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Abstract
This paper shows how numerical methods on a regular grid in a box can be used 
to generate numerical schemes for problems in general smooth domains contained 
in the box with no need for a domain specific discretization (other than a list of 
points on it). The focus is mainly on spectral discretizations due to their ability to 
accurately resolve the interaction of finite order distributions (generalized functions) 
and smooth functions. Mimicking the analytical structure of the relevant (pseudodif‑
ferential) operators leads to viable and accurate numerical representations and algo‑
rithms. An important byproduct of the structural insights gained in the process is 
the introduction of smooth kernels (at the discrete level) to replace classical singular 
kernels which are typically used in the (numerical) representations of the solution. 
The new kernel representations yield enhanced numerical resolution.

Keywords  Spectral methods · Meshless methods · Numerical analysis · Boundary 
integral methods · Boundary value problems

Mathematics Subject Classification  78M22 · 31C20

1  Introduction

It is the primary goal of this paper to develop a framework which allows one to 
extend the benefits of numerical spectral methods from boxes to arbitrary geom‑
etry domains. The idea is to simulate problems on domains Ω ⊂ B located inside a 
periodicity box B = [−�,�]N by using spectral approximation of generalized func‑
tions (distributions). This is best illustrated in the case of boundary value problems, 
which are also an important application of the method. Consider the boundary value 
problem
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for some generic differential operator A and boundary operator B . It is no restriction 
to assume that the operators and the data be defined everywhere in the box B. One 
obtains a numerical approximation for the boundary value problem in the following 
manner. First discretize the periodicity box B by a regular grid Gm = {xm

j
∶ j ∈ ℤ

m
N
} 

with 2mN points if working in dimension n ∈ ℕ , then, independently, discretize the 
boundary Γ of the domain Ω by a subset Γn = {y1,… , yn} ⊂ Γ . Choose a discretiza‑
tion Am of the operator A which operates on the grid Gm and find a solution 
vm ∶ Gm

→ ℝ of

in Gm for a discretization f m of f. With that in hand, generate numerical approxima‑
tions for functions �m

k
∶ Gm

→ ℝ , k = 1,… , n , in the kernel of the operator AΩ on 
Ω and try to adjust the solution vm by a linear combination

of these kernel elements in order for um,n = vm + wm,n to satisfy a discretization 
B
m,num,n = gn of the boundary condition for a discretization gn ∶ Γn

→ ℝ of g. 
Choosing B to be the trace operator �Γ at first for ease of presentation, this can be 
done as follows. Approximate �yk for k = 1,… , n by its spectral representation �m

yk
 on 

the periodic grid Gm and insist that

where ⟨⋅, ⋅⟩qm is the discrete duality pairing (scalar product) discretizing the continu‑
ous duality pairing ⟨⋅, ⋅⟩D′

� ,D�
 between periodic distributions and test functions. 

Details will be given in the rest of the paper. Following the strategy outlined above 
leads to a system for the unknown wm,n of the form

One can think of �m
y⋅

 as the discrete kernel of the trace operator �Γ . It is therefore pos‑
sible to deal with a more general boundary operator B by deriving a “natural” 
numerical approximation Bm

yj
 of its distributional kernel for j = 1,… , n . This would 

lead to the system

In order to obtain a numerical method it remains to generate the kernel functions �m
k

 
for k = 1,… ,m . This can be done in many different ways. In order to, at first, make 

{
Au = f in Ω,

Bu = g on �Ω,

Amvm = f m

wm,n =

n∑

k=1

w
m,n

k
�m
k

⟨�m
yj
, um,n⟩qm = gn

j
, j = 1,… , n,

⟨�m
yj
,wm,n⟩qm =

n�

k=1

⟨�m
yj
,�m

k
⟩qmwm,n

k
=

n�

k=1

Mjkw
m,n

k
= gn

j
− ⟨�m

yj
, vm⟩qm , j = 1,… , n,

⟨Bm
yj
,wm,n⟩qm =

n�

k=1

⟨Bm
yj
,�m

k
⟩qmwm,n

k
= gn

j
− ⟨Bm

yj
, vm⟩qm , j = 1,… , n,
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a connection explicit to pseudo-differential operators, again consider B = �Γ and 
proceed in the following manner. Take the spectral approximation �m

yk
 for k = 1,… , n 

and set

Since the Dirac distribution is “supported” on the singleton {yk} , the function �m
k

 
will indeed “lie” in the kernel of Am over Ω . Since these functions are “peaked” at 
different locations yk , they will be linearly independent. The matrix M in the system 
for the unknown wm,n is therefore given by

Latter can be recognized as the discrete counterpart of

the distributional kernel of a pseudodifferential operator A−1 on the boundary 
curve Γ . This connection is made more precise in the rest of the paper and pro‑
vides a framework in which to obtain analytical proofs for the numerical meth‑
ods introduced. For implementation purposes, however, it is best to proceed in a 
somewhat different way when constructing the kernel functions �m

k
 . Instead of 

using the “rougher” Dirac distributions used above, it is better to replace them by 
smooth functions 𝜑ỹk

 which are supported outside of Ω with support “centered” at 
ỹk = yk + 𝛿𝜈Γ(yk) for 𝛿 > 0 where �Γ(yk) is the unit outer normal to the boundary Γ at 
the point yk . After discretization this leads to the alternative matrix

which is the discretization of a smoothing operator with kernel

As such, M will be easier to capture numerically (fast convergent expansion of its 
kernel function) but also badly conditioned (as a smoothing and thus compact opera‑
tor with unbounded inverse – read less diagonally dominant). While precondition‑
ing is not investigated in this paper, there appear to be natural ways to construct 
preconditioners.

The method above can be thought of as a fully discrete boundary integral method. 
As such it does not rely on the availability of an explicit analytic representation of 
the kernels involved and is therefore applicable to non-constant coefficient differen‑
tial operators. Even for situations where analytic representations of the kernel are 
known, the singularity shifting/removal procedure employed above offers an effec‑
tive and accurate numerical discretization method which completely avoids the need 
to find ways to numerically deal with the singularity of the kernel function.

One of the main reason for developing the method is its applicability to the 
numerical computation of solutions to moving boundary value problems. The fact 

�m
k
= (Am)−1�m

yk
.

Mjk = ⟨�m
yj
, (Am)−1�m

yk
⟩qm , j, k = 1,… , n.

m(y, �) = ⟨�y,A−1��⟩, y, � ∈ Γ,

�Mjk = ⟨𝛿m
yj
, (Am)−1𝜑m

ỹk
⟩qm , j, k = 1,… , n,

�m(y, 𝜂) = ⟨𝛿y,A−1𝜑𝜂̃⟩, y, 𝜂 ∈ Γ.



	 P. Guidotti 

1 3

that the domain evolves in time would in general require continuous remeshing of 
the varying computational domain. In the approach presented here, the encom‑
passing computational domain remains unchanged during the evolution and com‑
putation of the moving boundary is reduced to tracking the location of its discre‑
tization points.

The rest of the paper is organized as follows. In the next section some pre‑
liminary results are obtained which highlight the main features of the underlying 
spectral approach to approximating generalized functions and test functions in the 
context of periodicity and for boundary value problems, in particular; in Sect. 3 
details are given about the discretizations used in the concrete examples studied 
in Sect.  4. The following section is dedicated to the specifics of the numerical 
implementation and to numerical experiments which illustrate the main theoreti‑
cal insights and the advantages of the proposed method. A brief conclusion ends 
the paper.

2 � Preliminaries

2.1 � Setup

Before working with the relevant discretizations, the stage is set by fixing the ana‑
lytical context which will very much guide the numerical procedures developed in 
the rest of the paper. Let B = [−�,�)N be the periodicity box bounding the area of 
interest. Extensive use will be made of distributions and of test functions. Latter are 
periodic smooth functions belonging to one of the following useful spaces

where m ∈ ℕ . The first space carries its standard locally convex topology generated 
by the family of seminorms {pm ∶ m ∈ ℕ} given by

the second is a Banach space with respect to the norm pm , and the last carries the 
natural inductive limit-Fréchet topology, i.e. the coarsest topology which makes the 
inclusions

continuous for all K = K ⊂⊂ B . Notice that DK(B) is endowed with the locally con‑
vex topology induced by the seminorms

(2.1)D�(B) = D� =
{
� ∈ C∞(ℝN) ||� is 2�-periodic

}

(2.2)D
m
� (B) = D

m
� =

{
� ∈ Cm(ℝN) ||� is 2�-periodic

}

(2.3)D0(B) = D0 =
{
𝜑 ∈ C∞(ℝN) || supp(𝜑) ⊂⊂ B

}

pm(�) = sup
���≤m

‖���‖∞,

DK(B) =
{
𝜑 ∈ C∞(ℝN) || supp(𝜑) ⊂ K

}
↪ D0(B)
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where the additional subscript indicates that the supremum norm is taken over the 
set K. The space

is then the space of 𝕂(= ℝ,ℂ)-valued distributions dual to D� . On 
L2
� = L2

�(B) = L2(B) there is a natural orthonormal basis (ek)k∈ℤN given by

consisting of eigenfunctions of the periodic Laplacian −Δ� . It is well-known that

is an isometric isomorphism where

In particular one has that ‖𝜑‖L2
𝜋
= ‖(𝜑̂k)k∈ℕ‖l2(ℤn) and Parseval’s identity

Notice that the formulæ above use the notations ⟨⋅, ⋅⟩ and (⋅|⋅) for the duality pairing 
and the scalar product, respectively. The former is clearly motivated by the natural 
duality pairing between distributions and test functions

Observe that, if � ∈ D� , then ��� ∈ L2
� for all � ∈ ℕ

n and thus

with convergence in L2
� , owing to well-known properties of the Fourier transform. 

Introducing the periodic Bessel potential spaces via

for s ∈ ℝ and ûk = ⟨u, ēk⟩ = (u�ek) , it follows easily that

pm,K(⋅) = sup
���≤m

‖�� ⋅ ‖∞,K ,

D
�
�(B) = D

�
� =

{
u ∶ D� → � || u is linear and continuous

}

ek(x) =
1

(2�)N∕2
eik⋅x, x ∈ B, k ∈ ℤ

N ,

F ∶ L2
𝜋 → l2(ℤn), 𝜑 =

∑

k∈ℤn

𝜑̂kek ↦ (𝜑̂)k∈ℤN

𝜑̂k = ∫B

𝜑(x)ēk(x) dx = ⟨𝜑, ēk⟩ = (𝜑�ek).

