, r)[Io~o do. 
7 

<_ c( t  - r)~r k~ ~I r o.kc~ (a  - -  "[')P--1 
( t -  o.) '~-e+e(r-  O.)~ O.g~ do" 

< c( t  - r)~r k~ f r (o" - r )~-I  
- ~ .  (r a )~+  ~ do. 

= crk~( t  - r)~B(1 - a - e,/~), 

which is valid for  each e < 1 - a and ~ < p h 1 / k ' .  F rom this we infer that  

II  _ crk~{(r  - r ) P - l ( t  - r) 1-~ + (t - r)e}. 

Thus,  for  e < a / ~  (1 - a) ,  we obta in  that  

[IUA(t, r) - UA(r, ~)11o~ ~ c(t ,  r, r ) rk"( t  - r) ~, 

and the p r o o f  is complete .  • 

Now we can p rove  the following.  

681 

that  

P r o o f .  We divide the p r o o f  into two steps. 
(a) Let us first consider  cont inui ty  at zero.  F r o m  

Ilu(t)l[. -- Of( r )  

we obta in  by  L e m m a  1.6 and by  

II f dr <_ IIUA(t, r)lto~llf(v)llodv 
o t  0 

1 
IIf(r)llo ~ ~ IIf(r)llck_,, (2.4) 

I 
t Tkc~-k+l 

Ilu(t)ll~ -< c dr  = t (k -1 ) ( '~ - l )+ ln ( l  0 - ~ - - - ~  -- u ,  k a  - k +  2), (2.5) 

which is the desired H61der cont inui ty  at zero,  since (k - 1)(a - 1) + 1 _> 1 - c~ > e 
provided  a _> 1 / k ' .  

PROPOSITION 2.5. Assume  that  f e  C~_~(J ,  Eo) and that  A is a singular family  o f  
genera tors  satisfying (1.1). Then 

u ( ' )  = i' I U A ( ' , r ) f ( r ) d r e C ~ ( J , E ~ ) ,  

for  ct e [ 1 / k ' ,  1) and  0 _< v < a A (1 - a) ,  where k '  is the dual  exponent  o f  k. 
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(fl) Let now 0 < r_< t e J. Consider 

l I]u(t) - u(r)H~ <- I[UA(t, r)HO~IIf(z)IIO d r  
r 

+ I1 U A ( t ,  "C) - S A ( r ,  z)llo_.~llf(z')]]o dr 

: = I + I I .  

Then Lemma 1.6 and (2.4) imply, provided ct >_ 1 / k '  (which is no restriction), that 

I t  ~.ktx 
I _< c r r k - l ~  ~- Z) ct Ilfllck_, d r  = cll f l lck_, t k ~ - k + l ( t  - r) l-a, (2.6) 

and, on the other hand, we see by Lemma 2.4 that 

II <_ c c(r , t ,  t ) ( t  - r)*tk~-k+l[If(t)[]Ck_ ' dr 
o 

= c ( t  - r )*  . . . .  t k~-k+l 
0 t -  r )~-*+~(r-  r) ~ + ( r -  z) 1-~ + dr  

.<_ c(t  - r)*[r (k-1)=+2-k-c + r k~+¢-k+~ + rk(~-~)+z], (2.7) 

for each e < o~ A (1 - o0, since it is easily verified that 

( k -  1 ) o l + 2 - k - e > O ,  k a + / ~ - k +  1 > 0 ,  k (c~-  1 ) + 2 > 0 ,  

provided o~ _ 1 /k ' .  Hence the assertion is proved. • 

R e m a r k  2.6.  It is easily seen, looking carefully at the estimates in the above proof,  that 
the assumption on f may be relaxed to 

f ~ CI(J ,  Eo) for some 0 < 1 < k. 

In this case one would merely have to adapt  the parameters ~, v ~ (0, 1). 

R e m a r k  2.7. It has to be pointed out that singular evolution operators have a better 
regularizing property than regular ones. More precisely we have H61der continuity into 
each intermediate space up to the initial time, whereas in the regular case this can only be 
obtained with a loss of  spacial regularity (cf. [8, in particular Theorem 5.3]). This will turn 
out to be useful in the existence-proof for quasilinear singular Cauchy problems. 

