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A 2-D free boundary problem with onset of a phase
and singular elliptic boundary value problems
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Abstract. Numerous models of industrial processes, such as diffusion in glassy polymers or solidification
phenomena, lead to general one phase free boundary value problems with phase onset. The classical well-posedness
of a fast diffusion approximation to the concerned free boundary value problems is proved. The analysis is per-
formed via a singular change of variables leading to a singular system in a fixed domain. An existence and
regularity theory for classical solutions is developed for the relevant underlying class of singular elliptic boundary
value problems and is then used to prove the well-posedness for the models considered in which these are coupled
to Hamilton-Jacobi or to parabolic evolution equations.

1. Introduction

In this paper we consider two dimensional generalizations of models first proposed
in a 1-D setting by many different authors (cf. [?], [?], [?]). They arise in practical
applications such as diffusion in glassy polymers, oxydation and solidification processes
and other industrial problems. They are characterized by being one phase free boundary
value problems, short FBPs, of diffusive type. We are especially interested in the case when
the phase is initially absent but instantaneously develops as the process is started. To the best
of our knowledge no rigorous analytical results concerning classical solutions are available
in the literature for this class of problems in more than one space dimension. Those contained
in this paper are therefore the first obtained in this direction. The main difficulties stem from
a nonlinear coupling of a singular elliptic boundary value problem with a Hamilton-Jacobi
equation. This structure prevents us from developing a weak solvability theory for the
singular elliptic equations. This is essentially due to the loss of regularity caused by taking
traces on the boundary in the case of Sobolev spaces which makes it impossible to treat
the Hamilton-Jacobi in a consistent way. This is of course a consequence of the well-know
lack of regularization of Hamilton-Jacobi equations.

Key words: Free boundary problems, singular elliptic boundary value problems, regularity theory, singular hölder
spaces, vector-valued fourier multipliers.
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The techniques developed to study the problem are based on operator-valued Fourier
multipliers and spaces of singular Hölder continuous functions. A new approach to the
analysis of the dilation of symbols is the core of our analysis and makes it possible to
develop a regularity theory for singular elliptic boundary value problems.

When the degeneracy of the domain is not an issue, that is, when no topological change
is observed, several works have been published, which utilize different techniques to estab-
lish local and/or global existence and regularity. Since we are particularly interested in
classical solutions we refer to the recent papers of Escher and Simonett ([?], [?] and [?])
and references cited in these papers which deal with the non-degenerate case.

An asymptotic analysis of the model of interest is available, see [?]. In that paper a
model is set up and the equations are brought into nondimensional form. Here we shall
skip the nondimensionalization process. That paper also contains a formal justification for
considering the quasi-stationary approximation (see below). It namely turns out to be a
regular perturbation of the evolutionary system.

The problem consists of a diffusion equation

εut − uxx − uyy = 0, in
⋃
t>0

{t} × �t (1.1)

of which only the quasi-stationary approximation will be considered in this paper. The
equation has to hold in an unkown strip-like domain �t ⊂ R

2 with fixed boundary �0 =
R × {0} and moving boundary

�t = {(x, s(t, x))|x ∈ R}

for any positive time t > 0. Hereby we obviously assumed �t to be parametrized by the
unknown smooth function s. The situation is depicted in the figure below.
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The degeneracy is produced by the initial condition �t=0 = �0, or

s(0, ·) ≡ 0, (1.2)

which implies that �0 is empty. On �0 we shall impose a nonhomogeneous Dirichlet
condition

u(t, x, 0) = g(x), x ∈ R (1.3)

which models a reservoir kept at the fixed concentration g(x) and which introduces two
dimensional effects into the model. The problem becomes in fact 1-D if we assume g to be
spacially constant. At the moving front a mass balance leads to the condition

−(∇u|νt ) = (1 + εu)V, on �t (1.4)

where νt = (−sx ,1)√
1+s2

x

is the unit outer normal to �t and V is the front velocity observed in

the normal direction. Since the concrete applications of interest present a sharp interface
across which a concentration drop occurs, continuity conditions on the free boundary are
inappropriate and a widely accepted phenomenological law is used instead which was
introduced by Astarita and Sarti in a one dimensional setting. They assumed the front
velocity to be proportional to the deviation from a threshold concentration to some power.
In a higher dimensional setting curvature effects may be important and we consider a
generalization of the Astarita-Sarti condition incorporating them as well. We assume that

V = (1 + δκ)un, on �t (1.5)

where n a positive integer and κ = sxx

(1+s2
x )3/2 is the curvature of �t at the point (x, s(t, x)).

The first term is taken over from 1-D without modification and, if δ is zero, this leads to

st =
√

1 + s2
x un, on �t , (1.6)

which is the straight forward generalization of the 1-D condition. That the second term
may also be important in 2-D can be seen by geometrical considerations. If we assume
that front velocity be proportional to the average concentration in a characteristic ball (of
radius δ) around each point rather than to the concentration at each point we end up with
the curvature correction term. This is due to the fact that the diffusing species occupies a
smaller or larger portion of the ball depending on the front convexity. It enforces the intuitive
observation that the front velocity should be slower at high curvature places and higher at
low curvature. We consider here both negative and positive curvature and normalize it to
be positive at points where the front is convex. Notice that the one dimensional behavior is
locally recovered in flat regions.

The strategy we choose to attack the problem is the following. Assuming that ε is very
small, we shall substitute the above equations by their quasi-stationary approximation, that



398 patrick guidotti J.evol.equ.

is, we shall set ε = 0. This is a first step towards solving the evolutionary problem. The
moving domain �t will then be transformed to the strip S := R × (0, 1) by means of the
singular change of variables

(t, x, y) → (τ, ξ, η) := (t, x, y/s(t, x)).

The equations obtained will be singular. Taking the liberty of relabelling the new variables
with the old names after the change of variable, equations (1.1), (1.3) and (1.4) essentially
(we shall make this precise) have the following form

−uxx − 1

t2g2
uyy = f, in S, (1.7)

u = g, on �0, (1.8)

−1

t
uy = g2, on �1, (1.9)

where we set �i = R × {i}, i = 0, 1. The whole system is in fact nonlinear and involves
the unknown s, but as far as equations (1.1), (1.3) and (1.4) are concerned the system will
have the specified nature, at least to “leading order”. Fixing appropriate function spaces,
it will turn out that the solution of (1.7)–(1.9) consists of three distinct parts with different
behaviors at t = 0. In fact

u = uP + uN + uD,

where uP ∼ t2, uN ∼ t and uD ∼ t0. Observe, however, that

∂
j
y uN ∼ tj and ∂

j
y uD ∼ tj for j = 1, 2,

in agreement with equations (1.7) and (1.9). The understanding of (1.7)–(1.9) will be crucial
for solving the full transformed problem and to it will be dedicated much of the first part
of the paper. The main techniques used to analyze (1.7)–(1.9) are those of operator valued
Fourier multiplier theorems in Besov spaces combined with a novel approach to the dilation
of symbols based on spaces of singular Hölder continuous functions. To deal with the
remaining equation for the unknown function s we shall rely on optimal regularity results
for parabolic equations if the curvature term is present and on a careful use of the method of
characteristics in the event that the curvature term is absent, that is, if the equation becomes
of the Hamilton-Jacobi type. Having then all the pieces together we shall produce a local
classical solution to the whole system via the Banach contraction principle.