(𝜑|𝜓) = ∫B

𝜑 𝜓̄ dx =
∑

k∈ℤn

𝜑̂k𝜓̂k = (𝜑̂|𝜓̂) for 𝜑,𝜓 ∈ L2
𝜋 .

⟨⋅, ⋅⟩ ∶ D
�
� ×D� → �, (u,�) ↦ ⟨u,�⟩ = u(�).

𝜕𝛼
∑

k∈ℤN

̂𝜑kek = 𝜕𝛼𝜑 =
∑

k∈ℤN

�(𝜕𝛼𝜑)kek =
∑

k∈ℤN

(ik)𝛼𝜑̂kek,

Hs
𝜋 = Hs

𝜋(B) =

{
u ∈ D

�
𝜋
||
∑

k∈ℤn

(1 + |k|2)sû2
k
< ∞

}
,

∑

|k|≤M
𝜑̂kek → 𝜑 asM → ∞,
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in Hs
� for any s ≥ 0 if � ∈ D� . By the well-known embedding

valid for s > N∕2 + m , it then follows that the convergence of the Fourier series 
actually takes place in the topology of D� . An important consequence of this fact is 
the validity of the following generalized Parseval’s identity

for u ∈ D
�
� , � ∈ D� , and (u�ek) = ⟨u, ēk⟩ = ⟨u, e−k⟩ . A distribution u ∈ D

�
� is said to 

be of finite order m ∈ ℕ if it admits an estimate of the form

for a non-negative constant c but not for m replaced by m − 1 . It follows from a den‑
sity argument combined with the embedding (2.4) that any finite order distribution 
belongs to H−s

�  for some finite s ≥ 0 . The upshot of this is that (2.5) can be used to 
evaluate the action of a finite order distribution on a test function by a fast converg‑
ing series since (ũk)k∈ℤN is polynomially bounded and (𝜑k)k∈ℤN decays faster than 
the reciprocal of any polynomial in k. This, combined with the choice of appropriate 
discretizations, will be exploited later to derive highly accurate representations of 
various operators (not even necessarily supported on the discretization grid itself). 
Indeed many useful basic operations such as differentiation, integration, evaluation/
interpolation are distributions of finite order. It also turns out that, for many interest‑
ing distributions u ∈ D

�
� , it will be possible to compute their Fourier coefficients 

either exactly or in a highly accurate manner.

2.2 � Simple illustrative examples

Consider first �x0 for x0 ∈ B which is a zero order distribution. Later �x0 will be 
discretized on a regular grid but x0 will be allowed to be any point in the domain 
B. Then it holds that

Indeed

(2.4)Hs
� ↪ D

m
� = D

m
� (B),

(2.5)⟨u,𝜑⟩ =
�
u,

�

k∈ℤN

𝜑̂kek

�
=

�

k∈ℤN

⟨u, ek⟩
���

=∶ũk

𝜑̂k =
�

k∈ℤN

ũk𝜑̂k,

(2.6)(u|𝜑) =
(
u|

∑

k∈ℤN

𝜑̂kek

)
=

∑

k∈ℤN

(u|ek)𝜑̂k = (û|𝜑̂)

�⟨u,�⟩� ≤ c pm(�), � ∈ D
m
� ,

𝛿x0 =
�

k∈ℤN

⟨𝛿x0 , ek⟩ēk =
�

k∈ℤN

(𝛿x0 �ek)ek.
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where (�̃x0)k = ek(x0) . The convergence of this evaluation series

is clearly very fast and its coefficients are known either exactly or to a high degree 
of accuracy. This seemingly very simple observation will play a crucial role in the 
derivation of a highly accurate representation of higher dimensional kernels related 
to boundary value problems.

Remark 2.1  While in this paper it will be enough to deal with the evaluation of 
smooth functions, such as test functions, in [1] modifications are presented (in a 
non-periodic context) which make it possible to retain good convergence proper‑
ties also for piecewise smooth functions, another important class of functions in 
applications.

The next example shows how the considerations of Sect. 2.1 provide an abstract 
framework in which to understand spectral methods (after discretization). Let 
� ∈ D� and consider computing

at a point x0 ∈ B . In this case

It is again clear that the main advantages lie in the fact that � is smooth and that the 
Fourier coefficients of ���x0 are known exactly.

The next is an example of integration. Take x0 < x1 in the one dimensional box B. 
Of interest is the computation (eventually numerically) the integral

between the end points given (which are not necessarily on a numerical grid). Since 
I ∈ D

�
� is a zero order distribution, it is possible compute its Fourier coefficients

again obtaining an explicit formula. Then

⟨𝛿x0 ,𝜑⟩ =
�
𝛿x0 ,

�

k∈ℤN

𝜑̂kek

�
=

�

k∈ℤN

⟨𝛿x0 , ek⟩⟨𝜑, ēk⟩ =
�

�

k∈ℤN

(�𝛿x0 )kēk,𝜑

�
,

⟨𝛿x0 ,𝜑⟩ =
�

k∈ℤN

ek(x0)𝜑̂k,

���(x0) =
⟨
(−1)|�|���x0 ,�

⟩

𝜕𝛼𝜑(x0) =
⟨
(−1)|𝛼|𝜕𝛼𝛿x0 ,𝜑

⟩
=

∑

k∈ℤN

(−1)|𝛼|(�𝜕𝛼𝛿x0)k𝜑̂k

=
∑

k∈ℤN

𝜕𝛼ek(x0)𝜑̂k =
∑

k∈ℤN

[(ik)𝛼𝜑̂k]ek(x0).

I(�) = ∫
x1

x0

�(x) dx

Ĩk = ⟨I, ek⟩ = ∫
x1

x0

ek(x) dx =
1

(2𝜋)1∕2
1

ik
[eikx1 − eikx0 ],
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will provide a fast converging series representation.

2.3 � A simple boundary value problem

This section concludes with a simple example that will make the advantages and basic 
principle of this approach apparent. They will reappear in the higher dimensional con‑
text with the appropriate adjustments. Consider the following two point boundary value 
problem

Notice that it will be considered as a problem embedded in the periodicity box B 
(which will later be discretized by a regular grid). Assume that f ∈ D� be given 
along with uj ∈ ℝ for j = 0, 1 . Choose a function � ∈ D� satisfying

and define

for the datum f and accordingly for any distribution in D′
� . This way, a function P� f  

is obtained with vanishing average which coincides with f on (x0, x1) . When applied 
to a general distribution u that is compactly supported inside the box, this opera‑
tion produces a modified distribution P�u which coincides with the original u on its 
supp(u) if, without loss of generality, it is assumed that supp(u) ∩ supp(�) = � . Next 
define the operator G� acting on f via

so that

for P0f = f̂0e0 , the orthogonal projection onto average free functions. A solution of 
(2.7) can be looked for in the form

where v satisfies

∫
x1

x0

𝜑(x) dx =
∑

k∈ℤ

Ĩk𝜑̂k,

(2.7)
{

−𝜕xxu = f on (x0, x1) ⊂ B,

u(xj) = uj for j = 0, 1.

𝜓̂0 = 1, 1 − 𝜓 ∈ D0(B), supp(𝜓) ⊂ [x0, x1]
�,

P𝜓 f = f − f̂0𝜓

�G𝜋(f )k =

{
0, k = 0,
f̂k

k2
, k ≠ 0

−�xxG�(f ) = G�(−�xxf ) = f − P0(f ),

u = G�

(
P� f

)
+ v,

�xxv = 0 and v(xj) = uj − G�

(
P� f

)
(xj), j = 0, 1.
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All that remains is to find two linearly independent elements v0, v1 in the kernel of 
−�xx on (x0, x1) and look for v in the form v = �0v0 + �1v1 . In order for the boundary 
conditions to be satisfied, one needs that

By choosing vk = G�(P��xk ) for k = 0, 1 , this leads to the matrix M = [vk(xj)]j,k=0,1 
with

which is a kind of Green’s function “ M = M(xj, xk) ”, j, k = 0, 1 . The crucial obser‑
vation is that all ingredients �xj ,G� ,P��xk allow for spectral representations in the 
periodicity interval B (regardless of whether xj for j = 0, 1 are or are not grid points 
after discretization). The convergence is, however, limited by the fact that, in (2.8), 
�xj is of zero order and that G�(P��xk ) is of limited smoothness (slightly better than 
H1

� ). This, however, can be alleviated by replacing P��xk by either P𝜓𝛿x̃k with

or, even better, by P𝜓𝜑x̃k
 for a smooth test function 𝜑x̃k

∈ D0 supported in a neigh‑
borhood Uk of x̃k with Uk ∩ (x0, x1) = � and Uk ∩ supp(�) = � to obtain

It is easily checked that M is invertible for x0 ≠ x1 . Taking x̃k not too far from xk 
and 𝜑x̃k

≃ 𝛿x̃k , it follows that M̃ ≃ M is also invertible. The upshot is, clearly, that 
M̃ allows for a fast converging representation of its entries. To conclude this simple 
example one has that

for 𝛽 = [𝛽0 𝛽1]
⊤.

Remark 2.2  It is to be observed that, after discretization, all basic ingredients 
𝛿xj ,G𝜋 ,P𝜓𝜑x̃k

,𝜓 will have highly accurate grid representations, even if xj, x̃k do not 
lie on the grid. Owing either to the availability of exact Fourier coefficients or to 
their smoothness, the additional discretization error incurred when going to a finite 
dimensional representation is as small as can be hoped for.

�0v0(xj) + �1v1(xj) = uj − G�

(
P� f

)
(xj) =∶ �j, j = 0, 1.