COROLLARY 2.8. Assume t h a t f  e Ck_~(J,  Eo) and that A is a singular family of  generators 
satisfying (1.1). Then there exist a neighbourhood N of ( A , f )  in the natural product 
topology and 0, & ~ (0, 1) with 

I l u ( t )  - u (P) l l~  - ct61t - rl °, 0 <_ r <_ t ~ J ,  

for the solution u of  (1.2)(n.~) for arbitrary (B, g) e °tt. 
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Proof .  Fix a >- l / k ' .  Then we infer from (2.5), (2.6) and (2.7) that 

I lu ( t )  - u( r ) l l~  -< ct~lt - r[ °, 

if we choose 0 < 0 < (1 - ~)/x o~ and 

= [ ( k -  1)a + 2 -  k - e l A [ k s  + f i -  k +  11 

A[k(o~-  1) + 2 } A [ ( k -  1 ) ( a -  1) + 1 - O}, 

where fi < p/x 1/k ' .  It is easily verified that fi has to be positive. The existence of the 
neighborhood '11, in which the estimate can be made independent of  (B, g), follows easily 
for g and from Remark 1.8 for B. • 

3. QUASILINEAR SINGULAR CAUCHY PROBLEMS 

In this section we devote our interest to the discussion of  the quasilinear version of  
(1.3)(A,f). A local existence result will be proved. Consider the following 

it + A( t ,  u)u = F(t, u), t ~ J, (3.1)(A,F) 

in the Banach space E0. Given c~ ~ (0, 1) and 0 ~ X~ ~ E ,  we assume that 

A ~ C~'1-( × X~ ,  3C-(E1,Eo)) (3.2) 

and that 

F ~ C°'_ll~b(J × X , ,  E~) for 0 < fl < c~ < 1. (3.3) 

A few remarks about the notation are in order. By C~' 1- we mean Cff in the first variable 
and C 1- in the second. The notation C°'Jl - has to be interpreted in an analogous manner. 
The additional subscript b corresponds to the requirement that F be bounded on bounded 
subsets. Lastly the symbol ~ means "open  subset".  

Definit ion.  A function u: J ~ X ,  is said to be a solution of (3.1)(A,F) on J if 

(i) u ~ C(J, Eo) (q c l ( j ,  Eo), 

(ii) u(t) ~ domA(t ,  u(t)), t ~ J and u(t) + A(t ,  u(t))u(t) = F(t, u(t)), t ~ J. 

LEMMA 3.1. Let A and B be singular families of  generators satisfying (1.1). Then the 
following estimate 

Tk(c~-/3) 
II UA( t ,  r )  - U B ( t ,  r ) l l ~  --< c ( t  - r )  (~ -~ )  IIZ - nllc~, 0 <_ r <- t ~ J. 

is valid for the corresponding evolution operators. The constant c may be chosen to be 
independent of  B in a neighbourhood of  A. 

Proof .  It follows directly from the determining integral equation (1.4) that 

UAq, r )  -- gB(t,  r )  = gA(t, a)[A(a)  - B(a)IUB(a,  r) da.  
7" 
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This entails by Lemma 1.6 that 

IIgA(t, r)  - gB(t, r ) l l~ -o  --- IIgA(t, a ) l i o - . . l l A ( a )  - B ( e ) l l l - . o l l U n ( t r ,  O l [~ - . x  
o'r 

I t  orkct 1 l-k(1-8) 
<- cllA - BIIc~ , ( t - -  7r)" ,r k ( d -  r) i--t~d'r 

~,k(ct-B) 

_< c (t  - r)  ~ -a  IIA - n l lc~ .  

The additional assertion is implied by Lemma 1.5. • 

Remark 3.2. It is worth while noticing that the assumption 1 />  0 is only needed to 
consider the quasilinear case, as the previous lemma shows. The proof  of  the next lemma 
will namely show that fl = 0 is admissible in the semilinear case, where one does not need 
continuous dependence on A to prove existence. 

LEMMA 3.3. Assume that A and B are singular families of  generators satisfying condition 
(1.1) and that f ,  g ~ Ck-l(J,  E¢). Denote by k '  the dual exponent of  k. Let o~ e [1/k' ,  1) 
and f l e  (0, p ^ l / k ' )  be such that ct - fl > (k - 2)/(k - 1), if k > 2. Let, moreover, u 
and v be the solutions of  (1.3)(a,f) and (1.2)(B,g), respectively. Then 

Ilu(t) - v( t ) l l .  -< c t ( k - O ( " - ~ ) - k + 2 ( l l A  -- nllck + IIf - gl lc,_l) ,  0 ___ t e J. 

