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Abstract
A classical model of fluid dynamics is considered which describes the shape 
evolution of a viscous liquid droplet on a homogeneous substrate. All equilibria 
are characterized and their stability is analyzed by a geometric reduction argument.
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1.  Introduction

Consider the shape of a droplet of a viscous liquid on a homogeneous substrate and denote 
by Ω( )t  the region wetted by the liquid. The droplet can then be described by a height field 

R: Ω( ) →u t  at any given time during the evolution (at least in the regime of interest). 
Asymptotic and averaging techniques yield, on appropriate assumptions (very small and very 
viscous droplet, see [8]), a simplification of Navier–Stokes equations  which is considered 
here. The system in question reads

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

∫

λ−Δ = Ω( ) >

= ∂Ω( ) >

= > >

= ( ) ∂Ω( ) >

Ω( ) = Ω

Ω( )

u t t

u t t

u x V t

V F Du t t

in  ,  for  0,

0 on  ,  for  0,

d 0 for  0,

on  ,  for  0,

0 .

t
0

0

� (1.1)
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The third equations  encodes conservation of volume and is responsible for the presence 
of the time dependent and unknown parameter λ in the first equation (details can again be 
found in [8]). The nonlinearity F drives the evolution, i.e. the contact angle dynamics, via the 
fourth equation in (1.1) for the front velocity V in outward normal direction ν( )t  to the surface 
Γ( ) = ∂Ω( )t t . It is easily seen that balls evolve invariantly (maintaining their shape) for these 
equations and that a radius re is singled out by the volume conservation constraint combined 
with any canonical choice of F such as

( ) = − ( ) = − >F s s F s s s1 or  1, 0,2 3

and that such equilibrium ball is stable for the corresponding ordinary differential equation it 
satisfies (see [8]). For the purposes of this paper it will only be assumed that

> ( ) =′F F0 and that  1 0,� (1.2)

thus effectively prescribing the contact angle below which the droplet would tend to locally 
retract and above which it would locally expand. While model (1.1) yields droplets with con-
cave height profile, it is experimentally observed that the actual droplet pofile becomes convex 
before contact (the outermost boundary of the wetted region) and might exhibit a precursor 
film beyond contact, in which case latter would be defined as the location where the change 
in convexity occurs. Detailed analysis of the fluid behavior in the vicinity of contact leads to 
different effective driving forces F (see [4, 15] for instance). Assumptions (1.2) can be viewed 
as minimal qualitative assumptions of any physically relevant model. They are motivated by 

[5], where the author states that It is always found that ⩾θ∂
∂

0
U

 whether or not the other fluid is 

a gas or an immiscible liquid when talking about the shape evolution of a fluid droplet located 
on a substrate and surrounded by another fluid or a gas. In the notation used therein this means 
that the velocity of the wetting front always increases as a function of the contact angle.

It will be shown here that circles are the only equilibria of (1.1) and that they are sta-
ble with respect to any smooth perturbation. In particular, a perturbed circle will converge 
exponentially fast back to a circle albeit centered at a possibly different point. Its radius is, 
however, uniquely determined by volume conservation and therefore remains unchanged as 
compared to that of the circle being perturbed. The proof of stability hinges on the explicit 
computation of the linearization of (1.1) in a circle and on the use of a special nonlinear 
coordinate system in the ‘space of curves’ suggested by the translation invariance of the 
system.

Previous results about this basic model of fluid dynamics include local and global existence 
of appropriate weak solutions [10, 11] which would cover instances where singularity forma-
tion can occur (see the numerical experiments of [7]) and a local well-posedness result [6] in 
the category of classical solutions.

The remainder of the paper is organized as follows. In the next section the results of [6] 
are briefly summarized in order to introduce the appropriate functional setup and since they 
form the starting point for the subsequent analysis. Then equilibria are characterized and 
their stability is investigated by a fully explicit calculation of the linearization of the nonlin-
ear, nonlocal curve evolution described by the last two equations of (1.1) and obtained by 
thinking of the other unknown, i.e. u, as the function of Γ( )t  determined by solving the first 
three equations, combined with the introduction of convenient nonlinear coordinates in the 
‘space of curves’ Γ with respect to which the linearization in the equilibrium circle coincides 
with the computed one. In these nonlinear coordinates the evolution admits a simplified 
description of the dynamics obtained by a direct and revealing exploitation of the translation 
invariance of the system.

P Guidotti﻿Nonlinearity 28 (2015) 3175
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2.  Setup

In order to reduce system (1.1) to an evolution equation for a simple unknown, an appropriate 
parametrization of Γ( )t  is necessary. To that end, fix a ∞C -hypersurface Γ close to Γ = ∂Ω( )00  
in such a way that the latter can be described as a graph in normal direction over Γ, i.e.

ρ νΓ = { + ( ) ( ) ∈ Γ}x x x x ,0 0

for some function Rρ : Γ →0 . For technical reasons (better invariance properties with respect 
to interpolation) so-called little Hölder spaces prove a convenient choice of phase space. It is 
recalled that, for α ∈ ( )0, 1  and an open subset of Rn, the space of bounded uniformly Hölder 
continuous functions of exponent α