The paper is organized in two main sections. Section 2 is devoted to transforming
the problem to a fixed domain problem and to developing the existence and regularity
theory for anisotropic singular elliptic boundary value problems in a strip. The latter is
obtained in spaces of singular and standard Hölder continuous functions. In particular the
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transformation to a fixed domain problem performed in Subsection 2.1 leads to a singular
boundary value problem for the unknown u. The analysis of its “leading order” part in
Subsection 2.2 will lead to operator valued symbols for the description of its solution.
Subsection 2.3 is devoted to the analysis of those symbols on which rests the regularity
theory developed in the following and last subsection of Section 2. In Section 3 we solve
the full system for both the cases δ > 0 and δ = 0. The first subsection is devoted to
proving existence for the singular boundary value problem for given front function s. In
Subsection 3.2 we study the dependence of this solution on the front function. The follow-
ing two subsections will be devoted one each to the case where curvature effects are not
and are considered, respectively. The main results about existence and uniqueness of the
solution to the quasi-stationary approximation, Theorems 3.5 and 3.7, are contained in the
corresponding subsections.

2. Transformation to a fixed domain problem
and the prototype singular problem

2.1. The transformation

Assuming that the penetration depth at time t may be described as the graph of a function
s(t, ·), which is obviously true for t = 0, we now reformulate the staedy-state approximation
problem as a singular elliptic-parabolic/hyperbolic system for the pair (u, s) in the infinite
strip R × (0, 1). The singular nature of the elliptic equation stems from the chosen change
of variable needed to fix the domain. We recall that

(τ, ξ, η) := (t, x, y/s(t, x))

is the chosen change of variable. It becomes singular as time zero is approached and this
degeneracy will be apparent in the coefficients of the transformed elliptic operator. After
transforming the equations we revert to the old notation for both the independent and the
dependent variables to obtain

−∂2
xu − 1

s2
(1 + y2s2

x )∂2
yu + 2y

sx

s
∂x∂yu + y

sxxs − 2s2
x

s2
∂yu = 0 (2.1)

γ0u = g, (2.2)

−1

s
(1 + s2

x )γ1∂yu + sxγ1∂xu = ṡ, (2.3)

ṡ =
(√

1 + s2
x + δ

sxx

1 + s2
x

)
γ1u, (2.4)

s(0, ·) ≡ 0, (2.5)
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where the first equation has now to be satisfied for any positive time in the strip S and γi

denotes the restriction operator on the line �i , i = 0, 1. We also assumed that n = 1 to
simplify the notation. It will be clear that the general case can be treated in the same way.
The singularity is now apparent in the equations, especially in the first one, and, unlike in
the 1-D situation, it affects the equation in an anisotropic way. This prevents the use of
the techniques developed in [?] for the 1-D case. The anisotropic nature of the singularity
does not allow us to apply the available theory of elliptic BVPs, either. Thus the strategy
to attack (2.1)–(2.5) is to first single out the “leading order” singular part of (2.1)–(2.3) and
treat the nonlinear error produced as a “lower order” perturbation. As the analysis develops
further it will become clear what we mean by this. First, since we are looking for a regular
solution, we formally infer from equations (2.1)–(2.3) that

u(0, x, y) = g(x), (x, y) ∈ R × [0, 1],

and then from (2.4)–(2.5) that

ṡ(0, x) = g(x)

and finally guess that the leading asymptotic behavior of the solution is described by

−wxx − 1

t2g2
wyy − gx

g
wx = 0 in S × (0, ∞), (2.6)

γ0w = g on �0 × (0, ∞), (2.7)

−1

t
γ1wy = g2 on �1 × (0, ∞), (2.8)

where the first order term in (2.6) is introduced for technical reasons which will become
apparent below. The analysis of this system is our next step. To do this we have first to fix
the functional setting in which we shall be working for the rest of the paper.

2.2. The singular elliptic problem

Let X be a Banach space. Then we denote by BUCα(R, X) the space of bounded and
uniformly Hölder continuous functions of exponent α ∈ (0, 1) endowed with its natural
norm defined by

‖u‖BUCα = ‖u‖∞ + [u]α, u ∈ BUCα(R, X)

where [u]α = supx 
=y
|u(x)−u(y)|

|x−y|α . For k ∈ N we write BUCk+α(R, X) for the space of
functions for which all derivatives up the k-th order ones are in BUCα(R, X). We assume
that g ∈ BUC3+α(R) and that g ≥ g0 > 0 and set

E0 := BUCα(R, C([0, 1]))
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and

E1 := {
u ∈ BUCα(R, C([0, 1]))

∣∣∂j
x ∂k

yu ∈ BUCα(R, C([0, 1])), 0 ≤ k + j ≤ 2
}

Further we need the change of variable G defined by

x̃ := G−1(x) =
∫ x

0

1

g(ξ)
dξ,

which transforms (2.6)–(2.8) into

−w̃x̃x̃ − 1

t2
w̃yy = 0 in S × (0, ∞), (2.9)

γ0w̃ = g on �0 × (0, ∞), (2.10)

−γ1w̃y = tg2 on �1 × (0, ∞) (2.11)

for w̃(x̃) = w(G(x̃)). Notice that G, in view of the assumptions on g, induces an isomor-
phism G∗ of E0 given by

G∗(w)(x̃) := w(G(x̃))

for which E1 is invariant, that is

G∗(E1) = E1. (2.12)

We denote its inverse by G∗. We are of course interested in the properties of the solution
operator to system (2.6)–(2.8). We shall therefore construct the general solution to

−w̃x̃x̃ − 1

t2
w̃yy = f in S × (0, ∞), (2.13)

γ0w̃ = g on �0 × (0, ∞), (2.14)

−1

t
γ1w̃y = h on �1 × (0, ∞). (2.15)

By taking a Fourier transform in the x-direction it is easily seen that the Fourier transform̂̃w of the solution is given by

̂̃w = ̂̃wP + ̂̃wN + ̂̃wD,

where

̂̃wP (t, ξ, y) = t2((t2ξ2 + C)−1f̂ )(ξ, y),

̂̃wN(t, ξ, y) = − sinh(tξy)

ξ cosh(tξ)
ĥ
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and

̂̃wD(t, ξ, y) = cosh(tξ(1 − y))

cosh(tξ)
ĝ.

Hereby we denoted by C the realization in F0 := C([0, 1]) of the second order operator
−∂2

y with domain of definition

F1 = C2
0 := {

w ∈ C2([0, 1])
∣∣ w(0) = 0 and wy(1) = 0

}
.

It is convenient to introduce the following notation to analyze the above expressions:

a(ξ, y) := cosh(ξ(1 − y))

cosh(ξ)
, b(ξ, y) := − sinh(ξy)

ξ cosh(ξ)
, (ξ, y) ∈ R × [0, 1]. (2.16)

With

c(ξ) := (ξ2 + C)−1, ξ ∈ R (2.17)

we then have

̂̃wP = t2(t2ξ2 + C)−1f̂ = t2(σt c) f̂

and

̂̃wD = (σta) ĝ and ̂̃wN = t (σtb) ĥ,

where the dilation σt is defined by σtf = f (t ·). We shall not mention explicitly the
dependence of a and b on the variable y since we consider them as vector-valued symbols.