(2.8)Mjk =
⟨
�xj ,G�(P��xk )

⟩
,

x̃k = xk + 𝛿𝜈(xk) for 𝜈(xk) = (−1)k+1 and k = 0, 1,

�Mjk =
⟨
𝛿xj ,G𝜋

(
P𝜓𝜑x̃k

)⟩
.

u = G�(P� f ) + [v0 v1]M̃
−1�,
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3 � Discretization

3.1 � One dimension

In order to rip the benefits of the above considerations the interval B1 = [−�,�) is dis‑
cretized at m ∈ ℕ (even) equidistant points (xm

j
)j=0,…,m−1 where

This will be sometimes referred to as the grid Gm
1
 of size m in dimension n = 1 . As 

pointed out in [1], the choice of grid has to be complemented by an appropriate 
choice of corresponding quadrature rule qm = (qm

j
)j=0,…,m−1 such that

for the constant function � with value 1 and for

the (physical space) projection of the test function � on the grid. It is also required 
that the quadrature rule satisfy

for the basis vectors ej , j = −m∕2,… ,m∕2 − 1 , where again the superscript indi‑
cates projection (by evaluation) on the grid.

Definition 3.1  A discretization pair (xm, qm) on B1 satisfying the above properties is 
called faithful discretization.

The trapezoidal rule, for which it holds that

has this property of preserving the duality pairing and the orthogonal structure of the 
continuous setting. Many basic, useful distributions, such as �x0 for any x0 ∈ [−�,�) , 
cannot be directly evaluated at points (short of obtaining a vanishing projection for 
all non-grid points x0 ). It is then better to use an approximation based on Fourier 
coefficients and given by

The reason for this is that, in practice, one often has analytical knowledge of the 
coefficients ũk or the ability to compute them to a high degree of accuracy.

xm
j
= −� +

2�
m

j, j = 0,… ,m − 1.

⟨�m,�m⟩qm = �
m ⋅qm �

m = qm ⋅ �m =

m−1�

j=0

�m
j
qm
j
→ ∫B1

�(x) dx as m → ∞, � ∈ D� ,

�m = PP(�) =
(
�(xm

j
)
)
j=0,…,m−1

,

em
j
⋅qm ē

m
k
= 𝛿jk, −m∕2 ≤ j, k ≤ m∕2 − 1,

qm =
2�
m

(1,… , 1),

um = PF(u) =

m∕2−1∑

k=−m∕2

ũkē
m
k
=

m∕2−1∑

k=−m∕2

ũkPP(ēk), u ∈ D𝜋 .
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Remark 3.2  Observing that 𝛿m
x0
=
∑m∕2−1

k=−m∕2
ek(x0)ē

m
k
 and assuming that x0 = xm

j0
 is one 

of the grid points, one has that

since

It is seen that PF(�x0 ) evaluates exactly (to the discrete Dirac function) if x0 is a grid 
point, while, for x0 ∈ [−�,�) ⧵ Gm

1
 , it has oscillatory character. In any case one has 

that

for any � ∈ D� , with fast convergence.

Remark 3.3  The alternating point trapezoidal rule of quadrature given by 
qm =

2�

m
(2, 0,… , 2, 0) can also be used instead of the regular trapezoidal rule as it 

has been observed to have the required properties in [1].

Definition 3.4  The discrete Fourier transform Fm ∶ ℂ
m
→ ℂ

m is defined by

Remark 3.5  As the discretization is faithful, Fm is an isometric isomorphism. In fact 
it is easy to prove that

so that Parseval’s identity carries over exactly to the discrete setting. Notice that the 
standard Euclidean inner product is used in the right-hand side.

Proposition 3.6  For a finite order distribution u ∈ D
�
� and a test function � ∈ D� , it 

can be shown (see [1, Theorem 4.2] and the considerations preceding it) that, given 
any M ∈ ℕ , one has that

𝛿m
xm
j0

(xm
j
) =

m∕2−1∑

k=−m∕2

ek(x
m
j0
)ēk(x

m
j
) =

m∕2−1∑

k=−m∕2

ei(j0−k)𝜋ej0 (x
m
k
)ēj(x

m
k
)ei(k−j)𝜋

= ei(j0−j)𝜋
m∕2−1∑

k=−m∕2

ej0 (x
m
k
)ēj(x

m
k
) =

m

2𝜋
ei(j0−j)𝜋em

j0
⋅qm ē

m
j

=
m

2𝜋
𝛿jj0

ek(x
m
j
) =

1√
2�

e
−ik�+ik 2�

m
j =

1√
2�

ei(j−k)�e
ij(−�+ 2�

m
k) = ei(j−k)�ej(x

m
k
).

⟨�m
x0
,�m⟩qm → ⟨�x0 ,�⟩ = �(x0) as m → ∞,

Fm(v) =
(
v ⋅qm ē

m
k

)
k=−m∕2,…,m∕2−1

, v ∈ ℂ
m.

v ⋅qm w = Fm(v) ⋅ Fm(w)

�⟨u,�⟩ − um ⋅qm �
m� ≤ c(M, u,�)

1

mM
.
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Notice that, while this result is proved in [1] only for compactly supported distribu‑
tion and compactly supported test functions, the same arguments apply in the current 
context since the compact support condition is not needed in the periodic context where 
no boundary is present and, hence, no boundary effects (read convergence slowdown 
due to boundary mismatch) can occur.

Remark 3.7  At the continuous level, one can think of the series

as the (generalized, since it converges in the sense of distributions only) kernel i of 
the identity map on L2

� since clearly

In this context, a discretization which respects the duality pairing and the orthog‑
onality structure as described above yields “natural” spectral discretizations for a 
variety of important operators which will be exploited later. In particular, it delivers 
such a discretization im for the identity map given by

which is clearly the truncation of the series representation of the kernel i itself. 
Notice that x,  y need not be grid points and that the approximation is thus “grid 
blind” and the error incurred is caused only by truncation of the series and by evalu‑
ation of the exponential function at the points of interest. If the kernel is evaluated 
on the grid points only, then it coincides with the kernel of discrete identity map, i.e. 
with the identity matrix

3.2 � Higher dimensions

In higher dimensions, the periodicity box B = BN is discretized analogously in each 
direction by equidistant points to obtain the grid

i(x, y) =
1

2�

∑

k∈ℤ

eik(x−y), x, y ∈ [−�,�),

�(x) =
1

2�

∑

k∈ℤ

eikx ∫
�

−�
e−iky�(y) dy“ = ”∫

�

−�
i(x, y)�(y) dy, � ∈ D� .

(3.9)

(𝛿m
x
�𝛿m

y
)qm ∶= ⟨𝛿m

x
, 𝛿m

y
⟩qm =

m∕2−1�

k,k̃=−m∕2

ek(x)ēk̃(y)⟨ēmk , e
m

k̃
⟩qm

=

m∕2−1�

k,k̃=−m∕2

ek(x)ēk̃(y)𝛿kk̃ =
1

2𝜋

m∕2−1�

k=−m∕2

eik(x−y) = im(x, y),

im(xm
j
, xm

k
) = �jk.

Gm = Gm
n
= Gm

1
×⋯ × Gm

1
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

N-times

,
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with corresponding quadrature rule qm =
(
2�

m

)N
�
m , where now, �m is thought of as a 

vector of length mN . This way, a faithful discretization respecting duality pairing and 
orthogonality is obtained. In particular, it follows that

for ek(x) =
1

(2�)N∕2
eik⋅x for x ∈ ℝ

N , k ∈ ℤ
N and, again, em

k
= ek

||Gm . Dirac delta func‑
tions are approximated by tensor products

of the corresponding one dimensional representations �m
x
j

0

 , j = 1,… ,N where 

x0 = (x
j

0
)j=1,…,N . As far as test functions �x0

 supported in a neighborhood of a point 
x0 ∈ B go, many choices can be made. The specifics will be given in the numerical 
experiments performed later. For now it is only important to know that such test 
functions can be given explicitly by an analytical formula which allows for accurate 
evaluation anywhere.

Consider now a general pseudodifferential operator a(x,  D) with symbol (
a(x, k)

)
k∈ℤN defined by

and where a(⋅, k) ∶ B → ℂ is assumed to be smooth and periodic for each k ∈ ℤ
N . 

Its Schwartz kernel is given by

for which one has that

More suggestively one can write that

justified by the validity of the formal Parseval’s identity

If a(x, ⋅) is polynomially bounded (for each x), convergence in the sense of distribu‑
tions can be established. For well-known classes of symbols [2], it can be shown 
that ka is smooth away from the diagonal [x = y] , where cancellations are responsi‑
ble for the faster convergence of the series. This is the case for general differential 
operators and the corresponding solutions operators appearing in common boundary 
value problems, for instance. It turns out that, what was observed above for a ≡ 1 

⟨em
k
, ēm

k̃
⟩qm = 𝛿kk̃,

𝛿m
x0
= 𝛿m

x1
0

⊗⋯⊗ 𝛿m
xN
0

,

a(x,D)𝜑 =
1

(2𝜋)N∕2

∑

k∈ℤN

eik⋅xa(x, k)𝜑̂k =
∑

k∈ℤN

ek(x)a(x, k)𝜑̂k,

ka(x, y) =
1

(2�)N

∑

k∈ℤN

eik⋅(x−y)a(x, k) =
∑

k∈ℤN

ek(x)ek(−y)a(x, k),

a(x,D)� = ⟨ka(x, ⋅),�⟩ for � ∈ D� .

ka(x, y) =
(
a(x,D)�y|�x

)
,

(
a(x,D)�y|�x

)
=
(

̂a(x,D)�y|�̂x
)
=

∑

k∈ℤN

a(x, k)ek(−y)e−k(x) =
∑

k∈ℤN

ek(x)ek(−y)a(x, k)
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(leading to the identity map) in one space dimension, is valid for general pseudodif‑
ferential operators.