Proof. Observe first that 

I 
t 

u(t) = UA(t, r)f(z)  dr, 
0 

v(t) = UB (t, r)g(r) dr  
0 

by Lemma 2. Then we infer from Lemmas 1.6 and 3.1 that 

Ilu(t) - v(t)[lo <- IIuA(t, r)  - UB(t, r ) l l ~ . l l f ( r ) l l a  d r  
0 

I 
t Tk(c~-B)-k+l 

--- c i l iA - n l l c ,  llfllc~_, + I I f -  gllc~_ ,1 o - f f -  r - ~  d r  

= cttk- '("-a)-k+2(tla -- nllc211fllc, + I I f -  g l l c ) .  

Thus the proof  is complete. • 
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R e m a r k  3.4. The constant c in the claim of the last lemma depends obviously on A, B, f 
and g. It is, however, locally uniformly bounded by Lemma 1.5. 

For 0 chosen such as to satisfy the condition of Corollary 2.8 and for functions 
u ~ C°(J ,  E~) we now define O(u) by 

i 
t 

• (u)(t) := UA(.,.)(t, OF(r, u(r)) dr, 
o 

t e J .  

In the following lemma we prove two important properties of ~ .  

LEMMA 3.5. Suppose that A satisfies assumption (3.2), F assumption (3.3) and let 
& e (0, 1). Choose a and /3 as in Lemma 3.3. Then there exists R > 0 such that, for 
u, v e Bc~(j,E~)(0, R), the estimates 

II¢'(u)(t)ll~ -< c t  ( k - 1 ) ( a - ~ ) - k  + 2 

and 

[[~(u(t) - ~(v)(t)[[~ _< ct¢k-1)(~-~)-k+2llu -- Vllc(J,e.) 

are valid for a positive constant c independent of u, v e [Bc~(j,E.)(O, R). 

Proof .  By Lemma 1.5 and Remark 1.8 there exists a neighbourhood of the set 

[t ~, A( t ,  0)] 

in C~ ̂ ~ such that uniform estimates hold for the evolution operators corresponding to 
generators in this neighbourhood. It follows from hypothesis (3.2) that we find a real 
number R > 0 such that uniform estimates are valid for Urn. ,), if u e ~c6(j,E~)(0, R). 
By assumption (3.3) we may assume without loss of generality that this also holds for 
F(-,  u( ')) with the same R. Thus for u, v ~ ~3c~(j.e~)(O, R),  we see, on the one hand, that 

S' II~(u)(t)ll,~ ~ [I uA(. ,,(t, r)ll~.,~llf(r, u(r))ll~ d z  
0 

t 
t 2 .kOx-~) -k+  1 

<_ C dT: = c t  ( k - 1 ) ( ~ - ~ ) - k + 2  

o ( t  - r )  ~ - ~  

On the other hand we have, by Lemma 3.3 and the hypotheses, that the following estimate 
is valid: 

I [ ~ ( u ) ( t )  - ~ ( w ) ( t ) l [ ~  

<~ ct(k-l)¢~-~)-k+2lllA(' ,  U) -- A ( ' ,  v)llc~ ÷ liP(', u) - F(- ,  v)[Ic,_,l 

The claim is thus proved. • 
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We can now state and prove the following main theorem. 

MAIN THEOREM. Assume that A and F satisfy conditions (3.2) and (3.3), respectively. 
Then there exists T > 0 such that the quasilinear singular Cauchy problem in E o 

+ A(t ,  u)u = F(t, u), t ~ J (3.4) 

has a unique local solution u ¢ C([0, T], X~). It is the unique fixed point of the singular 
variation-of-constants-formula 

u(t) = UA(.,u)(t, z)F(r, u(z)) dr. 
0 

Moreover the solution u enjoys the following regularity properties 

C*([0, T], E,) A C((0, T], E0  N C~((0, T], E0), 

provided e, J 6 (0, l) with e _> l / k '  and J < e A (1 - e). 

Proof. Lemma 3.5 and Corollary 2.8 imply the existence of constants R > 0 and 0 > 0, 
respectively, with the properties stated there. Define 

X r  := [u ~ ~c0~t0,r],E~(0, R) I u(0) = 0}. 