2.3. Symbol analysis

To analyze the above symbols we take the operator-valued Fourier multiplier point of
view. In particular we shall make use of [?, Theorem 6.2], which is a vector-valued Fourier
multiplier theorem for Besov spaces which generalizes the well known scalar Mikhlin
multiplier theorem. It is important that this particular generalization does not need the
UMD property in any way. Given two Banach spaces X0 and X1 we introduce the symbol
classes

Sj
k (X0, X1) ={

a ∈ Ck(R, L(X0, X1))
∣∣ sup

ξ∈R

|(1 + |ξ |2)(j+i)/2a(i)(ξ)|L(X0,X1) < ∞, i ≤ k
}
, (2.18)

for j ∈ Z and k ∈ N ∪ {∞}. Denoting by Bs
p,q(R, Xj ), for s ∈ R, p, q ∈ [1, ∞] and

j = 0, 1, the vector valued Besov space defined in [?] we can specialize the main theorem
of that paper.
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THEOREM 2.1. Assume that a ∈ Sj

2 (X0, X1) for some j ∈ Z. Then

F−1aF ∈ L(Bs
p,q(R, X0), Bs+j

p,q (R, X1))

for s ∈ R and p, q ∈ [1, ∞].

In particular if a ∈ Sj

2 (X0, X1) for some j ∈ Z we obtain

F−1aF ∈ L(BUCn+α(R, X0), BUCn+j+α(R, X1)),

for any n ∈ N and α ∈ (0, 1) such that n+j ≥ 0 by choosing s = n+α and p = q = ∞ as
follows from [?, Section 5]. Here we only used that spaces of Hölder continuous functions
are special instances of Besov spaces. We shall need the following remark.

REMARK 2.1. The operator C is an invertible sectorial operator on C([0, 1]) with
domain of definition F1.

Proof. A proof of this result can be found in [?], Corollaries 3.1.21 and 3.1.24. We
remark here that this is valid only in one space dimension. �

A careful analysis of the symbols a, b and c shows that

LEMMA 2.2. Let the symbols a, b and c be given as in (2.16) and in (2.17). Then

a ∈ S−k∞ (R, Ck([0, 1])), b ∈ S−k+1∞ (R, Ck([0, 1]))

and c ∈ S−k+2∞ (C([0, 1]), Ck([0, 1]))

for k = 0, 1, 2 .

Proof. We first remark that we only need estimates for the symbols with the weight ξ

to some power instead of the weight (1 + |ξ |2)1/2 to the appropriate power used in the
definition of the symbol classes. This is possible because the symbols under consideration
are not singular in the origin. Since C is an invertible, sectorial operator on F0 with domain
of definition F1, we have that ‖(λ + C)−1‖L(F0,Fj ) ≤ c 1

(1+|λ|)1−j for λ in some sector of
the complex plain containing the positive real half line and j = 0, 1. Using interpolation
inequalities it is easy to conclude that

‖∂k
y ξ2−k(ξ2 + C)−1‖L(F0) < ∞, ξ ∈ R

for k = 0, 1, 2. Since ξ i(∂i
ξ c)(ξ) = ∑

1≤l≤i pl(ξ)cl+1 for some polynomials pl of order at
most 2l we conclude that

sup
ξ∈R

‖ξ i+k∂2−k
y (∂i

ξ c)(ξ)‖L(F0) < ∞
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which concludes the proof for the symbol c. Let us now consider the symbol a. It is easily
seen that

sup
ξ∈R

sup
y∈[0,1]

|a(ξ, y)| < ∞.

As for the absolute value |(∂ξ a)(ξ, y)| of the first derivative

∂ξa(ξ, y) = 1

cosh(ξ)
[(1 − y) sinh((1 − y)ξ) − tanh(ξ) cosh((1 − y)ξ)]

it attains its maximum, as a function of y, where

− sinh((1 − y)ξ) − ξ(1 − y) cosh((1 − y)ξ) + ξ sinh((1 − y)ξ) tanh(ξ) = 0,

or, equivalently, where

1 = tanh((1 − y)ξ)

(1 − y)ξ
[ξ tanh(ξ) − 1]. (2.19)

The latter implies that there exists a ξ0 > 0, independent of y, such that the maximum is
attained at y = 1 if |ξ | ≤ ξ0. In fact the first term of the product on the right hand side is
always bounded by 1 whereas the second is only larger than 1 if ξ is chosen large enough.
In other words, the maximum is reached at an interior point only if ξ is large enough. In that
case, that is, when |ξ | > ξ0, the maximum moves to the left and, asymptotically, ymax ≈ 1

ξ
.

This is seen as follows. First observe that the function is symmetric in the Fourier variable
which allows us to consider the case ξ > 0 only. For large ξ we have

tanh(ξ) = 1 + O(e−2ξ )

and (2.19) can be rewritten as

(1 − y)ξ = ξ − 1 + O(ξe−2ξ ) + O(e−2(1−y)ξ ).

This gives y ≈ 1
ξ

, which, for large ξ , is consistent with the asymptotic expansion. In
particular the last term cannot be of order 1. Thus we have

sup
ξ∈R

‖ξ(∂ξ a)(ξ, ·)‖∞ ≤ max{ sup
|ξ |≤ξ0

‖ξ(∂ξ a)(ξ, ·)‖∞, sup
|ξ |>ξ0

‖ξ(∂ξ a)(ξ, ·)‖∞},

where the first can easily be bounded, whereas for the second we have

ξ(∂ξ a)(ξ, ymax) ≈ cosh(ξ − 1)

cosh(ξ)
[(ξ − 1) tanh(ξ − 1) − ξ tanh(ξ)]

which is bounded in absolute value (see below). Now, since

∂ξa(ξ, y) = cosh((1 − y)ξ)

cosh(ξ)
[(1 − y) tanh((1 − y)ξ) − tanh(ξ)]

= a(ξ, y)[(1 − y) tanh((1 − y)ξ) − tanh(ξ)] = a(ξ, y)d(ξ, y)
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for d defined in an obvious way, we obtain

(∂2
ξ a)(ξ, y) = a(ξ, y)[d2(ξ, y) + (∂ξ d)(ξ, y)]

= 1

cosh(ξ)
[cosh((1 − y)ξ)((1 − y)2 − 1 + 2 tanh2(ξ))

− 2(1 − y) sinh((1 − y)ξ) tanh(ξ)]

Now, as before, a continuity argument gives us a bound for ξ in any given compact subset of
R

n. For large ξ we compute the first y derivative of the second term in the second product
to obtain the necessary condition

−ξ tanh((1 − y) (ξ))((1 − y)2 − 1 + 2 tanh2(ξ))

+ 2 tanh((1 − y) (ξ)) tanh(ξ) − 2(1 − y) + 2ξ(1 − y) tanh(ξ) = 0

By the same asymptotic argument used above we see that the last equation can asymptoti-
cally be replaced by

−ξ((1 − y)2 + 1) + 2 − 2(1 − y) + 2ξ(1 − y) = 0

which gives

ymax ≈ 0 or ymax ≈ 2/ξ.

Only the second case is of interest since the symbol of interest is bounded on the y-boundary.
Substituting the second expression for the maximum in the symbol we obtain

ξ2(∂2
ξ a)(ξ, ymax) ≈ cosh(ξ − 2)

cosh(ξ)
[(ξ − 2) tanh(ξ − 2) − ξ tanh(ξ)]2

+ cosh(ξ − 2)

cosh(ξ)
[(ξ − 2)2(1 − tanh(ξ − 2)) − ξ2(1 − tanh(ξ))].