Theorem 3.8  Given a pseudodifferential operator a(x, D) with kernel ka , it is natural 
to approximate it by the truncated series expansion

where ℤN
m
=
{
k ∈ ℤ

N ∶ ki = −m∕2,… ,m∕2 − 1 for i = 1,… , n
}
 . In this case one 

has that

for am(x,D) = F
−1
m
am(x, ⋅)Fm and

Proof  In one dimension, the extension of (3.9) to general symbols amounts to

since the term 𝛿kk̃ in (3.9) is simply replaced by a(x, k̃)𝛿kk̃ . The rest follows from this 
and the fact that, in higher dimensions, one has that

	�  ◻

This simple observation is quite useful and shows how to produce grid independ‑
ent “spectral” approximations of operators through an approximation of their ker‑
nels. The structure of the kernel made apparent in (3.10) provides a blue print as to 
how to obtain numerical approximations to kernels of discrete operators Km by sim‑
ply computing (�m

x
|Km�m

y
)qm = (Km�m

y
|�m

x
)qm (the two coincide in the real case, which 

always applies in the examples considered here). This is of interest when Km is, for 
instance, the numerical inverse of the discretization Am of an operator A for which 
no analytical inverse is available.

Remark 3.9  For solution operators, the convergence of the series can, in general, be 
quite slow even if it is stronger than in the sense of distributions. This is due to the 
(mildly) singular behavior of the kernel on the diagonal and typically requires spe‑
cial care in the numerical evaluation process. Representation (3.10), however, sug‑
gests natural ways in which to do this by regularization of the kernel through

km
a
(x, y) =

1

(2�)N∕2

∑

k∈ℤN
m

a(x, k)eik⋅(x−y),

(3.10)km
a
(x, y) =

(
am(x,D)�m

y
|�m

x

)
qm
,

am(x, k) = a(x, k), k ∈ ℤ
N
m
.

(
am(x,D)�m

y
|�m

x

)
qm

=
(
Fm[a

m(x,D)�m
y
]||Fm(�

m
x
)
)
qm

=
∑

k∈ℤN
m

ek(−y)a(x, k)ek(x) = km
a
(x, y),

𝛿m
x
= 𝛿m

x1
⊗⋯⊗ 𝛿m

xn
and

ek(z) = ek1 (z1)⊗⋯⊗ ekn (zn), z ∈ ℝ
n.

(
𝛿m
x
|am(x,D)𝜑m

ỹ

)
,
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where D𝜋 ∋ 𝜑ỹ ≃ 𝛿ỹ and ỹ ≃ y is conveniently located. In some cases, this modifica‑
tion can be carried out to obtain an alternate exact representation by a smooth kernel 
with no approximation involved. See the boundary value problem example in the 
next section.

4 � Two dimensional examples

Two examples in two space dimensions are presented here which illustrate the ben‑
efits of the proposed approach.

4.1 � Integration

Consider a (smooth or piecewise smooth) domain Ω ⊂ B and the numerical task of 
approximating the integral

of a smooth function � . Since I is a finite order distribution, one has that

and I(𝜑) =
∑

k∈ℤ2 Ĩk𝜑̂k . If Ĩk can be computed /approximated accurately by Ĩm
k

 on Gm , 
then a numerical quadrature Im for integration over Ω could be obtained by setting

where 𝜑̂m
k
= ⟨𝜑m, ēm

k
⟩qm = Fm(𝜑)k can be computed using the Fast Fourier trans‑

form. The notation ℤ2
m
 is used, as before, for the appropriate set of indices corre‑

sponding to the discretization level considered. While it appears that the problem of 
computing I(�) has simply been replaced by that of evaluating I(ek) for k ∈ ℤ

2
m
 , the 

analytical knowledge of the bases functions and of their properties becomes useful. 
Indeed for k = (0, 0) one has

where Γ = �Ω , � is the outward unit normal to Γ , and 
(
�1(⋅), �2(⋅)

)
 is a parametriza‑

tion of Γ . Here it assumed for simplicity that Γ is connected. If, on the other hand, 
k ≠ 0 , then

I(�) = ∫Ω

�(x) dx, � ∈ D� ,

I =
�

k∈ℤ2

⟨I, ek⟩ēk =
�

k∈ℤ2

Ĩkēk,

Im(𝜑m) =
∑

k∈ℤ2
m

Ĩm
k
𝜑̂m
k
,

(4.11)
Ĩ0 =

1

2𝜋 ∫Ω

dx =
1

4𝜋 ∫Ω

div

(
x1
x2

)
dx =

1

4𝜋 ∫Γ

(x1𝜈1 + x2𝜈2) d𝜎Γ(x)

=
1

4𝜋 ∫
2𝜋

0

[
𝛾1(t)𝛾̇2(t) − 𝛾̇1(t)𝛾2(t)

]
dt,
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Thus, given a representation of Ω via its boundary Γ , either as a list of points (from 
which the relevant geometric quantities can be computed) or via an analytic expres‑
sion (often available even in practice), the computation reduces to that of a periodic 
one dimensional integral which can be performed to high accuracy as already noted 
earlier. The advantage of this approach is that the integrand lives on B, or on Gm , 
and only a simple discrete representation Γn of Γ is needed in order to perform the 
calculation. Notice that the grids Gm and Γn do not need to have any relation whatso‑
ever to one another. In fact, when u is smooth, m can be kept small while n will need 
to be chosen large in order to get a good approximation of the highly oscillatory 
(in general) line integral. The advantage clearly lies in the line integral being one 
dimensional.

4.2 � Boundary value problems

Let again Ω be a smooth domain inside the box B and consider the classical 
boundary value problems

and

where it can be assumed that the data are given as f ∶ B → ℝ and g ∶ Γ → ℝ . Using

and the classical Green’s identity

solution representations can be obtained from

(4.12)

Ĩk =
1

2𝜋 ∫Ω

eik⋅x dx =
1

2𝜋|k|2 ∫Ω

−Δeik⋅x dx

= −
1

2𝜋|k|2 ∫Γ

𝜈 ⋅ ∇eik⋅x d𝜎Γ = −
i

2𝜋|k|2 ∫Γ

[k ⋅ 𝜈]eik⋅x d𝜎Γ

=
i

2𝜋|k|2 ∫
2𝜋

0

[
k2𝛾̇1(t) − k1𝛾̇2(t)

]
eik⋅𝛾(t) dt.

(4.13)
{

−Δu = f in Ω,

u = g on Γ,

(4.14)
{

−Δu = f in Ω,

��u = g on Γ,

G(x, y) = G(x − y) =
1

2�
log

(
|x − y|

)
for x, y ∈ ℝ

2,

(4.15)∫Ω

(uΔG − GΔu) dx = ∫Γ

(u��G − G��u) d�Γ,
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once the boundary functions u and ��u are recovered, depending on whether one 
considers the Neumann or Dirichlet problem, respectively. While the single and 
double layer potentials terms

are important to understand and will appear later for their mapping properties, the 
construction of solutions, both analytical and numerical, presented here will proceed 
slightly differently. The following facts [2] will be useful

where Ω+ = Ω and Ω− = ℝ
2 ⧵Ω , respectively, and the normal to Γ is extended con‑

tinuously in a neighborhood of Γ , and

Observe that the function G(⋅, y) is clearly a harmonic function in Ω for any 
y ∈ B ⧵Ω and for any fundamental solution G. Now consider the Dirichlet problem 
above and the shifted Neumann problem given by

so as to make the problem uniquely solvable. For the Dirichlet problem therefore 
take GD

� (x, y) to be the Green’s function for the periodicity box B characterized by its 
symbol

and, for the Neumann problem, GN
�  with symbol

u(x) = ∫Ω

G(x, y)f (y) dy − ∫Γ

G(x, y)��u(y) d�Γ(y) + ∫ g(y)��G(x, y) d�Γ(y),

u(x) = ∫Ω

G(x, y)f (y) dy + ∫Γ

u(y)��G(x, y) d�Γ(y) − ∫ G(x, y)g(y) d�Γ(y),

(4.16)S(u)(x) = ∫Γ

G(x, y)��u(y) d�Γ(y), x ∈ ℝ
2 ⧵ Γ,

(4.17)D(u)(x) = ∫Γ

u(y)��G(x, y) d�Γ(y), x ∈ ℝ
2 ⧵ Γ.

(4.18)S(u)(x) = lim
Γ∌x̃→x

S(u)(x̃) = ∫Γ

G(x, y)𝜕𝜈u(y) d𝜎Γ(y), x ∈ Γ,

(4.19)𝜕𝜈±S(u)(x) = lim
Ω±∋x̃→x

𝜕𝜈(x̃)S(u)(x̃) = ∓
1

2
u(x) + N(u)(x), x ∈ Γ,

N(u)(x) = ∫Γ

u(y)��(x)G(x, y) d�Γ(y), x ∈ Γ.

(4.20)
{

u − Δu = f in Ω,

��u = g on Γ,

ĜD
𝜋 (k) =

{
0, k = 0,
1

|k|2 , 0 ≠ k ∈ ℤ
2,
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If f is a mean zero function, i.e. if f̂0 = 0 , then GD
� ∗ f = ∫

B
GD

� (⋅, y)f (y) dy satisfies

as desired. One also has that

where P0 = (⋅|e0)e0 is the orthogonal projection onto the subspace consisting of 
constant functions. Similarly for the Neumann problem where

A solution to the boundary value problems can therefore be sought in the form

where the second term is a “harmonic” function in Ω and can be thought of as a 
superposition along the boundary of functions in the kernel of ΔΩ or 1 − ΔΩ , respec‑
tively, which generate the desired boundary behavior for the solution. The function h 
can indeed be determined by the requirement that u = g or ��u = g on the boundary 
Γ , respectively, that is by insisting that

and that

where

for H = GD
� ,G

N
�  . The above is justified by the fact that

This yields an equation

ĜN
𝜋 (k) =

1

1 + |k|2
, k ∈ ℤ

2.