R
⎧
⎨
⎩

⎫
⎬
⎭

( ) = : → ∣ ‖ ‖ < ∞ [ ] ≔ ( ) − ( )
−

< ∞α
α α∞

≠
O u O u u

u x u y

x y
BUC , sup

x y

is a Banach space with respect to the norm

‖⋅‖ = ‖⋅‖ +[⋅]α α∞ ∞ .,

For N∈k  one also defines

β( ) = { ∈ ( ) ∣ ∂ ∈ ( ) ∀ ∣ ∣= }α β α+ O u O u O kBUC BUC BUC ,k k

which is a Banach space with respect to the norm ‖⋅‖ = ‖⋅‖ + [∂ ⋅]α β
β

α∞ ∣ ∣=supk k k, , . Here it is 
used that

R( ) = { : → ∣ −
}

O u O u kBUC  is  timescontinuously differentiable with

bounded and uniformly continuous derivatives

k

and ‖⋅‖ = ‖∂ ‖β
β

∞ ∣ ∣⩽ ∞usupk k, . Then the little Hölder spaces are given by

RS( ) = [ ( )]α+
‖⋅‖ αh O rclosure ,k

O
n

k,

i.e. as the completion of the restriction rO of smooth rapidly decreasing functions S to the set 
O with respect to the α+BUCk  topology. These spaces can all be transplanted on any smooth 
compact manifold by the use of standard localization techniques and a smooth partition of 
unity. This is how the notation (Γ)α+hk  should be interpreted. Any given function ρ ∈ (Γ)α+h2  
yields a diffeomorphism θρ between Γ and ρ νΓ = { + ( ) ( ) ∣ ∈ Γ}ρ x x x x , which can be extended 
to a diffeomorphism of Rn still denoted by θρ such that

⎪

⎪
⎧
⎨
⎩

θ
φ ρ ν

→ ↦
( ) + [Λ( ) + (Λ( )) ( ( ))] ( ( )) ∈ Ω

∉ Ω
ρ

Λ

Λ
y

X y y y X y X y y

y y
: ,

, ,

, ,
n nR R

where φ is a smooth cut-off function, ΩΛ is a tubular neighborhood of Γ and 
( ( ) Λ( )) ∈ Γ × (−Λ Λ)X y y, ,  are ‘tubular coordinates’ of y, i.e. they satisfy

ν= ( ) + Λ( ) ( ( ))y X y y X y .

This set up is visulalized in figure 1 for the benefit of the reader. Then

θ θ θ(Ω) = Ω (Γ) = Γ ∣ =ρ ρ ρ ρ ρ ΩΛ
, , id.c

Clearly the tubular neighborhood is taken as small as the geometry of Γ requires in order 
to obtain a well-defined coordinate system ( ( ) Λ( ))X y y,  and ρ small enough as to ensure that 

⊂Γ Ωρ Λ. More explicit and quantitative assumptions can be found in [6] but are not needed in 
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the remainder of this paper. It should, however, be observed that the smallness assumption on 
ρ ∈ (Γ)α+h2  is immaterial since Γ ∈ ∞C  can be chosen arbitrarily close to Γ0 so that ρ0 will be 
small. In the analysis to follow this represents no restriction. With the diffeomorphism θρ in 
hand, the first three equations of (1.1) can be pulled back to a fixed domain Ω to give

⎧

⎨
⎪
⎪

⎩
⎪
⎪∫

ρ θ θ λ

θ

( ) = − *Δ * = Ω >

= Γ >

∣ ∣ = > >

ρ
ρ

ρ
Ω

v v t

v t

v D y V t

in  ,  for  0,

0 on  ,   for   0,

det d 0 for  0,0

A

� (2.1)

by means of

θ θ* : (Ω ) → (Ω) ↦ = ∘ρ
α

ρ
α

ρ
+ +h h u v u, ,2 2

and the associated push-forward θ*
ρ given by its inverse. This can be done on the assumption 

that Ω( ) = Ωρ( ⋅)t t,  for a given

ρ : [ ] → (Γ)α+T h0, ,2

yielding Γ( ) = Γρ( ⋅)t t,  and satisfying

B Vρ δ( ⋅) ∈ ( ) ∩ (Γ) = ∈ [ ]α
(Γ)

+
α+t h t T, 0, :  for  0, ,h

2
1

for a small δ > 0 as described in [6]. Notice that B δ( )0,X  represents the ball of radius δ about 0 
in the space X. It is useful to denote the solution of (2.1) obtained by fixing Vρ ∈  by

Sθ ρ= * = ( )ρ ρ ρv u 1,

where S Sρ λ ρ ρ( ) = ( ) ( )1 1 for the solution ρ θ( ) = = *ρ ρ ρv u1S  of

⎪

⎪

⎪

⎪
⎧
⎨
⎩

⎧
⎨
⎩

ρ( ) = Ω >

= Γ >

−Δ = Ω >

= Γ >

ρ

ρ

v t

v t

u t

u t

1 in   for  0,

0 on   for  0,
 or,  equivalently,

1 in   for  0,

0 on   for  0,

A

in the original coordinates, and where

∫ ∫
λ ρ

θ
( ) =

∣ ∣
=

¯ρ ρ ρΩ Ωρ

V

v D y

V

u xdet d d
,0 0

Figure 1.  The local picture in a tubular neighborhood, bounded by the upper and lower 
most dotted curves, of the reference manifold Γ. The domain Ωρ is bounded from above 
by Γρ.
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rescales the solution to satisfy the volume constraint. As shown in [6], it is observed in passing 
that operators or other quantities depending on ρ, do indeed depend analytically on it. This 
fact will be needed later. In order to reformulate the kinematic equation in (1.1), it is conve-
nient to define

R ρΩ → → Λ( ) − ( ( ))ρ ΛN y y X y: , ,

so that

νΓ = ( ) ( ) =
∇ ( )

∣∇ ( )∣
∈ Γρ ρ ρ

ρ

ρ
ρ

−N y
N y

N y
y0  and  , .1

Then it can be written

ρ
( ) =

∣∇ ( )∣
= (∣ ∣)

ρ
ρV y t

N y
F Du, .t

Observing that ∣ ∣ = −∂νDu u on Γρ in this particular case, the following single scalar nonlin-
ear, nonlocal evolution equation for the ‘shape function’ ρ results