The two terms on the right hand side can now be bounded separately. Observe that the
second term decays as ξ grows whereas the first is only bounded. The claim for k = 0
concerning a would now follows by similar computations for the higher derivatives. It is
however easier to proceed as follows. Recall that

ξ∂ξ a = aξd and ξ2∂2
ξ a = a(ξd)2 + aξ2∂ξd

and observe that the second term on the right hand side of the second equality is easily
bounded in view of

ξ2∂ξd = ξ2(1 − y)2(1 − tanh2((1 − y)ξ) − ξ2(1 − tanh2(ξ))

and the decay properties of the function 1 − tanh2. Writing a in terms of exponential
functions and observing that

ξd ≈ −ξy
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it is easily seen that a(ξd) and a(ξd)2 are bounded, too. Now it can be seen by induction
that a similar structure is shared by the higher order derivatives, that is,

ξn∂
(n)
ξ = a(ξd)n + ξn(. . .)

where the dots stand for terms containing derivatives of d which have decay properties
similar to those of 1 − tanh2. The same observation as above shows that the first term is
also bounded. This concludes the proof in the case k = 0 for the symbol a.

It is obvious that [ξ �→ ξb] is bounded in the supremum norm. The rest follows from
similar computations as above, from (∂yb)(ξ, y) = a(ξ, 1−y) and (∂2

y b)(ξ, y) = ξ2b(ξ, y)

and from similar relations for ∂
j
y a, j = 1, 2. �

REMARK 2.2. It is an interesting observation that the previous lemma gives, using
theorem 6.2 in [?] a novel regularity result concerning the strip problem for the Laplacian.
In fact we have

(−�, γ0, γ1∂y) ∈ Lis(E1, E0 × BUC2+α(R) × BUC1+α(R)).

It is standard to extend this result to more general elliptic boundary value problems in the
strip.

Define now H1 := F−1a and H2 := F−1b. Then, from a(0, ·) ≡ 1 and from b(0, ·) =
id[0,1] it follows that

1

t
σtH1 −→ δ,

1

t
σtH2 −→ −δ id[0,1] in S ′(R, C([0, 1]))

as t tends to zero. By S ′(R, C([0, 1])) we denoted the space of vector valued tempered
distributions endowed with its natural locally convex topology. The convergence to the
given limits follow from the pointwise convergence of the symbols and Lebesgue theorem
together with the fact that the vector valued Fourier transform is an isomorphism, i.e.,

F ∈ Lis(S ′(R, C([0, 1])), S ′(R, C([0, 1]))).

A proof of this fact can be found in [?] or in the original work [?] by Schwartz. We are now
in a position to prove the following

PROPOSITION 2.3. Assume that

(f, g, h) ∈ BUCα(R, F0) × BUC2+α(R) × BUC1+α(R)

and let w̃ be the solution of (2.13)–(2.15). Then one has

w̃ = g − t id[0,1] h + O(t2) in E0 as t → 0.
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Proof. We shall first prove that

w̃D = g + O(t2) and w̃N = y t g2 + O(t2) in E0.

and then that w̃P = O(t2) as t → 0. Since a(0, ·) ≡ 1 and (∂ξ a)(0, ·) ≡ 0 we can write

σta − 1 =
∫ t

0

∫ τ

0
ξ2ση(∂

2
ξ a) dη dτ.

The fact that a ∈ S0(R, F0) implies that

[η �→ F−1(ξ2ση(∂
2
ξ a))F] ∈ B(R, L(BUC2+α(R), BUCα(R, F0))),

from which we conclude that

w̃D − g = O(t2) in E0 as t → 0

since g ∈ BUC2+α(R). As for w̃N , arguing in a similar manner, the assertion follows from

tσtb − t id[0,1] = t

∫ t

0
ξστ ∂ξ b dτ,

from b ∈ S1(R, F0) and from h ∈ BUC1+α(R). Finally the estimate

w̃P = O(t2)

easily follows from the properties of the symbol c and from ˆ̃wP = t2σtcf̂ . �

In particular, observing that u = G∗ũ, we conclude that

COROLLARY 2.4. Let u be the solution of (2.6)–(2.8). Then

u = g − tyg2 + O(t2) in E0.

2.4. Regularity theory

The last proposition of the previous section still does not give us a full picture about
the behavior of the solution operator to (2.6)–(2.8). To complete the analysis we need to
understand what is the role played by the time variable. In particular, we want to consider
time dependent data f , g and h. Making use of theorem 6.2 in [?] it is easy to obtain, for
fixed t > 0, that

A(t) := G∗F−1
(

ξ2 + C

t2

)
FG∗ ∈ L(E1,b, E0) (2.20)
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with supt∈[0,1] ‖A(t)−1‖L(E0,E1,b) ≤ c, where

E1,b = {
u ∈ E1

∣∣ u(·, 0) = 0 and ∂yu(·, 1) = 0
}
.

However, a deeper understanding of the mapping properties of the solution operator is
essential. We shall make extensive use of the following notation:

RD := G∗F−1(σta·)FG∗ and RN := G∗F−1(σt tb·)FG∗, (2.21)

so that the solution operator R associated to the BVP (2.6)–(2.8) can be written as

R(f, g, h) = A−1f + RDg + RNh.

Some of its properties are collected in the next few lemmas and propositions. If we set

‖a‖Sj
2

= max
i≤2

sup
ξ∈R

|(1 + |ξ |2)(j+i)/2a(i)(ξ)|L(X0,X1)

then Sj

2 (X0, X1) becomes a Banach space. Now, given a Banach space X we denote by

C1−
1 (J, X)

the space of bounded functions ϕ for which [t �→ tϕ(t)] is Lipschitz continuous on a
compact interval J . It becomes a Banach space if endowed with the norm given by

‖ϕ‖C1−
1

= ‖ϕ‖∞ + [(·)ϕ(·)]1

where [(·)ϕ(·)]1 = supt 
=s
‖tϕ(t)−sϕ(s)‖

|t−s| .

LEMMA 2.5. Assume that a ∈ Sj

2 (X0, X1) for some j ∈ N. Then

[t �→ tj σta] ∈ C1−
1 (J, Sj

2 (X0, X1)),

which, in its turn, implies that

tjG∗F−1σtaFG∗ = tj−1σ1/tG∗F−1aFG∗

∈ C1−
1 (J, L(BUCα(R, X0), BUCj+α(R, X1)))

Proof. Recall that the assumption implies

sup
ξ∈R

‖(1 + |ξ |2)(j+i)/2a(i)(ξ)‖L(X0,X1) ≤ c < ∞

for i ≤ 2. Thus for σta one has

∂i
ξ (t

j σta) = tj+iσta
(i) and ∂t (t

j σta) = j tj−1σta + tj ξσta
′,
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which together with the assumption implies

sup
ξ∈R

‖(1 + |ξ |2)(j+i)/2∂i
ξ (t

j σta)‖L(X0,X1) ≤ c < ∞

and

sup
ξ∈R

t ‖(1 + |ξ |2)(j+i)/2∂i
ξ ∂t (t

j σta)‖L(X0,X1) ≤ c < ∞.

It is important that the constant c is independent of t . The first assertion now follows easily
from

σta − σsa =
∫ t

s

∂t (σta)(τ ) dτ

and the above inequalities. The second assertion is a consequence of the properties of G∗,
see (2.12). �

Next we need to introduce spaces of singular and non singular Hölder continuous func-
tions. Let J = [0, T ] for T > 0 and X be a Banach space. For α ∈ (0, 1) and β ∈ R we
define

Cα
β(J, X) = {

u ∈ B(J, X)
∣∣ [t �→ tβu(t)] ∈ Cα(J, X)

}
Cα

0 (J, X) = {
u ∈ Cα(J, X)

∣∣ u(0) = 0
}

Cα
β,0(J, X) = {

u ∈ B(J, X)
∣∣ [t �→ tβu(t)] ∈ Cα

0 (J, X)
}

Hereby we denoted by B(J, X) the space of bounded functions and by Cα(J, X) the space
of Hölder continuous functions of exponent α. We endow the singular spaces with the norm

‖u‖Cα
β

= ‖u‖∞ + [(·)βu(·)]α,

where [(·)βv(·)]α = supt 
=s
‖tβv(t)−sβv(s)‖X|t−s|α . In the sequel we shall occasionally make use

of the shortened notation

Cα
β = Cα

β(J, X).