Then we infer again from Lemma 3.5 and Corollary 2.8 that, provided T is chosen 
small enough, • becomes a self-map on Xr .  Lemma 3.5 entails furthermore that • is 
contractive on XT with respect to the topology induced by C(J, E~). To attain this we may 
possibly once more make T smaller. Since ~CQ([O,T],E~,)(O, R) is complete with respect to 
the topology of C(J, E~), we argue, by means of Banach's fixed point theorem, that there 
exists a unique fixed point ~ for ¢I). We are thus left with proving that fi is actually a 
solution of (3.1)(A,F) and belongs to the claimed regularity classes. Notice that, in fact, the 
proof of the main proposition implies that 

v(t) := UA(.,~)(t, z)F(r, 12(r)) dr  
0 

coincides on [e, T], for 0 < e < T, with the solution u E of 

ft + A(t,  a)u = F(t, a), t ~ (e, T] 

u(~) = a(e) 

so that v = *(fi) = a is indeed a solution of the above regular problem in (e, T] and 
enjoys by Corollary 2.2 (cf. also Theorems 11.1.2.1 and 11.1.2.2 in [3]) the desired 
regularity properties, i.e. 

e C((e, T], E 0 n CI((E, T], Eo). 

The arbitrariness of the choice of e implies now that t2 is a solution of (3.1)(A,F) in 
(0, T] and enjoys the asserted regularities. The claimed H61der continuity follows from 
Proposition 2.5. • 
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4. S I N G U L A R  I N I T I A L  B O U N D A R Y  V A L U E  P R O B L E M S  

In this concluding section we consider a first application of  the results concerning 
abstract singular Cauchy problems of  the previous sections. Of concern are singular initial 
boundary value problems of  parabolic type. First we need to introduce some terminology 
and a fundamental generation theorem for second order elliptioc boundary value 
problems. The aim being a major  ease in the formulation and analysis of  singular initial 
boundary value problems thereafter. Let ~ C JR" be an open bounded set with smooth 
boundary 092. Assume 092 = F0 U F~, where F o and F~ are disjoint and open in 092. Note 
that the cases F 0 = Q~ and Fl = Q are of  course not excluded, whereas the case 092 = Q~ 
is. If we define 

f 1, X e r 1 , 
8(x) 

0, x ~ F  0, 

then ~ e C(092, [0, 1}). Further we denote by v the outer unit normal to the boundary. For 
the trace operator we use the notation Ya. Fix now an increasing function a:  [0, 1] 
[0, 1] with a(0) = 0 and a(t)  > t, 0 < t < 1, put p(a) := a(12a - 1[), 0 < a _ 1, and 
define for the same values of 

~'~(92) := CP(~)(~, IK) n2+n+" x L~(92, IK) x CP('~)(cg~, IK). 

We observe that E~(92) = $a-~(~), 0 -< a <- 1, and 

$_1(92) ,_. ~_,~(~) ,_. $_~([2) ,-. $_1/2(92), 1/2 < fl < c~ < 1. 

Given (ajk, aj, by, ao, c) e $~(92) with ajk = akj (i, k e { 1 . . . . .  n}) we define the differential 
operator (~ through 

au  := -O;(ajkOku + aju) + bjOju + aoU 

and the boundary operator 63 through 

63U : =  O[vJyo(ajkOkU + aju) + C)PoU } + (1 -- O))Pou. 

If 6t and 63 are given as above, then the pair (6t, 63) is called boundary value problem of  
order at most two. By (6t ~, 63#) we further denote the formal adjoint boundary value 
problem to (12, 63). It is the boundary value problem determined by the coefficients 

(a~,  O j,  a~, ao, c). 

Terminology .  From now on we no longer distinguish between a boundary value problem 
((2, 63) and its coefficients in E=(g2). We thus write, for instance, ((2, 63) e E=(92) to mean 
that the coefficients of  the boundary value problem are in those regularity classes. 

Nota t ion .  The subset of  ~:~(g2) consisting of  those boundary value problems ((~, 63) which 
are in addition uniformly strongly elliptic is denoted by g~(g2). 