⎪

⎪
⎧
⎨
⎩

ρ λ ρ ρ

ρ ρ

= ∣∇ ∣ (−∂ ) = ∣∇ ∣ (− ( )∂ ¯ ) = ( ) Γ >

( ) = Γ

ρ ν ρ ρ ν ρρ ρN F u N F u G t: on   for  0,

0 on  .

t

0

� (2.2)

It follows from [6] that (2.2) is equivalent to the original problem in the context of classical 
solutions, that G depends analytically on ρ and that

Theorem 2.1.  Given Vρ ∈0 , there exists T  >  0 and a unique solution

ρ ∈ ([ ] (Γ)) ∩ ([ ] (Γ))α α+ +T h T hC 0, , C 0, ,1 1 2

of (2.2) and, thus, a solution S ρ( ( ) Ω )ρ1,  of (1.1).� 

The proof relies on localization, perturbation, and optimal regularity results for parabolic 
equations which make it possible to reduce local well-posedness to properties of the lineari-
zation ρ( )DG 0  in the initial datum. The abstract approach of [6] is necessary to deal with the 
most general case but does not provide any explicit representation for the linearization. It is 
qualitative in nature and only yields that ρ( )DG 0  is the infinitesimal generator of an analytic 
semigroup on (Γ)α+h1  with domain (Γ)α+h2 . Here and in order to obtain the stability results 
outlined earlier a much more detailed understanding of ρ( )DG 0  is necessary in the special case 
when SΓ = Γ = .r0 e

3.  Equilibria

While the results remain valid for any space dimension, the analysis would have to be adapted 
to the specific dimension considered. The technique would essentially coincide in all dimen-
sions but the specific spherical functions involved would have to be chosen depending on the 
dimension. In order to avoid rendering the presentation unnecessarily cumbersome, the choice 
is made to consider the case n   =   2 in this paper.

An equilibrium solution of (1.1) is obtained if ( Ω )u ,e e  can be found such that

= (∣ ∣) =V F Du 0.e

On the assumptions made earlier this is the case only if

∂ = −∣ ∣ ≡ − Γνu Du 1 on ,e e e

P Guidotti﻿Nonlinearity 28 (2015) 3175
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so that ue satisfies

⎧

⎨
⎪

⎩
⎪

λ−Δ = Ω

= Γ

∂ = − Γν

u

u

u

, in  ,

0, on  ,

1, on  .

e e

e e

e e

A classical rigidity result by Serrin [14] then implies that a classical solution of the above 
overdetermined system can only exist if Ωe is a circle of some radius re determined by the 
additional requirement that

∫ =
Ω

u x Vd .e 0
e

Theorem 3.1.  If ( Ω )u ,e e  is a steady-state of (1.1), then Ωe must be a circle Bre of radius

⎛

⎝
⎜

⎞

⎠
⎟

π
= = −r

V
u r

r

r

4
 and 

1

2
,e

0
e e

2

e

3

where r is the distance from the center of the circle. The parameter λ satisfies λ = r2/ e.

Proof.  Serrin’s classical result implies that Ωe is a circle. The rest follows from a direct 
computation.� 

Remarks 3.2.  (a) � The author of [8] includes a partial stability result. He fixes a center of 
the circle and derives an ode describing the evolution of a circle of initial 
radius ≠r r0 e with the same center. He shows that the circle of radius re is 
locally asymptotically stable.

	(b)	� In order to obtain a stronger stability result the center and, more in general, the geometry 
needs to be perturbed as well. The ‘freedom in the choice of center’ is responsible for the 
existence of a (translational) eigenvalue σ ρ∈ ( ( ))DG0 e  where ρ ≡ 0e  when the reference 
manifold is the boundary Sre of the stationary solution itself.

	(c)	� The functions in the kernel of DG(0) can be computed by parametrizing the shifted circle

S Rϵ∂Ω = + ∈ϵ z z, ,v r
2

e

		� over the stationary reference circle which can be assumed to be centered in the origin 
without loss of generality. Using the representation described in the introduction through 
a parametrization over the reference circle amounts to determining the function S R: →ϵh  
such that

S ϵ ϕ ν ϕ ϕ π+ = {[ + ( )] ( ) ∣ ∈ [ )}ϵz r h 0, 2 ,r e ee

		 where

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ν ϕ
ϕ

ϕ
τ ϕ

ϕ

ϕ
( ) =

( )

( )
( ) =

− ( )

( )

cos

sin
,

sin

cos
e e

		� are the unit outward normal and unit tangent to the circle Sre, respectively. This notation 
will be used again later. It must hold that

ϕ ν ϕ ϵ∣[ + ( )] ( ) − ∣ =ϵr h z r ,e e
2

e
2

		 which, after differentiation in ϵ and evaluation in ϵ = 0, yields
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ϵ
ϕ ν ϕ ϕ ϕ( ) = ( ) ⋅ = ( ) + ( )

ϵ
ϵ

=
h z z z

d

d
cos sin .

0
e 1 2

		 This shows that + ∈ ( ( ))z z DGcos sin ker 01 2  for any R∈z 2.
	(d)	� It will be shown that the kernel only consists of the above ‘translational’ eigenvectors. 

Translation also yields a manifold of equilibria E (the set of all circles with fixed radius re) 
which can be locally parametrized as in (c). It in fact corresponds to a local center mani-
fold for the evolution equation.