The next lemma highlights almost trivial properties of the singular continuous spaces which
will be very convenient to refer to in many future proofs.

LEMMA 2.6. The following multiplication maps are continuous

Cα
α × Cβ

β −→ Cβ
β, (u, v) �→ uv

Cα
α × Cβ

0 −→ Cβ

0 , (u, v) �→ uv



410 patrick guidotti J.evol.equ.

for any given α, β ∈ (0, 1) ∪ {1−} with α ≥ β. For the same choice of α and β the
multiplications

Cα
0 × Cβ

0 −→ Cβ
−α, (u, v) �→ uv

Cα
0 × Cβ

β −→ Cβ
β−α, (u, v) �→ uv

are also continuous.

Proof. We first observe that Cα
α ↪→ Cβ

β for β ≤ α ∈ (0, 1) ∪ {1−}. Thus it suffices to

prove the first continuity assertion for the case α = β. Let u, v ∈ Cβ
β , then

|tβu(t)v(t) − sβu(s)v(s)| ≤ |u(t)(tβv(t) − sβv(s))| + |(u(t) − u(s))sβv(s)|
≤ ‖u‖∞[tβv]β(t − s)β + ‖u‖

Cβ
β

‖v‖∞
sβ(t − s)β

tβ

≤ ‖u‖
Cβ

β

‖v‖
Cβ

β

(t − s)β,

where the second to the last inequality follows from

‖u(t) − u(s)‖ ≤ ‖u‖
Cβ

β

(t − s)β

tβ
,

which is in its turn a direct consequence of the definition of the norm in Cβ
β . Now the desired

continuity follows from the trivial inequality

‖uv‖∞ ≤ ‖u‖∞‖v‖∞.

As to the second multiplication it suffices to consider the regularity of the product at zero,
since away from zero the product reduces to the product of Hölder continuous functions.
There one has

|u(t)v(t)| ≤ ‖u‖∞[v]βtβ,

which readily entails the assertion. Since the last two multiplications can be handled in a
similar way, we just prove the last one. Let u ∈ Cα

0 and v ∈ Cβ
β , then it is obvious that

‖uv‖∞ ≤ ‖u‖∞‖v‖∞. Furthermore we have

|tβ−αu(t)v(t) − sβ−αu(s)v(s)|
≤ |(t−α − s−α)tβv(t)| + |(tβv(t) − sβv(s))s−αu(s)|
≤ 2[u]α‖v‖∞tβ−α(t − s)α + [u]α[(·)βv(·)]β(t − s)β (2.22)

and thus the assertion follows. �
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LEMMA 2.7. Assume that A is given by (2.20) and set J = [0, 1]. Then

∂
j
x

(
∂y

t

)k

A−1 ∈ C1−
1 (J, L(E0)),

for nonnegative j and k with j + k ≤ 2.

Proof. As the Fourier symbol of G∗A−1G∗ is given by t2σtc and

c ∈ S2−k(C([0, 1]), Ck([0, 1])) for k = 0, 1, 2

the claim follows from Lemmas 2.2 and 2.5 as well as from the mapping properties of G∗.
�

COROLLARY 2.8. Define E10 = BUC2+α(R, F0) and E01 = BUCα(R, F1). Then

A−1 ∈ C1−
1 (J, L(E0, E10)) ∩ C1−

−1(J, L(E0, E01)).

Moreover

A−1 ∈ C1
0(J, L(BUCk+α(R, F0), BUCk+1+α(R, F0)))

for k = 0, 1.

PROPOSITION 2.9. Assume that the same assumptions as in the previous lemma are
satisfied and let β ∈ (0, 1). Then

∂
j
x

(
∂y

t

)k

A−1 ∈ L(Cβ
β(J, E0)) ∩ L(Cβ

0 (J, E0))

for nonnegative j and k with j + k ≤ 2.

Proof. The assertions are now an easy consequence of Lemmas 2.2, 2.5 and 2.6. �

COROLLARY 2.10. Defining E10 and E01 as in Corollary 2.8. we obtain

A−1 ∈ L(Cβ
β(J, E0), Cβ

β(J, E10) ∩ Cβ

β−2(J, E01)) (2.23)

A−1 ∈ L(Cβ

0 (J, E0), Cβ

0 (J, E10) ∩ Cβ

0,−2(J, E01)) (2.24)

The following remark will be crucial in proving existence of a solution to problem
(2.1)–(2.5) in the next section.

REMARK 2.3. If Cβ

0 (J, E0) is replaced by Cβ
r (J, E0), that is, the space of functions

f which are Hölder continuous of exponent β with respect to the topology of E0 and for
which f (0) ∈ E10, then one has

A−1 ∈ L(Cβ
r (J, E0), Cβ

0 (J, E10)).
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Proof. In view of the properties of the symbol c it is a consequence of the previous
lemmas that

A−1 ∈ L(Cβ(J, E10), Cβ

0 (J, E10)).

Thus

A−1(t)f (t) = A−1(f (t) − f (0)) + A−1f (0)

entails the assertion since f (·) − f (0) ∈ Cβ

0 (J, E0). �

To simplify the notation we shall make use of the following abbreviation:

C?
?,? BUC? C?

? := C?
?,?(J, BUC?(R, C?

?([0, 1]))),

where the question marks might be replaced by any superscript or subscript. Let now
α, β ∈ (0, 1) and define

E0 = Cβ
β BUCα C × Cβ

β BUC2+α × Cβ
β BUC1+α (2.25)

and

E1 =
{
u ∈ Cβ

β BUC2+α C ∩ Cβ
β BUCα C2

∣∣
∂

j
x

(
∂y

t

)k

u ∈ Cβ
β BUCα C, 0 ≤ j + k ≤ 2

}
. (2.26)

We furthermore denote by
◦
E0 and

◦
E1 the spaces obtained from the above replacing the

subscript β by 0. The next theorem deals with the “boundary terms”.

PROPOSITION 2.11. Let RD and RN be defined as in (2.21). Then

RD ∈ L(Cβ
β BUC2+α, E1) ∩ L(Cβ

0 BUC2+α,
◦
E1) (2.27)

RN ∈ L(Cβ
β BUC1+α, E1) ∩ L(Cβ

0 BUC1+α,
◦
E1) (2.28)

Moreover, for k ≥ 2,

RD ∈ L(BUCk+α, C1− BUCk−1+α C) (2.29)

RN ∈ L(Cβ
β BUCk−1+α, Cβ

β−1 BUCk−1+α C) (2.30)

RN ∈ L(Cβ

0 BUCk−1+α, Cβ

−1 BUCk−1+α C) (2.31)
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Proof. Since the symbols of G∗RJ G∗ (J = D, N) are given by σta and tσtb for a and
b as in (2.16) the inclusions follow from Lemmas 2.2, 2.5 and 2.6, from ∂l

ya ∈ S−l
2 (R, C)

and ∂l
yb ∈ S−l−1

2 (R, C) and from the properties of G∗. �

COROLLARY 2.12. Let β ∈ (0, 1). Then

uD ∈ Cβ(J, E1) and uN ∈ Cβ

β−1(J, E1) (2.32)

The next theorem recapitulates the mapping properties of R.