−ΔGD
� ∗ f = f in Ω,

GD
� ∗ (−Δu) = u − P0(u),

(1 − Δ)GN
� ∗ f = f and GN

� ∗ (u − Δu) = u.

u(x) = Gb
� ∗ f (x) + ∫Γ

Gb
�(x, y)h(y) d�Γ(y), x ∈ Ω, b = D,N,

g(x) = ⟨�x, u⟩ =
�
�x,G

D
� ∗ f

�
+
�
�x,G

D
� ∗ (h�Γ)

�
, x ∈ Γ,

g(x) = ⟨−�(x) ⋅ ∇�x, u⟩ = −⟨��(x)�x,GN
� ∗ f ⟩ − ⟨��x�x,G

N
� ∗ (h�Γ)⟩, x ∈ Γ,

H ∗ (h�Γ) = ∫Γ

H(x, y)h(y) d�Γ(y),

��u(x) = ⟨�x, ��u⟩ =
�
�x,

2�

j=1

�j�ju

�
=

2�

j=1

⟨�j�x, �ju⟩

=

2�

j=1

⟨�j(x)�x, �ju⟩ = −⟨�(x) ⋅ ∇�x, u⟩

= −⟨��(x)�x, u⟩, x ∈ Γ.



1 3

A fully discrete boundary integral method based on embedding…

for an operator Mb on Γ given by

with kernel function defined by

for the Dirichlet and Neumann problem, respectively. Here the more transparent 
notation (−Δ�)

−1 and (1 − Δ�)
−1 are used for the operation of convolution with GD

�  
and GN

�  , respectively. P�u denotes the projection onto mean zero functions/distribu‑
tions given by

for a nonnegative function � ∈ D� satisfying

Remark 4.1  Using the suggestive notation

for ⟨dy, 𝜕

𝜕t
⟩ = 𝛾̇(t) when y = �(t) to evoke the validity of

for any parametrization � of Γ and for any smooth integrand v ∶ Γ → ℝ , allows for 
the factor �⟨dy, �

�t
⟩� to be assimilated into the unknown function h to yield �⟨dy, �

�t
⟩�h 

as the new unknown. This is particularly convenient when working at the discrete 
level, where one is only eventually interested in the function

and the determination of h or �⟨dy, �

�t
⟩�h are equivalent.

The kernels mD and mN in (4.22) have the form of those considered in the pre‑
vious section and are of exactly the same type as in the earlier one dimensional 
toy boundary value problem. Just as in that case, �y can be replaced by 𝛿ỹ for

Mb(h) = ǧ =

�
g − ⟨𝛿⋅,GD

𝜋 ∗ f ⟩, b = D,

−g − ⟨𝜈⋅ ⋅ ∇𝛿⋅,GN
𝜋 ∗ f ⟩, b = N,

(4.21)Mb(h) = ∫Γ

mb(x, y)h(y) d�Γ(y), h ∶ Γ → ℝ,

(4.22)

mb(x, y) =

�
mD(x, y) = ⟨�x, (−Δ�)

−1P��y⟩, b = D,

mN(x, y) = ⟨��(x)�x, (1 − Δ�)
−1�y⟩, b = N,

for x, y ∈ Γ,

(4.23)P𝜓u = u − û0𝜓 = u − ũ0𝜓 ,

(4.24)supp(𝜓) ⊂ Ω� and 𝜓̂0 = 1.

d�Γ(y) =
||||

⟨
dy,

�
�t

⟩||||
dt,

∫Γ

v(y) d𝜎Γ(y) = ∫
2𝜋

0

v
(
𝛾(t)

)
|𝛾̇(t)| dt,

x ↦ ∫Γ

Gb
�(x, y)h(y) d�Γ(y) = ∫

2�

0

Gb
�(x, y)h(y)

||||

⟨
dy,

�
�t

⟩||||
dt, Ω → ℝ
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where 𝛿 > 0 can be chosen such that a tubular neighborhood

of Γ can be found with well-defined coordinates (y, s) ∈ Γ × (−2�, 2�) satisfying

where Y(x) denotes the point on Γ closest to x. This corresponds to replacing Γ 
by �Γ = {ỹ | y ∈ Γ} in the evaluation of the kernel (but not in that of the boundary 
integral). Notice that latter distinction is immaterial at the discrete level where the 
boundary measure is assimilated in the unknown function h as described above. An 
even better choice is obtained by replacing �y by

The kernel modification is shown pictorially in Fig. 1.
The upshot is that the operator Mb with singular kernel is replaced by the operator 

M̃b with smooth kernel given by

By choosing 𝜑ỹ localized enough (read close to a Dirac delta function) it follows that

in the strong operator sense. Notice that the projection procedure (4.23) ensures that 
the support of P𝜓𝜑ỹ lies completely outside of Ω and does thus still generate func‑
tions in the kernel of ΔΩ.

ỹ = y + 𝛿𝜈(y), y ∈ Γ,

T𝛿
Γ
= {x ∈ B | d(x,Γ) < 2𝛿}

x = y + s�(y) for y = Y(x) and s = d(x,Γ),

(4.25)𝜑ỹ ∈ D0 with supp(𝜑ỹ) ⊂ Ω� and supp(𝜑ỹ) ∩ supp(𝜓) = �.

�
�mD(x, y) = ⟨𝛿x, (−Δ𝜋)

−1P𝜓𝜑ỹ⟩, b = D,

�mN(x, y) = ⟨𝜕𝜈(x)𝛿x, (1 − Δ𝜋)
−1𝜑ỹ⟩, b = N,

for x, y ∈ Γ.

Mb − M̃b ≃ 0,

y

Γ

Ω

supp(ϕỹ)

ỹ

νΓ(y)

Gπ(x, y) = 〈δx, (−�π)−1Pψδy〉

�

G̃π(x, y) = 〈δx, (−�π)−1Pψϕỹ〉

ϕỹ � δỹ � δy

Fig. 1   A pictorial illustration of the proposed kernel construction
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Remark 4.2  The operator Mb can be shown to be smoothing of one degree of differ‑
entiability in the Dirichlet case, and of none in the Neumann case. For a proof based 
on symbol analysis see e.g. [2].

Remark 4.3  While it is often convenient to work with an explicit fundamental solu‑
tion for −Δ and use it in order to derive the necessary boundary kernels (to be used 
in a numerical implementation of boundary integral type), the approach described 
above does not rely on the explicit knowledge of a Green’s function. Indeed at 
the discrete level, the kernel functions, GD

� = (−Δ�)
−1 and GN

� = (1 − Δ�)
−1 in the 

examples, can be replaced by (Am
D
)−1 and (Am

N
)−1 for any discretizations Am

b
 to the grid 

Gm of a differential operator Ab obtained by spectral or finite difference methods for 
b = D,N . In the above example Am would be a standard spectral or finite difference 
approximations of the periodic −Δ and 1 − Δ operators on the box B. This opens the 
door to applying the method to nonconstant coefficient operators and to constant 
coefficient operators for which no explicit Green’s function or symbol is available.

Next an illustrative analytical result is proved in the Dirichlet case which will 
play an important role in obtaining invertibility results for the numerical schemes 
derived later.

Lemma 4.4  The operator MD defined in (4.21) with kernel mD given by (4.22) is 
invertible.

Proof  First notice that GD
�  is a fundamental solution on the space of mean zero dis‑

tributions. It follows either from Poisson’s summation formula or from the theory 
of pseudodifferential operators [2] that GD

�  is smooth away from the diagonal [x = y] 
and that

i.e., it has the same singular behavior of the full space fundamental solution G. It 
indeed differs from it by a smooth kernel only. Now one has that

and thus that

where � is a smooth function. Consequently one sees that

This means that S̃ enjoys the same classical jump relations as S (and S� ) given by

GD
� (x, y) ≃

1

2�
log

(
|x − y|

)
= G(x, y), x ≃ y ∈ B,

mD(x, y) =
1

4𝜋2

∑

k∈ℤ2

eik⋅x
1

|k|2
(
e−ik⋅y − 𝜓̂k

)
=

1

4𝜋2

∑

0≠k∈ℤ2

eik⋅x
1

|k|2
(
e−ik⋅y − 𝜓̂k

)

mD(x, y) = GD
𝜋 (x, y) −

1

4𝜋2

∑

0≠k∈ℤ2

eik⋅x
𝜓̂k

|k|2
= GD

𝜋 (x, y) − 𝜂(x),

S̃(h) = ∫Γ

GD
� (⋅, y)h(y) d�Γ(y) − �(x)∫Γ

h(y) d�Γ(y) = S�(h) − �(x)∫Γ

h(y) d�Γ(y).
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i.e. it holds

where the superscripts ± indicate limits taken from within and from without Ω , 
respectively, just as in (4.18). It also follows (see e.g. [2]) that MD is Fredholm and 
that it continuously maps Hs(Γ) to Hs+1(Γ) for any s ∈ ℝ . It is therefore enough to 
show that MD is injective “on smooth functions”, i.e. that

for smooth h ∶ Γ → ℝ . Since S̃(h) is defined for all x ∈ B and is harmonic in B ⧵ Γ , 
unique solvability of the Dirichlet problem in Ω yields that S̃(h)||Ω ≡ 0 . It follows 
that

Now, in B ⧵Ω one has that

and, consequently, that

since supp(𝜓) ⊂ B ⧵Ω and 𝜓̂0 = 1 . This, in turn, implies that ∫
Γ
h(y) d�Γ(y) = 0 

because |B ⧵Ω| < |B| = 4𝜋2 . For such a h, it therefore holds that

By construction it holds that

so that Poincaré’s inequality yields

S(h) = ∫Γ

G(⋅, y)h(y) d�Γ(y),

(4.26)

{
�+� S̃(h) = �−� S̃(h) = �ΓS̃(h),

��+
Γ
S̃(h) − ��−

Γ
S̃(h) = −h,

�ΓS̃(h) = �Γ �Γ

mD(⋅, y)h(y) d�Γ(y) = 0 ⟹ h ≡ 0,

��+
Γ
S̃(h) − ��−

Γ
S̃(h) = −��−

Γ
S̃(h) = −h.

Δ�S(h) =
(
𝜓 − 𝜓̂0e0

)
∫Γ

h(y) d𝜎Γ(y),

−∫Γ

h(y) d𝜎Γ(y) = ∫Γ

𝜕𝜈−
Γ

�S(h)d𝜎Γ(y) = ∫B⧵Ω

Δ�S(h) = 𝜓̂0

[
1 −

|B ⧵Ω|
4𝜋2

]
∫Γ

h(y) d𝜎Γ(y),

S̃(h) = S�(h).