4.  Linearization

Consider now the equilibrium Sre centered at the origin and use it as the reference manifold Γ 
so that the equilibrium solution ρe vanishes identically. Then

ν( ) =
∣ ∣

Λ( ) = ∣ ∣− =
∣ ∣

X y r
y

y
y y r

y

y
, , ,e e e

and = ( ) + Λ( )
∣ ∣

y X y y y

y
. In this case the function ρN  is simply given by

ρ( ) = ∣ ∣− − ( ∣ ∣)ρN y y r y y/ .e

For ease of computation and notation the Euclidean coordinate y or the polar ϕ( )r,  will be 
used interchangeably. In particular, functions on Sre will be identified with functions of the 
angle variable ϕ. With this convention one has

ν ϕ ρ ϕ τ ϕ ρ ϕ∇ = ( ) − ( ) ( ) ∣∇ ∣ = + ( )
′

′ρ ρ
−N

r
N r and  1 .e

e
e

2
e

2 2

Noticing that ∣∇ ∣ =ϵ ϵ=N 1h 0  and recalling that F(1)   =   0 it is arrived at

ϵ
ϵ

ϵ
λ ϵ( ) = − ( ) ∣ [ ( )∂ ¯ ]′

ϵ
ϵ ν ϵ

=
= ϵG h F h u

d

d
1

d

d
.h

0
0 h� (4.1)

It turns out, contrary to the approach taken in [6], that it is more convenient not to perform the 
transformation to a fixed domain when computing the linearization in a circle.

Theorem 4.1.  Let ∈ (Γ)α+h h2 . Then

Sϵ π
∂ ¯ = [ ( ) − ]

ϵ
ν ϵ

=
ϵ u

V

r
r DTN h h

d

d

4
,h

0

0

e
4 eh re

where ∂ΩDTN  is the so-called Dirichlet-to-Neumann operator, i.e. the operator mapping a 
Dirichlet datum h to the outward normal derivative ∂νwh of the solution wh of the boundary 
value problem

⎪

⎧
⎨
⎩

−Δ = Ω

= ∂Ω

w

w h

0, in  ,

, on  .

Remark 4.2.  The above theorem provides a formula for the first ‘domain’ variation of the 
solution of

⎪

⎧
⎨
⎩

−Δ = Ω

= ∂Ω

u

u

1, in  ,

0, on  ,
� (4.2)
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in the circle of radius re, i.e. B
∂

∂Ω Ω=u re
.

Proof.  Consider the solution ¯ϵu h of (4.2) for Ω = Ωϵh and observe that ¯ = ¯u u0 e. If one looks 
for ¯ϵu h in the form

¯ = + ( −∣ ∣ )ϵ ϵu w r x
1

2
.h h e

2 2

Then clearly

−Δ ¯ = −Δ + = −Δ =ϵ ϵ ϵu w w1 1 or   0,h h h

and

ϵ ϵ ϵ= ¯ = + ( − ( + ) ) = +ϵ ϵ ϵΓ Γ Γϵ ϵ ϵu w r r h w r h h0
1

2
 or 

2
.h h he

2
e

2
e

2
2

h h h

It follows that

⎛
⎝
⎜

⎞
⎠
⎟ϵ ϵ ϵ ν ν∂ ¯ = ∂ + ∂ ( −∣ ∣ ) = + − ( + ) ⋅ν ϵ ν ϵ ν ϵΩϵ ϵ ϵ ϵu w r x r DTN h

r
h r h

1

2 2
.h h he

2 2
e

2

e

2
e eh h h h

Since ν ϵ τ ϵ ν ϵ ϵ= (− + ( + ) ) ( + ) +′ ′ϵ h r h r h h/h e e e e
2 2 2

 one has that

⎛
⎝
⎜

⎞
⎠
⎟

′
ϵ ϵ ϵ

ϵ ϵ
∂ ¯ = + − ( + )

[( + ) + ]
ν ϵ Ωϵ ϵu r DTN h

r
h

r h

r h h2
.h e

2

e

2 e
2

e
2 2 2 1/2h h

Now, if ΩρDTN  depends continuously on ρ, it can be easily inferred that

Bϵ
∂ ¯ = ( ) −

ϵ
ν ϵ

=
ϵ u r DTN h h

d

d
.h

0
eh re

The continuous dependence, however, follows from

( ) = ∂ ¯ =
∇
∣∇ ∣

⋅ ∇ ¯ν ρ
ρ

ρ
ρΩ Γρ ρ ρDTN h u

N

N
u ,

for

Bθ θ γ¯ = −( *Δ * ) ( )ρ ρ
ρ

Γ
−

ρ
u , 1, 0 ,1

re

for Vρ ∈ . It can be seen as in [6] that

Lρ[ ↦ ] : (Γ ) → ( (Γ ) (Γ ))α
ρ

α
ρ

α
ρΩ

+ + +
ρDTN h h h,2 2 1

is an analytic function because ρN  and θρ depend algebraically on ρ. Notice that S R: →h re , 
that is, a function of the angle variable ϕ only, can always be transplanted on Γρ and identified 
with a function R˜ : Γ →ρh  via

ρ ϕ ν ϕ ϕ ϕ π˜([( + ( )] ( )) = ( ) ∈ [ )h r h , 0, 2 .e e

P Guidotti﻿Nonlinearity 28 (2015) 3175
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Thus the operator ΩρDTN  can be viewed as defined on the fixed space S( ) =α α+ +ˆh hr p
2 2

e , 
where the latter is the space of π2 -periodic little Hölder functions.� 

In order to complete the evaluation of the linearization, the term

∫ϵ
λ ϵ

ϵ
( ) = ∣

¯ϵ
ϵ

ϵ=
=

Ωϵ

h
V

u x

d

d

d

d d
.

h0
0

0

h

Needs to be evaluated. Thus consider

S
S∫ ∫ϵ

σ¯ ( ) = ¯ ( ) ( ) =
ϵ= Ωϵ

u x x u x x
d

d
d d 0,

0
e e

h r
r

e
e

by the boundary condition and where ¯ = ¯ ∣ϵ ϵ=u u he 0, so that

B
∫ ∫ϵ ϵ

¯ ( ) = ¯ ( )
ϵ

ϵ
ϵ

ϵ
= Ω ( ) =ϵ

u x x u x x
d

d
d

d

d
d .h

r
h

0 0, 0h e

Using a Green’s function representation for the solution, i.e.