THEOREM 2.13. Let R be the solution operator corresponding to the boundary value
problem for (A, γ0,

1
(·) γ1∂y). Then

R ∈ Lis(E0 × Cβ
β BUC2+α × Cβ

β BUC1+α, E1)

∩ Lis(
◦
E0 × Cβ

0 BUC2+α × Cβ

0 BUC1+α,
◦
E1).

Proof. The assertion is a consequence of Propositions 2.9 and 2.11. �

3. Existence of a local solution

This section is organized in the following way: Firstly, the singular boundary value
problem (2.1)–(2.3) is considered for a fixed given front function s ∈ BS(gt, g0/2) where

S = {
s ∈ C1/2(J, BUCk(δ)+α) ∩ C1+1/2(J, BUC1+α)

∣∣ s(0) = 0 and ṡ(0) = g
}

and B(c, r) stands for the ball centered at c with radius r . Recall that the assumptions on
the datum are

g ∈ BUC3+α(R) with g ≥ g0 > 0.

The parameter k is assumed be equal to 2 if δ = 0 and equal to 3, otherwise. The exis-
tence of a solution is proved and its dependence on the function s is discussed. Secondly
the Hamilton-Jacobi equation (δ = 0) and the parabolic evolution equation (otherwise)
(2.4)–(2.5) are analyzed for a fixed given u ∈ E1 ∩C1/2(J, BUC2+α C). Again existence of
a solution is obtained and its dependence on u is studied. Finally the full system is attacked
and a solution is produced via the Banach contraction principle.

3.1. Existence for the singular boundary value problem

Let us start by considering (2.1)–(2.3). A solution will be sought in the form u =
w + uD + uN =: w + v where, we recall,

uD = G∗F−1(σta) ∗ G∗g
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and

uN = G∗F−1(tσtb) ∗ G∗g2

This leads to the following system for w:

−wxx − 1

t2g2
wyy − gx

g
wx = F(w, s) in S × J (3.1)

w = 0 on �0 × J (3.2)

−1

t
wy = G(w, s, ṡ) on �1 × J (3.3)

where

F(w, s) :=
(

1 + y2s2
x

s2
− 1

t2g2

)
(w + v)yy − gx

g
(w + v)x

+ 2y
sx

s
(w + v)xy + y2 sxxs − 2s2

x

s2
(w + v)y

and

G(w, s, ṡ) = 1

t
(s2

xγ1(w + v)y − ssxγ1(w + v)x + sṡ − tg2).

Now it is easily seen that w is the fixed point of

w = A−1F(w, s) + RNG(w, s, ṡ),

Let α ∈ (0, 1). The next theorem shows that a solution can be found in the space E1.

THEOREM 3.1. Given s ∈ S there exists a unique solution us of (2.1)–(2.3) with
u ∈ E1. Moreover us ∈ C1/2 BUC2+α C with

‖u‖C1/2 BUC2+α C ≤ c ‖u‖E1

In particular,

γ1us ∈ C1/2 BUC2+α with γ1us(0) = g.

Proof. It suffices to construct w since then u = uD + uN + w is the solution with the
required properties. Notice that since both F and G are affine maps for fixed s it is trivial
to prove that � = A−1F + RNG is a self map on E1,0 = {w ∈ E1 | γ0w = 0}. It is indeed
a straightforward application of the regularity results obtained in the previous section. We
shall, however, need more in the sequel and we shall therefore proceed in another way as to
prove that � maps any ball BE1,0(0, r), r >> 0, into itself as long as the underlying time
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interval J = [0, T ] is taken small enough and r large enough. Contractivity of � will also
be proved on a small time assumption. This will imply the existence of a unique solution
in the given class. Finally we shall show that the solution satisfies the additional regularity
property. Since, as far as regularity is concerned, the isomorphism G∗ does not play any
role, we can assume that G∗ = id. In the rest of the proof we shall make use of the simple
fact that

‖u‖
Cβ

β

≤ cT β‖u‖
Cβ

0
, u ∈ Cβ

0

for β ∈ (0, 1). From now on we fix β = 1/2. Let w ∈ BE1,0(0, r) be given. Analyzing

A−1F = ∑4
i=1 A−1Fi term by term we have∥∥∥∥∥

(
t2

s2
(1 + y2s2

x ) − 1

g2

)
(w + v)yy

t2

∥∥∥∥∥
E0

≤
∥∥∥∥∥ t2

s2
(1 + y2s2

x ) − 1

g2

∥∥∥∥∥◦
E0

∥∥∥∥ 1

t2
(w + v)yy

∥∥∥∥
E0

≤ c(s)tβ(‖w‖E1 + ‖v‖E1)

which entails by Theorem 2.13.

‖A−1F1(w, s)‖E1 ≤ c(s)tβ(‖w‖E1 + ‖v‖E1)

We further have that

‖A−1F2(w, s)‖E1 =
∥∥∥∥A−1 gx

g
(w + v)x

∥∥∥∥
E1

≤ c(s)(t‖w‖E1 + ‖v‖E1)

by Proposition 2.11 and by∥∥∥∥A−1 gx

g
wx

∥∥∥∥
E1

≤ ctβ
∥∥∥∥A−1 gx

g
wx

∥∥∥∥◦
E1

≤ ctβ‖wx‖◦
E0

≤ ct‖w‖E1 ,

which follows from

wx ∈ ◦
E0 and wx(t, x, y) =

∫ y

0
wxy(t, x, η) dη.

The third term can be estimated as follows

‖A−1F3‖E1 ≤ c‖F3‖E0 ≤ c

∥∥∥t2y
sx

s

∥∥∥
E0

(‖w‖E1 + ‖v‖E1)

≤ c(s)t (‖w‖E1 + ‖v‖E1)

As for the forth we have

‖A−1F4‖E1 ≤ c‖F4‖E0 ≤
∥∥∥∥y2 t

s

(
sxx − 2s2

x

s

)
(w + v)y

t

∥∥∥∥
E0

≤ c(s)tβ(‖w‖E1 + ‖v‖E1)
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We conclude that

‖A−1F(w, s)‖E1 ≤ c(s)(tβ‖w‖E1 + ‖v‖E1) (3.4)

By means of Proposition 2.11 RNG(w, s, ṡ) can be handled in a similar way as to obtain

‖RNG(w, s, ṡ)‖E1 ≤ c(s)tβ(‖w‖E1 + ‖v‖E1) (3.5)

We notice that the constant c(s) only depends on

‖s − gt‖Cβ BUC2+α and ‖ṡ − g‖Cβ BUC1+α

and can be thus bounded independently of s in a S-neighborhood of tg. Making T small and
r large enough � becomes a self-map of any ball in view of (3.4) and (3.5) and this concludes
the first part of the proof. We now consider the contractivity. Let w1, w2 ∈ BE1,0(0, r).
Since

F(w1, s) − F(w2, s) =
(

1 + y2s2
x

s2
− 1

(tg)2

)
(w1 − w2)yy − gx

g
(w1 − w2)x

+ 2y
sx

s
(w1 − w2)xy + y2 sxxs − 2s2

x

s2
(w1 − w2)y

and

G(w1, s, ṡ) − G(w2, s, ṡ) = 1

t
[s2

xγ1(w1 − w2)y − ssxγ1(w1 − w2)x]

the contractivity is obtained by similar arguments as the self-map property using
Propositions 2.9 and 2.11 and the regularity assumption on s. It is also true in this case
that the contractivity constant can be made small independently of s in a S-neighborhood
of tg by reducing the length of the time interval, if necessary. In conclusion, by Banach
contraction principle, we obtain a solution w ∈ E1,0 of (3.1)–(3.3) and thus a solution u

of (2.1)–(2.3). It only remains to prove the additional regularity. As far as uD and uN are
concerned the claimed regularity follows from Corollary 2.12. As for w it is easily seen
that the properties of s imply that

F(w, s) =
(

F(w, s) − g2
x

g

)
+ g2

x

g
∈ ◦

E0 + BUC2+α

and that

G(w, s, ṡ) ∈ Cβ

0 BUC1+α

for any w ∈ E1,0. Theorem 2.13 and Propositions 2.9 and 2.11 (see also Remark 2.3)

therefore entail that �(w) ∈ Cβ

0 BUC2+α . The reason why w /∈ ◦
E1 lies in the fact that

F(w, s) does not satisfy the boundary conditions (γ0vx = gx). �
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3.2. Continuous dependence on the front function

In the next proposition the dependence of the solution us upon the front function s is
analyzed.