For later purposes we also need to introduce some spaces related to a given boundary 
value problem ((2, 63). Given p e (1, oo) put first 

Bp,p(92), s e ~\7/,  (4.1) 
WPS(a) := H~(a) ,  s e Z, 
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where Bi,JQ) and H;(Q) are the Besov spaces and the classical Sobolev spaces, 
respectively. A precise definition and many important properties of these spaces can be 
found, for instance, in the book of Triebel [9]. Then, given (a, 6J) E E(Q) := &‘(sZ), 
we set 

w;,a := 

r 

(U E w;(n) 1 m = 01, s E (1 + l/p, 21, 

lu E w;(Q) I (1 - 6)Y,U = 01, s E (l/p, 1 + l/p), (4.2) 

w;(n), s E [O, l/P), 

if 6 $ (0, 1). If 6 vanishes identically then we extend the above definition to s = 1 + l/p 
with (U E W,S 1 y,u = 0). If 6 = 1 to s = l/p with Wd’“. Let p’ be the dual exponent top. 
Then we lastly define 

r 

Wp-“(Q), s E (-1 + l/p, 01, 

W” p,m := (u E Wp~“(c2) 1 (1 - 6)y,u = O)‘, s E (-2 + l/p, -1 + l/p), (4.3) 

(u E W,;“(Q) I 63% = O)‘, s E [-2, -2 + l/p), 

if 6 $ [O, 1). Of course it follows that Wi,,(B = (W,;S,,)‘. Thus we complete the scale in the 
obvious way if 6 E (0, I), whenever WpT$,, is defined. 

Remark 4.1. It follows from the above definitions that, for s E (0,2), 

Wps,@ elf L, 2 wpy; . 

Remark 4.2. It is of great practical relevance that the above introduced spaces Wi,, 
depend, for s E (-2 + l/p, 1 + l/p), exclusively on the boundary map 6. This will play 
a central role in the discussion of initial boundary value problems, where the boundary 
operator @ might depend on the time variable. 

Remark 4.3. It is to be noted that the above introduced concrete spaces may also be 
recovered by interpolation (except for finitely many exceptional values of “s”) between 
L,(Q) and W&(Q) i D(A) for positive values of s, and between W,;i(C2) and L,@), 
for negative values. For the precise statements we refer to [lo] (in particular Sections 6,7). 

Next we turn to the definition of the realizations of (a, 63) in the spaces of the above 
scale. We first need to introduce the concept of Dirichlet form. 

Definition. Let (a, 63) E [E(Q) be given. Then we call 

a(u, U) := <a,~, ajka,u + aju) + (u, bjaju + a,u) + (YOU, CY~U),, 

the Dirichlet form associated to (a, a). Here we denoted by 

(4.4) 

(*, ‘)a := 
s 

Ya Wa U daa 
an 

the duality pairing on the boundary of Q and by oa the boundary measure on aa. 
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It is easily seen that 

23 IK). a e ~ ( ~ , , ~ ,  W- z~ • p,d~, 

Definition. Suppose that p e (l ,  oo) and ((~, 63) • E~(~). Then we define 

2c~ I,~2a- 2~ 
Ac~_ 1 • ~(I,V~,~, p,6~ ;, 

the Wv~-~-E-realization of (O~, 63), as follows: 

I a ]  ~o w~,~, if Net e (11~11~ + l/p, 2], 
A~-l  := [u ~ a ( ' ,  u)], if 2a • ( l /p ,  1 + 1/p). 

In other words, given 2o~ e (1/p, 1 + 1/p), A~_~ is the unique linear and continuous 
operator induced by the Dirichlet form a associated to (6~, 63), that is: 

bltr2- 2~ 2or ( v ,A~_ lU)  = a(v,u) ,  (v ,u)  e ,,p,,~ x V¢'~,~. 

Remark 4.4. It can be shown with the help of  Green's formulas that the definition is 
unambiguous for 2a • ( l /p ,  1 + l /p)  (cf. [101). 

We can now state the following fundamental. 

THEOREM 4.5. Suppose p ~ (1, oo) and 2a ~ [1, 2]. If ((L 63) e g~(~) then 

28 W23-2~ (4.5) 

and A3_ 1 has a compact resolvent provided 2p e [2 - 2a, 2or] fq ( l /p ,  2]. 

The proof  of  this important generation result can be found in [1 1] and [12]. 

Remark 4.6. It is known that Wp 2 ~ Lp. This fact implies that A~_I has a compact 
resolvent for et ~ [0, 1]. 

We are now ready to concentrate our attention on singular initial boundary value 
problems. From Theorem 4.5 we know when a boundary value problem (t~, 63) induces a 
generator A of  an analytic semigroup on Lp (for some p ~ (1, oo)). Since we work in the 
class of  exponentially decaying semigroups we should be able to tell when the generated 
semigroup possesses this property. The next remark shows that easy-to-verify conditions 
can be found, which ensure the decay of  the semigroup. 