∫B

S�(h) dx = 0,

�B⧵Ω

S�(h)
2 dx = �B

S�(h)
2 dx

≤ c�B

||∇S�(h)||
2
dx = c�B⧵Ω

||∇S�(h)||
2
dx,
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and entails that, if S�(h)||B⧵Ω is constant, then it has to vanish identically. Since

it therefore follows that S�(h)||B⧵Ω ≡ 0 . Finally this shows that

thus establishing the claim. 	�  ◻

Proposition 4.5  The modified operator M̃D is injective provided ỹ ≃ y and 𝜑ỹ ≃ 𝛿ỹ 
for y ∈ Γ.

Proof  The operator M̃D has smooth kernel and is therefore compact. Given any 
smooth h ≢ 0 , it follows from the previous lemma that �ΓS̃(h) ≢ 0 . Now it holds that

pointwise everywhere in x, y ∈ Γ (in fact, uniformly). On the other hand, one also 
has that

uniformly in y ∈ Γ in the sense of distributions (or in the sense of measures) so that

pointwise for x ≠ y , i.e., almost everywhere. Since the limiting kernel is integrable 
in view of its logarithmic behavior in the singularity and provides a bound for the 
approximating kernels, Lebesgue’s theorem yields that

uniformly in x ∈ Γ , and, in fact, uniformly in |x − y| ≥ � for any 𝜀 > 0 . Consequently

uniformly in 
�
‖h‖2 = 1

�
 due to the mild (in particular square integrable) singularity 

of mD on the diagonal. This then entails that

for Γ̃ close enough to Γ . 	�  ◻

This useful property will remain valid after discretization, which is just an 
additional approximation, even if, as will be demonstrated in the numerical exam‑
ples, the modified and the original boundary are not that close to each other.

0 = −∫B⧵Ω

S�(h)ΔS�(h) dx = ∫B⧵Ω

||∇S�(h)||
2
dx + ∫Γ

S�(h)
⏟⏟⏟

=0

��ΓS�(h) d�Γ,

��−
Γ
S�(h)

||B⧵Ω = h = 0,

⟨
𝛿x, (−Δ𝜋)

−1P𝜓𝜑ỹ

⟩
→

⟨
𝛿x, (−Δ𝜋)

−1P𝜓𝛿ỹ
⟩

as 𝜑ỹ → 𝛿ỹ,

𝛿ỹ → 𝛿y as ỹ → y,

⟨
𝛿x, (−Δ𝜋)

−1P𝜓𝛿ỹ
⟩
→

⟨
𝛿x, (−Δ𝜋)

−1P𝜓𝛿y
⟩

as ỹ → y,

⟨
𝛿x, (−Δ𝜋)

−1P𝜓𝛿ỹ
⟩
→ mD(x, y) in L1

(
Γ, d𝜎Γ(y)

)
,

�MD(h) → MD(h) as Γ̃ → Γ,

ker(M̃D) = {0},
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Remark 4.6  The result shows that the functions wỹ ∶ Ω → ℝ given by

are “linearly independent” elements of ker(ΔΩ) if Γ̃ ≃ Γ and 𝜑ỹ ≃ 𝛿ỹ . This is intui‑
tively clear for Γ̃ = Γ and 𝜑ỹ ≃ 𝛿y since, then, wy are functions with singularities at 
different locations x = y , yielding a “diagonally dominant” kernel (or matrix, at the 
discrete level).

Remark 4.7  When dealing with the Neumann problem in the classical way, the fact 
that the normal derivative of S is not continuous across Γ as clearly indicated by 
(4.18), does require care in obtaining the correct numerical formulation. By using 
the kernel generation procedure described in this paper, however, the problem is 
completely avoided, since the relevant kernel m̃N is smooth thanks to the replace‑
ment of �y by 𝜑ỹ in its construction.

Remark 4.8  Notice that the proposed kernel construction effectively replaces 
a pseudo-differential operator of type −1 or type 0 for b = D or b = N , respec‑
tively, with an infinitely smoothing operator. Incidentally, an operator of type k is 
a bounded linear operator which maps, in the above context, L2(Γ) to H−k(Γ) . This 
has important consequences. One is that the approximating operator is compact 
with unbounded inverse (more so that the approximated operator), i.e. it does not 
enjoy the same “functional” mapping properties. At the numerical level this will be 
reflected in a significant increase in the condition number of the discretized opera‑
tor. It will, however, be possible to use natural “rougher” discretizations of the same 
operator as preconditioners, thus partially curing the conditioning issues, while 
maintaining the highly desirable fast converging numerical discretizations to the 
approximate smooth kernel and, consequently, accuracy.

5 � Numerical implementation and experiments

The periodic box B = [−�,�]2 is discretized by a uniform grid Gm of m2 points by 
discretizing each direction by

where z = x1, x2 . The boundary value problems will be posed on the unit circle cen‑
tered at the origin, i.e. Ω = �(0, 1) and the padding function � of (4.24) is defined 
by

While it is not analytically compactly supported away from Ω , it numerically van‑
ishes outside a neighborhood of the boundary of the periodicity box B as show in 

wỹ(x) = ∫B

GD
𝜋 (x, z)P𝜓𝜑ỹ(z) dz for y ∈ Γ

zm
j
= −� + 2�

j

m
, j = 0,… ,m − 1,

�(x1, x2) = e
−200 sin2[

1

2
(x1−�)] sin

2[
1

2
(x2−�)].
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the contourplot below. The boundary of the domain Ω is discretized by n equidistant 
points

where �j = 2� j

n
 , yielding the set Γn . Wherever required, the analytical knowledge 

of the boundary Γ of Ω will be used to obtain numerical quantities such as, e.g., 
normal and tangent vectors. In some applications these might need to be replaced 
by their numerical counterparts or done away with altogether by choosing as centers 
for the required test-functions points on the grid which are roughly located along the 
(numerical) outward normal.

At the chosen discretization level m, the discrete Laplace operator −△m on the 
periodicity box is represented spectrally via discrete Fast Fourier transform Fm 
via

The projection P� of (4.23) is discretized by

where um is a grid vector, i.e. a function defined on the grid Gm and �m is the evalua‑
tion of � on it. The testfunctions 𝜑ỹ supported about the point ỹ ∈ B ⧵Ω used in the 
set up of the kernel are chosen of two different types: symmetric and non-symmet‑
ric. The former are defined through

and are discretized by evaluation on the grid Gm and setting � = 4m in order to make 
the testfunction “sharper” compatibly with the resolution power of the grid. For rea‑
sons to be explained later, non-symmetric and “sharper” testfunctions are useful. 

yj =
(
cos(�j), sin(�j)

)
, j = 0,… , n − 1,

F
−1
m
diag

[
(|k|2)k∈ℤ2

m

]
Fm.

Pm
� (u

m) = um −
Fm(u

m)(0, 0)

Fm(�m)(0, 0)
�m,

𝜑ỹ(z) = e
−𝛼 sin2[ 1

2
(z1−ỹ1)]−𝛼 sin

2[
1

2
(z2−ỹ2)], z ∈ B
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Given a point y ∈ Γ = �
1 , let � = �(y) and � = �(y) denote the corresponding unit 

tangent and normal vector, respectively. Then consider

where the reader is reminded that

This type of testfunction, depicted in the contourplot above, has the added advan‑
tage of automatically having vanishing average, and plays an important role in deriv‑
ing efficient numerical discretizations (see Sect. 5.2.1).

5.1 � Bulk integrals

As a first example consider the domain integral as described in Sect. 4.1. Letting 
Ω = �(0, 2) and computing the Fourier coefficients Ĩk of the distribution I = �Ω just 
as explained in (4.11)–(4.12) by using the trapezoidal rule for the angular parametri‑
zation of �2

2
 , one obtains a quadrature rule for integration over Ω . Table 1 summa‑

rizes the results obtained when applying the quadrature to the function

It appears that the number of discretization points n has less of an impact on the 
accuracy than the bulk discretization level m as can be expected since the integrand 
is radially symmetric.

5.2 � Dirichlet problem

Consider now the homogeneous Dirichlet Problem on �(0, 1) and take the right hand 
side to be f ≡ 1 defined on whole square B. In a first step, a grid vector vm is deter‑
mined satisfying

(5.27)𝜕𝜈𝜑ỹ,

ỹ = y + 𝛿𝜈(y), y ∈ Γ.

u = cos
(𝜋
4
r2
)
, r = |x| > 0.

Table 1   Relative error for 
the Fourier quadrature rule at 
different discretization levels

m n e
m,n m n e

m,n

32 128 3.78e−03 128 128 4.30e−08
256 3.78e−03 256 4.33e−08
512 3.78e−03 512 4.33e−08

64 128 1.80e−04 192 128 3.07e−07
256 1.80e−04 256 2.58e−07
512 1.80e−04 512 2.58e−07

96 128 8.73e−06 256 128 1.81e−08
256 8.73e−06 256 4.05e−08
512 8.73e−06 512 4.05e−08
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This can be done simply by taking

where 1m is the constant grid function with value 1 and

Next the boundary weight vector wn is determined such that

This leads to a system of equations for the entries of wn characterized by the matrix 
M with entries

following the blueprint laid out in the previous section. It can be viewed as being 
close to the spectral discretization

of the smooth kernel

As mentioned earlier this discretization km is actually independent of the grid Gm 
and can be evaluated anywhere in B × B , in particular on Γn × Γn . It follows from 
Proposition 4.5 that M is invertible for appropriate choices of ỹ for y ∈ Γn and of 
testfunctions 𝜑ỹ . Once the grid vector wm is found, a numerical solution of the Dir‑
ichlet problem is given by

where rm
Ω

 denotes the restriction (of functions defined on B or of vectors defined on 
the grid Gm ) to Gm ∩ Ω . The numerical results presented in Table 2 provide informa‑
tion about the relative l2 and l∞ errors em,n

2
 and em,n

∞
 computed as follows

−△m vm ≡ 1.

vm = F
−1
m
diag

[
(gm� (k))k∈ℤ2

m

]
Fm

(
Pm
� (1

m)
)
=∶ Gm

� (1
m),

gm� (k) =

{
0, if k = (0, 0),

|k|−2, if k ∈ ℤ
2
m
⧵ {(0, 0)}.