PROPOSITION 3.2. Given 0 < ε < g0 and s1, s2 ∈ BS(gt, ε) and the corresponding
solutions u1 and u2 of (2.1)–(2.3) we have that

‖u1 − u2‖E1 ≤ c t1/2‖s1 − s2‖S .

In other words the solution constructed in the previous theorem depends Lipschitz contin-
uously on s in a S-neighborhood of tg. Moreover, we have that

‖u1 − u2‖C1/2 BUC2−k+α ≤ ctk/2(‖u1 − u2‖E1 + ‖s1 − s2‖S)

for k = 0, 1.

Proof. Again we set β = 1/2 and assume, without loss of generality, that G∗ = id.
It follows from the proof of Theorem 3.1 that a solution to (2.1)–(2.3) exists for any
s ∈ BS(gt, ε) and lies in BE1,0(0, r) for an appropriate r > 0. Let s1, s2 be two such
functions. Then

w1 − w2 = �(w1, s1) − �(w2, s2)

which gives

w1 − w2

= A−1


(

1 + y2s1
2
x

s2
1

− 1 + y2s2
2
x

s2
2

)
(w1yy + vyy) +

(
1 + y2s2

2
x

s2
2

− 1

(tg)2

)
(w1yy − w2yy)

− gx

g
(w1x − w2x) + 2y

(
s1x

s1
− s2x

s2

)
(w1 + v)xy + 2y

s2x

s2
(w1 − w2)xy

+ y2

(
s1xxs1 − 2s1

2
x

s2
1

− s2xxs2 − 2s2
2
x

s2
2

)
(w1 + v)y

+ s2xxs2 − 2s2
2
x

s2
2

(w1 − w2)y

 + RN
1

t
s{(s1

2
x − s2

2
x)γ1(w1 + v)y + s2

2
xγ1(w1 − w2)y

− (s1s1x − s2s2x)γ1(w1 + v)y + s2s2xγ1(w1 − w2) + (s1ṡ1 − s2 ṡ2)}
= A−1(I+II+III+IV+V+VI+VII) + RN(VIII+IX+X+XI+XII)

From this we obtain

‖w1 − w2‖E1 ≤ c‖I+II+IV+V+VI+VII‖E0 + ctβ‖w1x − w2x‖◦
E0

+ c‖VIII+IX+X+XI+XII‖
Cβ

β BUC1+α
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using Theorem 2.13 and Propositions 2.9 and 2.11. Now similar calculations to those used
in the proof of the previous theorem we obtain

‖I+IV+VI‖E0 ≤ c(‖w‖E1)t
β‖s1 − s2‖S

‖II+V+VII‖E0 ≤ c(‖s‖S)t
β‖w1 − w2‖E1

‖w1x − w2x‖◦
E0

≤ c t‖w1 − w2‖E1

‖VIII+X+XII‖
Cβ

β BUC1+α ≤ c(‖w‖E1)t
β‖s1 − s2‖S

‖IX+XI‖
Cβ

β BUC1+α ≤ c(‖s‖S)t
β‖w1 − w2‖E1 .

The additional estimates can be obtained observing that

�(w1, s1) − �(w2, s2) = �(w1 − w2, s2) + (�(w1, s1) − �(w1, s2)).

In fact, for k = 0, the first term in the sum can be estimated as in the end of the proof
of Theorem 3.1. As for k = 2 or as for the second term we use the estimates derived in
Corollary 2.10 and Proposition 2.11. �

We want now to take a look at the problem solved by s, that is at (2.4)–(2.5), assuming,
this time, that u is given. The first of the next two subsections will be devoted to the case
δ = 0 and the second to the case δ > 0. The existence of a solution for the full system will
be discussed for the two cases separately in the respective subsections.

3.3. The case δ = 0

In this subsection we want to analyze the solvability of the following Hamilton-Jacobi
equation

st −
√

1 + s2
x v = 0 (3.6)

s(0) ≡ 0 (3.7)

for a given function v ∈ C1/2 BUC2+α satisfying v(0) = g. We shall first use the method of
characteristics to produce a solution and then carefully analyze the ODEs involved to derive
the regularity properties we need for our approach to work. The dependence of s on v will
also be studied. By means of the standard method of characteristics (cf. [?]) it is possible
to transform (3.6)–(3.7) into the following system of ODEs:

∂

∂ρ
t = 1, t (0) = 0 (3.8)

∂

∂ρ
x = − q√

1 + q2
v(t, x), x(0) = r (3.9)
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∂

∂ρ
s = p − q2√

1 + q2
v(t, x), s(0) = 0 (3.10)

∂

∂ρ
p =

√
1 + q2 vt (t, x), p(0) = g(r) (3.11)

∂

∂ρ
q =

√
1 + q2 vx(t, x), q(0) = 0 (3.12)

(3.13)

for positive ρ and r ∈ R. This system is easily seen to reduce to the single equation

ẋ(t) = tanh

(∫ t

0
vx(σ, x(σ )) dσ

)
v(t, x(t)) , x(0) = β, (3.14)

from which the solution s can be reconstructed. In fact denoting by Xt ∈ Diff1(R) the
diffeomorphism obtained by taking the value of the solution of (3.14) at time t for any initial
value r , it follows that

s(t, x) = g(X−1
t (x))t +

∫ t

0

∫ τ

0
cosh(Y (σ ))vt (σ, Xσ (X−1

t (x))) dσ dτ

−
∫ t

0
tanh(Y (τ )) sinh(Y (τ ))v(τ, Xτ (X

−1
t (x))) dτ (3.15)

where we put Y (τ) = ∫ τ

0 vx(σ, Xσ (X−1
t (x)) dσ ). We also observe that

sx(t, x) =
∫ t

0
sinh

(∫ τ

0
vx(σ, Xσ (X−1

t (x))) dσ

)
dτ. (3.16)

This and (3.7) allows us to avoid dealing directly with (3.15) which would involve the time
derivative of v. Analyzing the regularity properties of X as a vector valued function of time
we arrive at the following theorem

THEOREM 3.3. Assume that v ∈ C1/2 BUC2+α is given with v(0) = g. Then there
exist a unique local solution s of (3.6)–(3.7) with

s ∈ C1+1/2 BUC1+α ∩ C1/2 BUC2+α .

Furthermore there is a T (g) > 0 such that the solution s exists on [0, T (g)] independently
of v in a neighborhood of g in C1/2 BUC2+α .