∫¯ ( ) = ( ¯) ¯ϵ ϵ
Ωϵ

u x H x x x, d ,h h
h

where ϵH h denotes the Green’s function for the Dirichlet problem for the negative Laplacian 
on the domain Ωϵh, this amounts to computing

S
S

B

B

∫ ∫

∫
ϵ

σ
ϵ

ϵ

¯ = ( ¯) ( ¯) + ( ¯) ¯

= ( ¯) ¯

ϵ
ϵ

ϵ
ϵ

ϵ
ϵ

= ( ) =

( ) =

u H x x x H x x x

H x x x

d

d
, d

d

d
, d

d

d
, d .

h
r

h

r
h

0
0

0, 0

0, 0

r
r

e
e

e

e

Notice that the boundary integral term vanishes because the Green’s function is zero on the 
boundary. For the last term it is resorted to the so-called Hadamard domain variation formula 
[9] (see [13] for a generalized version and more recent developments) for Green’s functions 
which, in this particular case, yields

∫ϵ ϕ ϕ ϕ ϕ ϵ( ¯) − ( ¯) = ∂ ( )∂ ( ¯ ) ( ) + ( )ϵ
π

H x x H x x H x r H x r h o, , , , , , d ,h r r0
0

2

0 e 0 e

for any S∈ ( )α+h C r
2

e . In order to continue the computation it is convenient to have an explicit 
formula for the Dirichlet Green’s function H0 for the circle of radius re

⎡

⎣
⎢

⎤

⎦
⎥θ θ

π
θ θ

θ θ
( ¯ ¯) =

+ ¯ − ¯ ( − ¯)
¯ + − ¯ ( − ¯)

H r r
r r r r r rr

r r r r rr
, , ,

1

4
log

2 cos

2 cos
0

e
2 2

e
2 2

e
2

2 2
e
4

e
2

from which it follows that

θ ϕ
π θ ϕ π θ ϕ

∂ ( ) =
−

+ − ( − )
=

−
+ − ( − )

H r r
r r r

r r r r r

r r

r r r r
, , ,

2 2 cos

1

2 2 cos
.r 0 e

e
2

e
2 2

e
2 2

e
4

e
3

e
2 2

2
e
2

e

It is important to observe that the function

∫θ θ ϕ ϕ ϕ( ) ↦ ∂ ( ) ( )
π

r H r r g, , , , dr
0

2

0 e
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is harmonic in B( )r0, e  by choice and has boundary value g on Sre since

θ ϕ δ θ ϕ∂ ( ) = ( − )
→

H r rlim , , , .
r r

r 0 e
e

Indeed the following identity

B
∫

∫ ∫ ∫

∫

ϵ ϵ

π θ ϕ π θ ϕ
ϕ ϕ θ

π θ ϕ
ϕ ϕ

¯ = ( ¯) ¯

=
−

+ − ( − )
− ¯

¯ + − ¯ ( ¯ − )
( ) ¯ ¯ ¯

=
−

+ − ( − )
( )

ϵ
ϵ ϵ ϵ

π π

π

= ( )
=u H x x x

r r

r r r r

r r

r r r r
h r r

r r

r r r r

r
h

d

d

d

d
, d

1

2 2 cos

1

2 2 cos
d d d

1

2 2 cos 2
d

h
r

h

r

0 0,
0

0

2

0 0

2
e
2 2

2
e
2

e

e
2 2

2
e
2

e

0

2
e
2 2

2
e
2

e

e
2

e

e

follows from the fact that

∫
θ ϕ

θ
− ¯

¯ + − ¯ ( ¯ − )
¯ ≡

π r r

r r r r2 cos
d 1,

0

2
e
2 2

2
e
2

e

as it is the unique harmonic function with constant value 1 on the boundary. Combining every-
thing together it is arrived at

∫ ∫

∫ ∫

∫ ∫ ∫ ∫

ϵ ϵ
θ

π θ ϕ
ϕ ϕ

ϕ
π θ ϕ

θ ϕ ϕ ϕ
π

( ) = ¯

=
−

+ − ( − )
( )

= ( )
−

+ − ( − )
= ( ) =

ϵ
ϵ

ϵ
ϵ

π

π π π

= Ω ( ) =

( )

ϵ
u x x u r r

r r

r r r r

r
h

r
h

r r

r r r r
r r

r
h

r
h

d

d
d

d

d
d d

1

2 2 cos 2
d

2

1

2 2 cos
d d d

4
d

2
ˆ ,

h
r

h

r

r

0 0, 0

0, 0

2
e
2 2

2
e
2

e

e
2

e
2

0

2

0

2

0

e
2 2

2
e
2

e

e
4

0

2
e
4

0

h e

e

e

B

B

for the same reason as above. Here ĥ0 is the average of the function h. Returning to the com-
putation of the linearization it is seen that

( ) ∫∫ ∫ϵ ϵ π
π

π¯
= −

¯
¯ = − = −

ϵ ϵ ϵ
ϵ

=
Ω Ω

= Ω
ϵ

ϵ

V

u x

V

u x
u x

V

r

r
h

V

r
h

d

d d d

d

d
d

16

2
ˆ 8 ˆ .

h
h

0

0 0

e

2
0

0

2
e
8

e
4

0
0

e
4 0

h
h

e

This concludes the computation of the linearization which is summarized in the next theorem.