Remark 4.7. It can be verified that the semigroup generated by the Wp2,~-2-realization 
A3_ 1 of  ((L 63) • S°(Q) is exponentially decaying if, for instance, aj = bj = ao = 0, 
d ~  1 or ifd~-= 1 a n d c ~ 0 .  

Let now J C ~+ be a perfect interval containing the origin. Let, moreover, 2y • 
(I/p, 21 and k > 1. Assume that 

(~, 63) • Cfr(J, ~ ( ~ ) )  (4.6) 

for some 20 ~ [1, 2] with 2y e [2 - 20, 0] and that 

Av_l(t)  • 3~2-(Wp2,~(t), "p,6~(t)lbl['r2"y-2 ~ (4.7) 
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for t e J. Lastly let a ~ [0, 1) and assume that 

( f ,  g) ~ C~_l(J, Wp2~ -2 × 0Wp2"t) • (4.8) 

i~2~,-2 Observe that the latter condition makes sense since the spaces ,,p,~ do not depend on 
time in the given range of  2?. Consider the following singular initial boundary value 
problem: 

f~ + 6t(t)u = f ( t )  in f~ × J, (4.9) 

(B(t)u = g(t) on F x J. (4.10) 

Defini t ion.  A function u ~ C(J, us2~-2~ 71 c ~ ( j ,  u.,2~-z~ satisfying u(0) = 0 is called. VVp,6~ ! vvp,6~ ! 

• a strong wpE~-solution of  (4.9)-(4.10) if 2,8 e (1 + 1/p,  2] and if, for each e e J, u is 
a strong Wp2O-solution of: 

b + t2(t)v -- f ( t )  in ~ × J (3 (e, ~) ,  

(B(t)v = g(t) on I" × j 71 (e, oo), (4. l l)e 

v(e) = u(e) in ~.  

• a weak Wp2~-solution of  (4.9)-(4.10) if 2fl e ( l /p ,  I + 1/p) and u is a weak 
wpE~-solution of (4.11)~ for each e e J, that is if 

(v, u(t)) + a(t)(v, u(t)) = ( v , f ( t ) )  + (70v, 0g(t))0, 

xlz2- 23' for all t ~ J f) (e, oo) and all v ~ ,p , ,~ , .  

R e m a r k  4.8. Every strong Wp2~-solution is a weak Wp2~-solution if 

2fl ~ (1/p ,  1 + 1/p).  

This follows from Green's formulas. Conversely it can also be proved that regular weak 
Wp2~-solutions are strong Wy-solutions.  

With these definitions we are now able to reformulate the abstract results of  the 
preceding sections. 

TnEOREU 4.9. Let assumptions (4.6)-(4.8) be fulfilled. 
(i) Assume that 2? e (1/p ,  1 + 1/p) and that there exists 

lag ~ c ° ( j ,  Wp 2'Y) A cl+a(J ,  Wp2~ -2) 

with ug(O) = O, (1 - O)Ug = g on F × J and 

Ug(t) + (~lAg e Ck_l(J,  Wp2V-2). 

Then, if t7 > 0, (4.9)-(4.10) possesses a unique weak Wp2V-solution u, and a unique 
Wp2~-solution for 1/p  < 2~ < 27, if t7 = 0. Moreover 

u E C~(J, I~]2v-2+z/z~ r r p , ~  ] 

for 0 _< v < p ^ (1 - p) < 1, provided v >_ 1 / k ' .  
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(ii) Assume that 2y e (l + l / p ,  2] and that there exists 

Ug E c ° ( J ,  Wp 27) 0 cl+~r(j, Wp 2"r-2) 

with ug(O) = O, (Bug = g on F × J a n d  

lJg(t) + aUg E Ck_l(J, Wp2"r-2). 

Then (4.9)-(4.10) possesses a unique strong Wp2~-solution u. Moreover 

u ~ C~(J,  ugz~-z+2~ VVp,~ 1 

for a e [0, 1) and 0 _< v < p / x  (1 - p) < 1 such that 27 - 2 + 2~ < 1 + l / p ,  provided 
v >_ l / k ' .  