⟨
𝛿m
yj
, vm +

n∑

k=1

wn
k
Gm

𝜋 (𝜑
m
ỹk
)

⟩

qm

= 0 for j = 1,… , n.

Mjk =
⟨
𝛿m
yj
,Gm

𝜋 (𝜑
m
ỹk
)
⟩

qm
, j, k = 1,… , n,

km(x, y) =
⟨
𝛿m
x
, (−△m)−1Pm

𝜓 (𝛿
m
ỹ
)
⟩

qm
, x, y ∈ Γn ⊂ �

1.

k(x, y) =
⟨
𝛿x, (−△)−1P𝜓 (𝛿ỹ)

⟩
, x, y ∈ �

1.

rm
Ω
um,n = rm

Ω

(
vm +

n∑

k=1

wn
k
Gm

𝜋 (𝜑
m
ỹk
)

)
,

em,n
p

=
‖rm

Ω
um,n − rm

Ω
u‖lp

‖rm
Ω
u‖lp

for p = 2,∞,
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This is done for various combined discretization levels (m, n), various distances of ỹ 
from y ∈ Γn , and types of testfunctions in Tables 2, 3, 4. Recorded is also the condi‑
tion number of the obtained matrix M. The results with fixed distance � = 0.4 are 
summarized in Table 2.

It appears clearly that accuracy tends to grow for a given grid parameter m with 
increasing number of boundary discretization points n. This happens until the 
boundary discretization becomes too fine compared to the given, fixed discretiza‑
tion of the periodicity box. Notice that, if the parameter n is kept fixed, the accuracy 
improves also as a function of the discretization size m. Similarly gains stop accru‑
ing when the box discretization becomes too fine compared to the fixed boundary 
resolution. As the operator approximated by M is of negative order 1, the condition 

Table 2   Numerical Results for the Dirichlet Problem, � = 0.4

m n e
m,n
∞ e

m,n

2
cond(M) m n e

m,n
∞ e

m,n

2
cond(M)

64 64 2.12e−05 3.18e−05 2.6e+03 512 128 2.17e−11 1.71e−11 1.7e+06
80 1.33e−05 2.90e−05 1.7e+04 144 1.61e−11 4.83e−12 8.3e+06
96 1.10e−05 2.75e−05 1.1e+05 160 3.01e−11 7.16e−12 3.9e+07
112 6.11e−05 1.42e−04 1.1e+08 1024 64 1.30e−06 1.10e−06 2.5e+03

128 64 1.03e−06 1.01e−06 2.5e+03 80 5.44e−08 4.74e−08 1.3e+04
80 1.94e−07 1.62e−07 1.3e+04 96 2.43e−09 2.14e−09 6.9e+04
96 2.07e−07 9.92e−08 7.0e+04 112 1.14e−10 9.89e−11 3.5e+05

256 64 1.26e−06 1.10e−06 2.5e+03 128 5.48e−12 4.68e−12 1.7e+06
80 5.43e−08 4.74e−08 1.3e+04 144 2.75e−13 2.24e−13 8.3e+06
96 2.32e−09 2.13e−09 6.9e+04 160 2.38e−14 6.39e−15 3.9e+07
112 1.17e−10 1.01e−10 3.5e+05 176 2.44e−14 6.30e−15 1.8e+08

Table 3   Dependence on � = dist(Γ, Γ̃) for m = 8

n � e
m,n
∞ e

m,n

2
cond(M) n � e

m,n
∞ e

m,n

2
cond(M)

64 0.15 9.06e−04 8.69e−04 9.6e+01 80 0.5 2.59e−09 2.09e−09 6.2e+04
0.2 2.28e−04 2.18e−04 1.9e+02 0.6 1.54e−10 1.05e−10 2.7e+05
0.3 1.58e−05 1.45e−05 7.1e+02 0.7 3.84e−11 1.12e−11 1.2e+06
0.4 1.26e−06 1.10e−06 2.5e+03 0.8 2.95e−11 1.06e−11 4.9e+06
0.5 1.15e−07 9.33e−08 8.3e+03 144 0.15 6.10e−06 1.02e−05 3.9e+03
0.6 1.20e−08 8.90e−09 2.7e+04 0.2 4.13e−08 3.81e−08 1.9e+04
0.7 1.42e−09 9.41e−10 8.6e+04 0.3 1.01e−10 1.02e−10 4.3e+05
0.8 1.80e−10 9.65e−11 2.6e+05 0.4 1.61e−11 4.83e−12 8.3e+06
0.9 6.59e−11 2.09e−11 7.9e+05 192 0.15 2.85e−08 1.40e−08 2.9e+04

80 0.15 2.42e−04 2.06e−04 2.1e+02 0.2 3.95e−10 3.63e−10 2.5e+05
0.2 4.24e−05 3.77e−05 5.1e+02 0.3 1.04e−13 7.99e−14 1.6e+07
0.3 1.40e−06 1.24e−06 2.7e+03 0.35 1.94e−14 2.96e−15 1.3e+08
0.4 5.43e−08 4.74e−08 1.3e+04
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number of M is expected to grow linearly in the discretization size. Indeed increas‑
ing n enlarges the condition number. This effect is, however, compounded by the 
matrix M becoming less and less diagonally dominant as the boundary discretiza‑
tion points become denser while the support of the testfunctions remains unchanged 
for fixed discretization level m. Notice that, for fixed n, the condition number of M 
remains virtually unchanged as m changes. The “optimal” value (for the specific 
choice of testfunction type and support size) was chosen based on the results found 
in Table 3 where the arbitrary but still representative choice of m = 256 is made and 
a variety of discretization levels n are shown. The distance is steadily increased until 
it no longer leads to an improvement in the approximation quality. It can be seen that 
the accuracy improves with distance and that optimal distance decreases as the box 
discretization gets finer, thus allowing for a stronger resolution power and, conse‑
quently, a better approximation of the testfunctions. There appears to be a trade-off 
between condition number of M and accuracy of the outcome, where the best accu‑
racy is obtained at the cost of a high condition number.

In perfect agreement with the theoretical analysis, the condition number of M is 
the least when using Dirac delta functions located along the discrete boundary Γn in 
the numerical representation of the kernel. This is clearly evident in the data shown 
in Table 4 for two choices of discretization level, m = 128, 256.

Again the low condition number comes at the price of a reduced accuracy (if the 
comparison is carried out at the same discretization level m).

5.2.1 � Numerical implementation

The necessity to project a datum onto the subspace of mean zero functions in the 
above procedure effectively destroys the translation invariance of the constant coeffi‑
cients equation on the periodic box. This makes it necessary to compute a box solu‑
tion for each entry of the matrix M. While it was chosen to illustrate the ideas using 
test-functions 𝜑ỹ approximating Dirac distributions �y in order to harvest the ben‑
efits of the theoretical analysis ensuring injectivity (and thus invertibility) of M, it 
is clear that other choices are possible, such as normal derivatives of testfunctions. 
These are particularly suited since they are mean zero functions supported in a small 

Table 4   Kernel based on Dirac delta functions supported along Γ

m n cond(M) e
m,n
∞ e

m,n

2
m n cond(M) e

m,n
∞ e

m,n

2

128 64 10.9 5.49e−02 4.93e−02 256 96 14.34 4.43e−02 4.67e−02
80 15.05 4.06e−02 2.72e−02 112 18.06 3.46e−02 3.46e−02
96 21.16 2.59e−02 1.57e−02 124 21.49 2.74e−02 2.51e−02
112 26.01 1.25e−02 7.50e−03 144 25.58 2.32e−02 1.81e−02
128 31.88 7.06e−03 2.31e−03 160 29.83 2.17e−02 1.36e−02
144 38.78 1.05e−02 7.72e−03 176 36.52 1.58e−02 1.03e−02

256 64 8.42 8.27e−02 9.57e−02 192 42.51 1.20e−02 7.80e−03
80 11.26 6.09e−02 6.61e−02 208 47.22 1.13e−02 5.66e−03
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neighborhood of their “center-point”. As such they do not require to be projected 
onto the mean free subspace. It is therefore enough to compute

for one point y ∈ Γ only since

where �vu = u(⋅ − v) is the translation of a periodic function u. This also gives 
insight into the “circulant” structure of the matrix M.

It is also possible to replace the test-function centers {ỹ ∶ y ∈ Γ} by nearby or 
closest (box) grid points in Gm so that the translations required to obtain the kernel 
from the knowledge of, say, (−Δ𝜋)

−1𝜕𝜈(y1)𝜑ỹ1
 , can be implemented efficiently (i.e. in 

physical space).

Remark 5.1  Notice that, if Δ is replaced by a more general elliptic non-constant 
coefficient differential operator, the kernel construction given above is still viable 
and would deliver a purely numerical boundary integral method which does not rely 
on the explicit analytical knowledge of a fundamental solution for the differential 
operator. It even allows replacing the “discrete” fundamental solution by a smooth 
kernel which can more accurately be captured numerically. Remarkably this can be 
done at effectively not cost due to the availability of the natural preconditioning pro‑
cedure described above.

Remark 5.2  The proposed construction of smooth kernels also suggests that iterative 
parallelized methods can be used in the computation of the entries of the matrix M 
with a small number of iterations in the case of a non-constant coefficient differen‑
tial operator A , at least when the coefficients vary smoothly. This is due to the fact 
that the building blocks A𝜋

−1𝜑ỹ will be locally close to each other thus providing 
excellent initial guesses for an iterative solver.

5.2.2 � Kernel functions

Ultimately the accuracy of the method rests on its ability to faithfully compute lin‑
early independent functions in the kernel of the Laplacian ΔD

Ω
 on the domain Ω . 

These are known explicitly for Ω = �(0, 2) and given by

in polar coordinates. Using the method described above, it is possible to compute a 
numerical approximation of these functions defined on Gm . Tables 5 and 6 give the 
relative errors observed for the first 33 kernel functions at two distinct discretization 
levels.