Theorem 4.3.  For S∈ ( )α+h h r
2

e , it holds that

S
⎛

⎝
⎜

⎞

⎠
⎟

ϵ
ϵ

π π
( ) = − ( ) [ ( ) − ] +′

ϵ=
G h F

V

r
r DTN h h

V

r
h

d

d
1

4 8 ˆ
0

0

e
4 e

0

e
4 0re� (4.3)

Proof.  The calculations preceding the formulation of the theorem yield a complete proof by 
observing that (4.1) implies that

⎡
⎣⎢

⎤
⎦⎥ϵ

ϵ
ϵ

λ ϵ λ
ϵ

( ) = − ( ) ( )∂ ¯ + ( ) ∂ ¯′
ϵ ϵ

ν
ϵ

ν ϵ
= = =

ϵG h F h u u
d

d
1

d

d
0

d

d
h

0 0
e

0
he
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and also that ∂ ¯ ≡ −ν u 1ee .� 
Exploiting an alternative representation for the solution wh of

⎪

⎪
⎧
⎨
⎩

−Δ = ( )

=

w r

w h

0, in  0, ,

, on  ,r

e

e

B

S

given by

[ ]∑ϕ
π

ϕ ϕ ϕ π( ) = + ( ) + ( ) ( ) ∈ [ ) × [ )
=

∞

w r h
r

r
h k h k r r,

1

2
ˆ 2 ˆ cos ˆ sin , , 0, 0, 2 ,h

k

k

k k
c

k
s

0

1 e
e

it is arrived at

[ ]∑( ) = ∂ = ( ⋅) + ( ⋅)ν
=

∞

DTN h w
r

k h k h k
2 ˆ cos ˆ sin ,h

k
k
c

k
s

e 1
re eS

where h hˆ , ˆ
k
c

k
s
 are the Fourier coefficients of the function h with respect to the orthonormal 

basis

π
( ⋅) ( ⋅) ( ⋅) ( ⋅) …1

2
, 2 cos , 2 sin , 2 cos 2 , 2 sin 2 ,

of S( )L r
2

e . Together with representation (4.3) this yields

Theorem 4.4.  The spectrum of the linearization is given by

σ
π

( ( )) = − ( ) { …}′DG F
V

r
0 1

4
0, 1, 2, 3, .0

e
4

The kernel is precisely the two-dimensional space generated by cos and sin due to the 
translation invariance of the problem as observed in remarks 3.2(c) and (d). The first neg-
ative eigenvalue has eigenspace generated by the functions ( ⋅) ( ⋅)1, cos 2 , sin 2 , whereas the 
remaining negative eigenvalues corresponding to = …k 2, 3,  have eigenspace generated by 

(( + ) ⋅) (( + ) ⋅)k kcos 1 , sin 1 .

5.  Stability analysis

For the purpose of analyzing the stability of equilibria it is more convenient to use a slightly 
different parametrization of the manifold of curves about a fixed steady-state. Any small 
enough Vρ ∈  can be described using the coordinates

ρ ρ ρ( ( ) ¯( ))z ,

where R∈z 2 is the ‘spatial location coordinate’ and ρ̄ is the ‘shape coordinate’. More pre-
cisely these coordinates are obtained from the identity

Γ = + Γρ ρ̄z

by choosing the vector z so that ρ̄ ∈ ( ( ))⊥DGker 0 . Intuitively the function ρ̄ fixes a geometric 
shape, while z moves it into its ‘location’. It will be proved in lemma 5.2 that this is indeed 
a well-defined coordinate system. The main reason for its use is that the evolution equa-
tion takes on a particularly easy normal form, see system (5.6), in these coordinates due to 
the fact that
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Lemma 5.1.  It holds that ρ ρ ρ ρ ρ( ( ¯)) = ( ( ¯)) = ( ¯)G z G G, 0,  for all R∈z 2.

Proof.  Given Vρ ∈  consider the domains Ωρ and + Ωρz  for R∈z 2. The solution uz of

⎧

⎨
⎪
⎪

⎩
⎪
⎪∫

λ−Δ = + Ω

= Γ

( ) =

ρ

ρ

Ωρ

u z

u

u x x V

in  ,

0 on  ,

d ,0

clearly satisfies

( ) = ( − ) ∈ + Ωρu x u x z x z,z 0

so that

∂ = ∂ (⋅ − )ν νρ+Γ Γu u z .z 0z 0

If ϕ is the angle variable, then

ϕ ϕ∂ ( ) = ∂ ( )ν νρ+Γ Γu u ,z 0z 0

and so ρ ρ ρ ρ( ) = ( ( ¯)) = ( ¯)G G z G, .� 

In the next lemma, it is verified that ρ( ¯)z,  indeed is a well-defined coordinate system for 
S( )α+h r

2
e  about ρ ≡ 0.

Lemma 5.2.  For any given Vρ ∈  small enough, there is a unique small R∈z 2 such that

Γ = + Γρ ρ̄z ,

for some small ρ̄ ∈ ( ( ))⊥N DG 0 .

Proof.  For the two sets to coincide, given a point

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ρ θ
θ

θ
[ + ( )]

( )

( )
∈ Γρr

cos

sin
e

and a small R∈z 2, φ ρ φ( ¯( )),  needs to be found such that

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ρ θ
θ

θ
ρ φ

φ

φ
[ + ( )]

( )

( )
− = [ + ¯( )]

( )

( )
r

z

z
r

cos

sin

cos

sin
.e

1

2
e

This identity implies that

ρ φ ρ ρ ν¯( ) = − + [( + ) +∣ ∣ − ( + ) ⋅ ]r r z r z2 ,e e
2 2

e e
1/2� (5.1)

φ ρ θ
ρ θ

( ) = ( + ) ( ) −
( + ) ( ) −
r z

r z
tan

sin

cos
,e 2

e 1
� (5.2)

φ ρ θ
ρ θ

( ) = ( + ) ( ) −
( + ) ( ) −
r z

r z
cot

cos

sin
,e 1

e 2
� (5.3)
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where φ φ θ= ( ) and the dependence of ρ on θ is not explicitly indicated in order to present 
leaner formulæ. The freedom of choice between representations (5.2) and (5.3) will be ex-
ploited below. It is also useful to have