P r o o f .  We divide the p roof  in two steps corresponding to the two assertions. 
(a) We first put 

I,U'2-t-2 E1 := Wp2~. Eo := r,V,~ 

Then we notice that the assumptions on ((~, 63) imply by Theorem 4.5 that 

A~-I ~ CP(J, ~(EI, Eo)). 

u~.z~-2 by I f  we now define Vg(t) ~ , ,p ,~  

r112- 27 (V, Vg(t)) : =  a(t)(v, Ug(t)), t ~ J,  v ~ , ,p, ,~#, 

we obtain by the assumptions on A and Ug that 

Ug ~ C pA o(j ,  [/rz3,-z~,,p,~ I. (4.12) 

Thus we may reformulate the singular initial boundary value problem in the weak sense. 
That  is we seek a function v e C(J ,  E o) satisfying 

( w ,  v ( t ) )  + a(t)(w, v(t))  = ( w ,  F ( t ) )  

W. 2~-2 Here we put for a l l t e J a n d a l l w ~  p,,~,. 

F := f - fig - Vg + y~ t~g, 

Observe that 

F e C k - l ( J ,  w-Ev-2~ p,~ I~ 

since 

Yr~ ~ Z(Wp2,~ 2~, 

and thus 

VVp,~ 1" 

I f  we now reinterpret the last equation as an abstract equation in E o we are left with the 
task of  finding a solution of  

b + A ~ _ l ( t ) v  = F( t ) ,  t > 0 (4.13) 
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l"l'r2"t'-2 for F ~ Ck- l (J ,  Eo), since it is easily seen that u := v + Ug is a solution in the space "m 
of the inhomogeneous problem, if v solves (4.13). Thus we may apply Proposit ion 2.5 to 
get a solution in the asserted regularity classes. To see that u is a weak wpEv-solution of  
(4.9)-(4.10) if tr > 0 and a weak Wp2~-solution for 1/p < 2~ < 2? if tr -- 0, we refer to 
Theorem 11.2 in [10]. It suffices to apply that theorem to the initial value problem 
obtained starting at a positive time. To this end property (4.12) is needed. 

(//) In this case we first exploit the assumptions to show the existence of a weak 
solution t~ of  (4.9)-(4.10) as in the first part of the proof.  Then we make use of  the regular 
theory to handle the following regular problem (for arbitrary e > 0): 

ft + t~(t)u = f in f~ × J N (e, oo), 

~B(t)u = g(t) on r × J n (e, oo), 

u(e) = a(e) in f2 

The assertion is then obtained by Theorem 11.3 in [10]. • 

We turn now to the main result about singular initial boundary value problems: local 
existence in the quasilinear case. Suppose that 

2y ~ (1/p ,  1 + I / p )  

and that there exist et and fl with 0 < fl < a < 1 such that 

(~ ,  (B) ~ C ~ ' l - ( J ×  W2'V-2+Za ~0(~'~)) (4.14) VVp,(B 

for 20 e [1,2] with 2? e [2 - 20, 20] and 

( f , g) ~ C~'_'~- ( J × WpZ.~ - z + z~, VVpZ, v~ - z + z~ × OWp zv+zt~) (4.15) 

with (1 - O)g = O. In addition we assume also that for fixed t ~ J and fixed u e 
WpV~-2+2~ the semigroup generated by - A ( t ,  u) is exponentially decaying at a fixed rate 
independent of  t and u, that is 

A( t ,  u) e 5C-(Wp2,~, I~i'/'2V-2XVVp,~ )" (4.16) 

Consider the singular parabolic initial boundary value problem 

ft + Og(t, u)u = f ( t ,  u) in t) × ~>o, 

~ ( t ,  u)u = g(t, u) on af~ × R>o, 

Defini t ion.  Let J C ~+ be a nontrivial interval containing the origin. A function 
U ~ C(J~ Wp 2v-2) n CI ( j ,  Wp 23'-2) is called 

• a strong Wp2V-solution of  the above problem on J i f  2? e (1 + 1/p,  2], u(O) = 0 and 
u is, for each e e J, a strong Wp2~-solution of  

0 + (~(t, u)v = f ( t ,  u) 

(B(t, u)v = g(t, u) 

v ( ' ,  e) = u ( ' ,  e) 

in f~ × J O (e, ~ ) ,  

on aD x J O (e, o0), 

in ~ .  

(4.16)e 
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• a weak WpZ~-solution on J i f 2 y  e (1/p,  1 + 1/p),  u(0) = 0 and u is, for each e e J, 
a weak Wp2"~-solution of  (4.16)~. 