(−Δ𝜋)
−1𝜕𝜈(y)𝜑ỹ =

2∑

j=1

𝜈j(y)(−Δ𝜋)
−1𝜕j𝜑ỹ

(−Δ𝜋)
−1𝜕j𝜑ỹ+v = (−Δ𝜋)

−1𝜏v(𝜕j𝜑ỹ) = 𝜏v(−Δ𝜋)
−1𝜕j𝜑ỹ, j = 1, 2,

�k(r, �) =
(
r

2

)k

eik� , r ∈ [0, 2], � ∈ [0, 2�), k ∈ ℕ,
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5.3 � Neumann problem

Next, using the same notations and discretization procedure, the Neumann 
problem

for f (x) = cos(
�

2
r)
(
1 +

�2

4

)
+

�

2
sin(

�

2
r)∕r , r =

√
x2
1
+ x2

2
 and x ∈ B . This problem 

has the exact solution u given by u(x) = cos
( �

2
r(x)

)
 , x ∈ Ω . In order to show that the 

method is robust in the sense that it does not depend on the exact choices of its 
ingredients, a different cutoff function is used in order to modify the right-hand-side 
f to make it into a doubly periodic function which fits the periodic framework. More 
specifically, take

(5.28)
{

u −△u = f in Ω = �(0, 2),

��u = 0 on Γ = �
1
2
,

Table 5   Resolution of the first 33 kernel functions for m = 128 , n = 80 , and � = 0.4

�∞-err �2-err �∞-err �2-err �∞-err �2-err

�
1

1.84e−07 8.11e−08 �
12

1.08e−05 9.60e−06 �
23

1.43e−03 9.88e−04
�
2

1.72e−07 9.16e−08 �
13

2.14e−05 1.39e−05 �
24

2.05e−03 1.57e−03
�
3

3.45e−07 2.08e−07 �
14

3.65e−05 2.28e−05 �
25

3.68e−03 2.36e−03
�
4

5.99e−07 3.60e−07 �
15

5.80e−05 3.13e−05 �
26

4.40e−03 3.51e−03
�
5

1.21e−06 5.73e−07 �
16

7.81e−05 5.81e−05 �
27

6.87e−03 5.60e−03
�
6

1.23e−06 8.65e−07 �
17

1.10e−04 7.28e−05 �
28

1.17e−02 9.09e−03
�
7

2.53e−06 1.32e−06 �
18

1.60e−04 1.04e−04 �
29

1.97e−02 1.32e−02
�
8

4.29e−06 2.66e−06 �
19

2.99e−04 1.72e−04 �
30

2.76e−02 2.14e−02
�
9

5.50e−06 2.92e−06 �
20

3.10e−04 2.63e−04 �
31

3.84e−02 3.08e−02
�
10

5.59e−06 4.38e−06 �
21

6.44e−04 4.12e−04 �
32

4.99e−02 4.63e−02
�
11

1.26e−05 6.32e−06 �
22

1.07e−03 6.35e−04 �
33

9.99e−02 7.05e−02

Table 6   Resolution of the first 33 kernel functions for m = 512 , n = 256 , and � = 0.4

�∞-err �2-err �∞-err �2-err �∞-err �2-err

�
1

1.24e−13 1.09e−14 �
12

1.57e−13 5.68e−14 �
23

6.23e−13 2.63e−13
�
2

9.17e−14 1.10e−14 �
13

1.90e−13 5.43e−14 �
24

7.15e−13 4.11e−13
�
3

1.29e−13 1.63e−14 �
14

1.34e−13 5.18e−14 �
25

9.98e−13 4.19e−13
�
4

1.23e−13 1.90e−14 �
15

2.03e−13 6.65e−14 �
26

1.25e−12 5.38e−13
�
5

1.22e−13 2.00e−14 �
16

2.73e−13 8.48e−14 �
27

1.52e−12 6.23e−13
�
6

1.04e−13 2.24e−14 �
17

2.65e−13 9.30e−14 �
28

1.48e−12 7.26e−13
�
7

1.31e−13 2.58e−14 �
18

3.68e−13 1.15e−13 �
29

1.99e−12 9.46e−13
�
8

1.14e−13 2.87e−14 �
19

3.73e−13 1.16e−13 �
30

1.80e−12 1.04e−12
�
9

1.23e−13 3.03e−14 �
20

4.03e−13 2.01e−13 �
31

2.77e−12 1.27e−12
�
10

1.10e−13 3.18e−14 �
21

5.31e−13 1.82e−13 �
32

3.38e−12 1.80e−12
�
11

1.74e−13 3.64e−14 �
22

4.84e−13 2.58e−13 �
33

3.50e−12 1.83e−12
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which essentially vanishes close to the boundary of B and takes the value 1 on Ω . 
Replace then f by f̃ = f𝜓 to obtain a periodic function which coincides with f on Ω . 
In numerical experiments, this is clearly performed on the grid, i.e. by replacing f m 
by f̃ m = 𝜓mf m . The solution procedure is parallel to that employed for the Dirichlet 
problem. First the function

is computed. Then the kernel matrix M is obtain as

where

is used as a discretization of the normal derivative operator at the point 
(y1

j
, y2

j
) = yj ∈ Γn . Finally the weight vector wn is determined by solving

where zj = ⟨−
�
��(yj)�yj

�m
, vm⟩qm for j = 1,… , n . Results of similar numerical experi‑

ments to those performed for the Dirichlet problem are summarized in Table 7.

Remark 5.3  Notice that in all numerical experiments, radially symmetric functions 
were used. One reason is that radial symmetry is not readily compatible with perio‑
dicity in that it cannot be represented with very few periodic modes. Another is that 
explicit formulæ are available.

Remark 5.4  While it might appear that in the construction of the matrix kernel M, 
one needs to solve n problems in the discretized periodicity box, this is not always 
the case. As for the Dirichlet problem, the operator 1 −△ is translation invariant. 
It follows that it is enough to solve one such problem, e.g. for k = 1 since all other 
solutions would be a translate of the solution for k = 1 . This is true because the 
datum 𝜑ỹk

 is a translate of 𝜑ỹ1
 . To make sure that the translation be compatible with 

the grid Gm , the theoretical location ỹ = y + 𝛿𝜈Γ(y) would have to be replaced by the 
closest grid point in Gm (for instance).

�(x) =
1

2

{
1 + tanh

(
−
5

2
[r − (� − 0.2)2]

)}
,

vm = (1m −△m)−1 f̃ m = F
−1
m
diag

((
1

1 + |k|2

)

k∈ℤ2
m

)
Fm(f̃

m)

Mjk =
⟨
−
(
𝜕𝜈(yj)𝛿yj

)m

, (1m −△m)−1𝜑m
ỹk

⟩

qm
, j, k = 1,… ,m,

−
(
𝜕𝜈(yj)𝛿yj

)m

= −𝜈1(yj)(𝛿
�

y1
j

)m ⊗ 𝛿m
y2
j

− 𝜈2(yj)𝛿
m

y1
j

⊗ (𝛿�
y2
j

)m

⟨
−
(
𝜕𝜈(yj)𝛿yj

)m

, vm +

n∑

k=1

wn
k
(1m −△m)−1𝜑m

ỹk

⟩

qm

= z +Mwn = 0,
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6 � Conclusions

An effectively meshless approach to boundary value problems in general geome‑
try domains is proposed based on the use of uniform discretizations of an encom‑
passing computational box. Exploiting a pseudodifferential operator framework, 
relevant kernels can be replaced by smoother kernels which allow for more accu‑
rate numerical resolution. No explicit knowledge of the kernels is required beyond 
their analytical structure which is used in an essential way in order to construct 
their numerical counterparts. The smooth kernels, which correspond to infinitely 
smoothing compact operators, lead to discretization matrices which are badly ill-
conditioned. This points to a trade-off between high accuracy and numerical con‑
ditioning. While this does not impact solutions obtained by direct inversion of 
the matrices, it would require preconditioning when using iterative solution meth‑
ods. The methodology proposed is very general and can be employed in three 
space dimensions as well as to more general linear and nonlinear boundary value 
problems. The fact that no remeshing is required makes this method particularly 
appealing for free and moving boundary problems. These extensions will be the 
topic of forthcoming papers.
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Table 7   Numerical experiments for the Neumann problem (5.28)

m n � cond(M) e
m,n
∞ e

m,n

2
m n � cond(M) e

m,n
∞ e

m,n

2

32 32 0.3 3.31e+00 4.84e−03 2.97e−03 128 64 0.3 2.82e+01 2.59e−04 2.55e−04
0.4 6.04e+00 8.67e−03 4.94e−03 0.4 9.83e+01 2.12e−05 2.02e−05
0.5 9.61e+00 3.99e−03 3.86e−03 0.5 3.27e+02 6.24e−06 4.44e−06

48 0.3 9.98e+00 1.31e−02 1.20e−02 256 64 0.3 2.84e+01 2.65e−04 2.56e−04
0.4 2.85e+01 1.22e−02 9.84e−03 0.4 9.82e+01 1.91e−05 1.84e−05
0.5 1.79e+02 3.37e−03 2.35e−03 0.5 3.26e+02 1.53e−06 1.47e−06

64 32 0.3 3.14e+00 2.18e−02 2.08e−02 128 0.3 2.46e+03 3.41e−08 3.34e−08
0.4 5.45e+00 5.58e−03 5.57e−03 0.4 3.33e+04 4.41e−10 1.75e−10
0.5 9.38e+00 2.39e−03 2.19e−03 0.5 4.08e+05 5.96e−10 3.87e−10

48 0.3 9.36e+00 1.70e−03 1.36e−03 512 128 0.3 2.46e+03 3.43e−08 3.35e−08
0.4 2.33e+01 5.51e−04 3.24e−04 0.4 3.33e+04 2.65e−10 1.93e−10
0.5 5.35e+01 2.94e−04 1.42e−04 0.5 4.08e+05 1.05e−10 3.95e−11

64 0.3 2.90e+01 1.38e−04 5.22e−05 256 0.3 1.88e+07 1.76e−10 7.73e−11
0.4 9.89e+01 6.46e−04 5.20e−04 0.4 3.88e+09 1.76e−10 7.72e−11
0.5 3.48e+02 3.98e−04 3.53e−04 0.5 6.47e+11 1.76e−10 7.72e−11
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