φ φ θ ρ ν ρ ρ τ
ρ θ

( + ) ( ) = ⋅ + ( + ) − ( + ) ⋅
[( + ) ( ) − ]

′
′z r r z

r z
1 tan

cos
,2 e e

2
e e

e 1
2� (5.4)

φ φ θ ρ τ ρ ρ ν
ρ θ

( + ) ( ) = ⋅ + ( + ) − ( + ) ⋅
[( + ) ( ) − ]

′
′z r r z

r z
1 cot

sin
.2 e e

2
e e

e 2
2� (5.5)

At this point only z needs to be determined. This is done by requiring that the following or-
thogonality conditions be satisfied

∫ ∫

∫

ρ φ ζ φ φ ρ φ ζ φ φ

ρ φ θ ζ φ θ φ θ θ ζ

Φ ( ) = ¯( ) ( ) = ¯( ) ( )

= ¯( ( )) ( ( )) ( ) = =′

ζ
π

φ

φ π

π

( )

( )
z z, d d

d 0 for  sin, cos .

1 2
0

2

0

2

0

2

Next the Jacobian of 
⎡

⎣
⎢

⎤

⎦
⎥Φ =

Φ

Φ
cos

sin

 is computed and is shown to be non-singular for ρ ≪ 1, 

which then implies the claim and concludes the proof. In order to compute ∂ Φz1 , representa-
tions (5.3)/(5.5) turn out to be more convenient and lead to

⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬
⎭

∫

∫

∫

∫

∫ ∫

ρ θ
ρ

ρ
θ ρ θ

ζ θ θ

ρ ρ
θ

θ
ρ θ ρ θ

ζ θ θ

ρ
θ

ρ θ ρ θ
ρ θ

ζ θ θ

ρ ρ
θ ρ θ

ζ φ θ

ρ
ρ

θ ρ
ρ

ρ θ ρ θ ζ θ θ ρ θ ζ θ θ

∂ Φ ( ) = − ( + ) ( )
+

( + )
[ + ( )]( + ) ( )

( )

+ ( + )
[ + ( )]

( )
( + ) ( ) ( + ) ( )

( )

−
+ ( )

( ) + ( + ) ( )
( + ) ( )

( )

+ ( + )
+ ( ) ( + ) ( )

{∂ ( )}

= − +
+

( ) −
( + )

[ ( ) + ( + ) ( )] ( ) + ( ) ( )

′

′ ′

ζ
π

π

π

π

π π

( )

r

r

r

r

r

r r

r

r

r

r

r r
r

0, 0
1

2

2 cos

1 cot sin
d

1 cot

2 cos

sin

1

sin
d

1

1 cot

sin cos

sin
d

1 cot

1

sin
d

1 2 cos sin cos d d ,

z

z

0

2
e

e

e
2

2
e

2 2

0

2
e

2

2 2
e

2 3
e

0

2

2
e

e
2 2

0

2
e

2

2
e

2 2 0,0

0

2

e e
2 e

0

2

1

1

where the last term is obtained by observing that

ζ φ ζ φ φ

ζ θ ρ
θ ρ θ

ζ θ

∂ ( ) = ( )

= ( ) ( + )
[ + ( )]( + ) ( )

= ( )

′ ′

′

′

( ) ( )

r

r1 cot sin

,

z 0,0 0,0

e
2

2
e

2 2

1

for θ π∈ [ )0, 2 . It follows that

ρ ρ

ρ ρ

∂ Φ ( ) = − + (‖ ‖ ) →

∂ Φ ( ) = (‖ ‖ ) →

α

α

+

+

O

O

0, 0 1/2 as  0,

0, 0 as  0.

z h

z h

cos

cos

p

p

1 1

2 1
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In an analogous manner, but using representations (5.2)/(5.4) instead, it can be seen that

ρ ρ

ρ ρ

∂ Φ ( ) = (‖ ‖ ) →

∂ Φ ( ) = − + (‖ ‖ ) →

α

α

+

+

O

O

0, 0 as  0,

0, 0 1/2 as  0,

z h

z h

cos

sin

p

p

1 1

2 1

so that the proof is complete.� 

Theorem 5.3.  The nonlinear evolution equation (2.2) is equivalent to the system given by

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ρ
π ρ

π ρ

ρ π ρ

= ( ¯)
( ¯)

( ¯)

¯ = ( ¯)∼

−

⊥

z M
G

G

G

˙

˙ ,

c

s
1 1

1

1

� (5.6)

where

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ρ ρ ρ
ρ

τ ρ
π ρ

π ρ
ρ ρ( ¯) = ( ¯) − ¯

+ ¯
⋅ ( ¯)

( ¯)

( ¯)
= ( ¯) + (‖ ¯‖ )∼ ′ −

α+G G
r

M
G

G
G O .

c

s he
e

1 1

1

2

p
1

and

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

∫ ∫

∫ ∫
ρ

ρ
ρ

ϕ ϕ ϕ ρ
ρ

ϕ ϕ

ρ
ρ

ϕ ϕ ρ
ρ

ϕ ϕ ϕ
( ¯) = +

− ¯
+ ¯

( ) ( ) ¯
+ ¯

( )

¯
+ ¯

( ) ¯
+ ¯

( ) ( )

′ ′

′ ′

π π

π π
M

r r

r r

1 0

0 1
2

sin cos d cos d

sin d cos sin d

0

2

e 0

2

e

2

0

2

e

2

0

2

e

�

(5.7)

Proof.  In the coordinates introduced above, one has that

⎛

⎝
⎜⎜

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎞

⎠
⎟⎟ρ ϕ

ϕ

ϕ
ν= + ¯( )