Putting again 

IAV2y-2 and E1 := Wp2~ go := ,,p.m 

we infer from Theorems 7.1 and 7.2 in [10] that 

E 0 (Eo,  E l )  O "-- 1~. 27-2+20 (4.17) = p,6~ , 

provided the exceptional values are excluded. In particular we have that (without loss of 
generality) this equality holds for o~ and ft. This means that 

A := AT_ l ~ Cp ' I - ( J  × E~, ~C-(E1, E0) ). 

On the other hand we also see that 

F := f + 5v+~_lg ~ Cff:l~(J × E~,, E#), 

for 2y + 2/3 < 1 + 1/p, which can be achieved, without loss of  generality, by choosing fl 
small enough. Here we put 

~y+~3-1 "--'-- ~)b I E o~(Wp23"+/3-1-1/P(I 'I) , W. 2y-2+2/3)p,(B 

Thus we may rewrite the singular boundary value problem as the following abstract 
singular Cauchy problem in E0: 

ft + A f t ,  u)u = F(t, u), t ~ ~+o. 

We are now able to prove the following theorem. 

THEOREM 4.10. Suppose that assumptions (4.14)-(4.15) and (4.16) are satisfied. 
Then 

ft + 12(t, u)u = f ( t ,  u) in ~ × I~>0, 

(B(t, u)u = g(t, u) on af) × ~>0, 

possesses a unique maximal solution u ~ C(J +, E~), where J+ is the maximal interval of  
existence. It may be recovered as the unique fixed point of  the following abstract singular 

I,U'2"/- 2. variation-of-constants-formula in the Banach space ,,p,a~ • 

u(t) = UA(.,.)(t, r)F(r, u(r)) dr. 
0 

v + Furthermore u e C (J , E , )  N C(J ÷, El)  A c I ( j  ÷, Eo) for each 0 _< v < ~ ^ (1 - a ) <  1, 
provided v >_ 1 /k ' .  Lastly u is a weak WpVY-solution of  the singular initial boundary 
value problem. 
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Proof. By means of  the Dirichlet form a(t, u) associated to ((i, (B)(t, u) we rewrite the 
equations under consideration as the following equation 

(~i, v) + a(t, u)(u, v) = ( f ( t ,  u), v) + (7i', v, g(t, u)), 

which has to be satisfied by all t and all test-functions v e WpE_2j. This equation may, in 
its turn, be interpreted as an abstract singular evolution equation in the Banach space E 0 , 
observing that 

(Yrl v, g(t, u)) = (y~,lg(t, u), v) = (3~+~_ 1 g(t, u), v). 

This yields namely 

ft + A(t ,  u)u = F(t, u) := ( f ( t ,  u), .) + 3v+t~_lg(t, u). 

Assumption (4.15) implies now that 

[(t, u) ~ F(t, u)l E CP'_ll (J x E~, E~), 

where we also used (4.17). On the other h a n d ,  as we already saw, it is a consequence of 
Theorem 4.5, of  the interpolation properties of  the spaces under consideration and of  the 
hypotheses concerning A that 

a E C~ ' I - ( J×  E,,, ~ - ( g l ,  Eo) ). 

Theorem 3 together with Theorem 13.1 in [10] implies now the existence of a unique 
maximal solution 

v + u e C (J , E~) n c ( J  +, E 1) n c l ( j  +, E0), 

for v and p as in the assertion. Hence we argue that G( ' )  := F( . ,  u( '))  satisfies 

G e c~(J  +, E~), 

and that 

A(" , u(" )) ~ c~(J  +, ~2- (E1, Eo)), 

for some 0 e (0, 1), since u is the above H61der regularity classes. From this we deduce 
that u, as a solution of  

b + A(t ,  u(t))v = G(t), t > 0 

in the Banach space E o, is weak Wp2V-solution on J+ of the singular quasilinear initial 
boundary value problem by Theorem 4.9. • 

Remark 4.11. We observe that if one is interested in the existence of  strong solution 
for the quasilinear singular initial boundary value problem then one may proceed as 
in the linear case. That is, first establishing the existence of  weak solutions and then 
arguing by means of the regular theory of  initial boundary value problems that the 
solutions have better regularity. Correspondingly stronger hypotheses about the data are 
of course needed. For a more detailed treatment we refer to [10], in particular to 
paragraph 13 therein. 
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Remark 4.12. Following the way sketched in the previous remark and making use of some 
bootstrapping arguments, it is possible to show the existence of smooth solutions for 
smooth data (cf. for instance [10, paragraph 14, in particular the remarks preceding 
Theorem 14.6]). 
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