( )

( )
ρ ρV ż ˙

cos

sin

while

ν
ρ ρ

ρ ν ρ τ=
( + ¯) + ¯

[( + ¯) − ¯ ]
′

′ρ
r

r
1

.
e

2
e e e

2

It follows that

⎡

⎣
⎢
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎤

⎦
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

ρ
ρ

ϕ ρ
ρ

ϕ ϕ ρ
ρ

ϕ ρ+ ¯
+ ¯

= ( ) − ¯
+ ¯

( ) + ( ) + ¯
+ ¯

( ) + ¯
′ ′ ′

ρ
r

V z
r

z
r

1 ˙ cos sin ˙ sin cos ˙.
e

2 1/2

1
e

2
e

�

(5.8)

Next, denoting by π c
1 , π s

1 , and π ⊥
1  the (orthogonal) projections onto R ϕ( )cos , R ϕ( )sin , and 

the orthogonal complement of R Rϕ ϕ( ) ⊕ ( )cos sin , respectively, (5.8) entails that
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⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

∫ ∫

∫ ∫

ρ
ρ

ϕ ϕ ϕ ρ
ρ

ϕ ϕ π ρ

ρ
ρ

ϕ ϕ ρ
ρ

ϕ ϕ ϕ π ρ

ρ π ρ π ρ
ρ

ϕ π ρ
ρ

ϕ

− ¯
+ ¯

( ) ( ) + ¯
+ ¯

( ) = ( ¯)

¯
+ ¯

( ) + + ¯
+ ¯

( ) ( ) = ( ¯)

¯ = ( ¯) + ¯
+ ¯

( ) − ¯
+ ¯

( )

′ ′

′ ′

′ ′

π π

π π

⊥ ⊥ ⊥

z
r

z
r

G

z
r

z
r

G

G z
r

z
r

˙ 1 2 sin cos d ˙ 2 cos d ,

˙ 2 sin d ˙ 1 2 cos sin d ,

˙ ˙ sin ˙ cos .

c

s

1
0

2

e
2

0

2

e

2
1

1
0

2

e

2
2

0

2

e
1

1 1 1
e

2 1
e

Notice that the first two equations above amount to

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ρ
π ρ

π ρ
( ¯) =

( ¯)

( ¯)
M z

G

G

c

s

1

1

for the matrix ρ( ¯)M  defined in (5.7), which satisfies

⎡
⎣⎢

⎤
⎦⎥

ρ ρ ρ( ¯) = + (‖ ¯‖ ) ¯ →α+M O
1 0

0 1
 as  0,hp

1

the claim follows by observing that it is invertible for small ρ̄.� 

Corollary 5.4.  Let B E( ( )) ∈u x r, ,e e e  be an equilibrium solution of (1.1). Then, for Γ0 close 
enough to Sre, the solution ( (⋅ Γ ) Ω(⋅ Γ ))u , , ,0 0  exists globally and there exists

( ) ( )ρ(⋅ Γ ) ∈ [ ∞) ∩ [ ∞)α α+ +h h, C 0, , C 0, ,p p0
1 1 2

with

Ω( Γ ) = Ω ∈ [ ∞)ρ( Γ )t t,  for  0, ,t0 , 0

as well as R= (Γ ) ∈∞ ∞z z 0
2 such that

ρ ρ ρ( ( ) ¯( )) ⟶ ( ) → ∞∞z z t, , 0  as  ,

exponentially fast. In other words the manifold E of equilibria is locally asymptotically stable 
and any solution, starting close to it, converges exponentially fast to a specific B( ( ))∞ ∞u z r, , e  
which depends only on the initial condition.

Proof.  Notice again that the vector field in (5.6) only depends on ρ̄ and that, by construction,

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑π π

π
ϕ ϕ

π

( ) = ( ) = − ( ) + [ ( ) + ( )]

∈ =

∼ ′

α α

⊥ ⊥

⩾

⊥ +
⊥
+

DG h DG h F
V

r
h k h k h k

h h h

0 0 1
4 ˆ ˆ cos ˆ sin ,

: .

k
k
c

k
s

p p

1 1
0

e
4 0

2

1
2

,
2

It is not difficult to see that Hπ ( ) ∈ ( )α α⊥
⊥
+

⊥
+DG h h0 ,p p1 ,

2
,

1 , i.e the generator of an analytic 
semigroup on α

⊥
+hp,

1  with domain α
⊥
+hp,

2 , either by applying [6, theorem 41] or by applying 
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Fourier multiplier results such as those found in [3] for ‘periodic’ symbols combined with a 
spectral reduction argument to split off the kernel, or by a direct computation of the associated 
semigroup and Fourier multiplier results. Observe that the subscript p is the notation of the 
function spaces indicates periodicity and stems from the standard identification

S N( ) = ∈α α+ +ˆh h k, ,k
r p

k
e

that was already used at the end of the proof of theorem 4.1.
It follows that the principle of linearized stability [12, theorem 9.1.2] applies and yields 

local asymptotic stability of the trivial solution ρ̄ ≡ 0 of ρ π ρ¯ = ( ¯)∼⊥G˙ 1 . Since the right-hand-
side of (5.6) only depends on ρ̄, since it is a smooth function of its argument, and since 
G(0)   =   0, it follows that

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫ ρ τ

π ρ τ

π ρ τ
τ( ) = ( ) + ( ¯( ))

( ¯( ))

( ¯( ))
⟶ → ∞−

∞z t z M
G

G
v t0 d  as  .

t
c

s0

1 1

1

The convergence is exponential since ρ̄ converges to zero exponentially if ρ̄0 is small 
enough, which is always the case provided ρ0 is. This same local analysis is valid about 
any other steady-state due to the translation invariance of the problem and the proof is 
complete.� 
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