Proof. Set β = 1/2. Since v ∈ Cβ BUC2+α , it follows that (3.14) possesses a unique
local solution x(·, r) on some time interval [0, tr ]. The regularity of u implies that

x(·, r) ∈ C1+β([0, tr ]).
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Furthermore, since v is chosen to be in a neighborhood of g we conclude that there exists
tg > 0 with tr ≥ tg for any r ∈ R. Now y = ∂rx solves

ẏ(t) = v(t, x(t)) tanh

(∫ t

0
vx(σ, x(σ )) dσ

)∫ t

0
vxx(σ, x(σ ))y(σ ) dσ

+ tanh

(∫ t

0
vx(σ, x(σ )) dσ

)
vx(t, x(t))y(t),

y(0) = 1.

It is not difficult to see that there is t̃g > 0 such that the solution of the above ODE exists
on [0, t̃g] for any r ∈ R and for which

y ≥ 1/2 in [0, t̃g] × R,

since v ∈ L∞ BUC2+α . The regularity of v thus gives

y = [t �→ DXt ] ∈ Cβ BUCα,

which, in its turn, implies that

[t �→ Xt ] ∈ Cβ Diff1+α

and

[t �→ X−1
t ] ∈ Cβ Diff1+α

Finally we see that

[t �→ (Xt )
∗] ∈ Cβ L(BUC1+α).

and

[t �→ (Xt )∗] ∈ Cβ L(BUC1+α).

Thus (3.16) implies that

sx ∈ Cβ BUC1+α

and (3.6) that

st ∈ Cβ BUC1+α .

Owing to

s(t, ·) =
∫ t

0

√
1 + s2

x (τ, ·) v(τ, ·) dτ
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we see that

s(t, ·) ∈ BUCα

and conclude that

s ∈ C1+β BUC1+α ∩ Cβ BUC2+α

with s(0) = 0 and ṡ(0) = √
1 + s2

x (0)γ1u(0) = g. For T (g) we take min{tg, t̃g}. �

Next we analyze the dependence of the solution s on the datum v.

PROPOSITION 3.4. Let v1,v2 ∈ BC1/2 BUC2+α (g, δ) and s1, s2 be the solutions of
(3.6)–(3.7) with v replaced by v1 and v2, respectively. Then

‖s1 − s2‖S ≤ c(t ‖v1 − v2‖C1/2 BUC2+α + ‖v1 − v2‖C1/2 BUC1+α ). (3.17)

Proof. Since s1 and s2 satisfy (3.6) we only need to estimate s1x − s2x . Owing to (3.16)

s1x − s2x =
∫ t

0

{
sinh

(∫ t

0
v1x(σ, X1σ (X1

−1
t (x))) dσ

)
− sinh

(∫ t

0
v2x

(
σ, X2σ (X2

−1
t (x))

)
dσ

)}
dτ

where Xj t
comes from solving

ẋ = tanh

(∫ t

0
vj x

(σ, x(σ ))

)
vj (t, x)

for j = 1, 2. Thus, the problem is further reduced to estimating X1 − X2 for which we
easily compute

‖[t �→ (X1t − X2t )
∗]‖Cβ L(BUC1+α) ≤ c‖v1 − v2‖Cβ BUC2+α . (3.18)

It follows that

‖s1x − s2x‖Cβ BUC1+α ≤ ct‖v1 − v2‖Cβ BUC2+α .

Thus the estimate

‖s1t − s2t‖Cβ BUC1+α

≤ ‖(
√

1 + s1
2
x −

√
1 + s2

2
x)v1‖Cβ BUC1+α + ‖

√
1 + s2

2
x(v1 − v2)‖Cβ BUC1+α

≤ ct‖v1 − v2‖Cβ BUC2+α + c‖v1 − v2‖Cβ BUC1+α

concludes the proof. �
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We conclude this subsection with the main existence result. For a definition of the space
E1 we refer to (2.26).

THEOREM 3.5. Assume that g ∈ BUC3+α for some α ∈ (0, 1). Then system
(2.1)–(2.5) possesses a unique local solution (u, s) ∈ E1 × S with

γ1u ∈ C1/2 BUC2+α .

In particular the free boundary problem (1.1)–(1.5) possesses a unique local classical
solution.

Proof. We define �1(s) = us = ws + uD + uN to be the solution to (2.1)–(2.3) for
given s so that ws = �(ws, s) for � = A−1F + RNG. Denote by �2(v) the solution of
the Hamilton-Jacobi equation with datum v. Then a solution can be produced from a fixed
point s of �3 := �2 ◦ �1 taking (�1(s), s). We thus need to prove that �3 is a self map of
some complete set and contractive thereon to apply Banach contraction principle. We shall
take BS(gt, ε) for the complete set where g0 > ε > 0 is to be chosen appropriately. Given
s ∈ BS(gt, ε) we use Theorem 3.1 to produce us with γ1us(0) = g. Since the modulus
of continuity γ1u can be chosen independent of s ∈ BS(gt, ε) we can use Proposition 3.3
to construct a solution �3(s) of the Hamilton-Jacobi equation with datum γ1us which lies
again in BS(gt, ε) and such that its modulus of continuity doesn’t depend on us and thus on
s ∈ BS(gt, ε), either. Thus it is only a question of making the time interval small enough
to see that � is a self map of BS(gt, ε). To see that it is contractive use Propositions 3.2
and 3.4 which give

‖�(s1) − �(s2)‖S

≤ ct‖γ1us1 − γ1us2‖Cβ BUC2+α + c‖γ1us1 − γ1us2‖Cβ BUC1+α

≤ c t1/2‖s1 − s2‖S,

and the proof is complete. �

3.4. The case δ > 0

The last part of the paper is devoted to the local existence of a regular solution to the free
boundary problem with the curvature term. Recall that this is equivalent to choosing δ > 0.
As in the previous subsection we shall consider first

ṡ = δ
v

1 + s2
x

sxx + v

√
1 + s2

x , (3.19)

s(0, ·) ≡ 0, (3.20)
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for fixed v ∈ Cβ BUC2+α and β ∈ (0, 1), and then deal with the whole system. As there is a
well developed maximal regularity theory for parabolic problems we shall take advantage of
existing results to deal with the above equations. We shall make use of the optimal regularity
result formulated in [?, Corollary 6.1.6 (iv)] to obtain

THEOREM 3.6. Given v ∈ V + = {Cβ BUC1+α | v > 0} there exists a unique solution
s to (3.19)–(3.20) with

s ∈ C1+β BUC1+α ∩ Cβ BUC3+α .

Moreover, if s1 and s2 are solutions of (3.19)–(3.20) to data v1 and v2 then

‖s1 − s2‖C1+β BUC1+α ∩ Cβ BUC3+α ≤ c ‖v1 − v2‖Cβ BUC1+α

Proof. Observe that that the above equation has the structure

(∂t + A(sx, v))s = v

√
1 + s2

x , s(0) = 0,

where A(sx, v) is defined in the obvious way. It follows from [?, Corollary 6.1.6 (iv)] and
from v ∈ V + that

∂t + A(0, v) ∈ Lis(C
1+β BUC1+α ∩ Cβ

0 BUC3+α, Cβ

0 BUC1+α)

for any such v. Since the latter operator happens to be the linearization of ∂t + A(sx, v)

in the initial value we obtain a solution of (3.19)–(3.20) via the implicit function theorem.
Since A depends linearly on v we also get the additional estimate. �

We are now in a position to prove the following final existence result. The space E1 is
defined as in (2.26).

THEOREM 3.7. Assume thatg ∈ BUC3+α . Then there is unique local classical solution
(u, s) ∈ E1 × S of (2.1)–(2.5) with

γ1u ∈ C1/2 BUC2+α .

Thus the free boundary problem (1.1)–(1.5) with curvature term possesses a unique
classical solution.

Proof. The proof follows along the same lines that the one of Theorem 3.5. One proves
first that �3(s) = �2(�1(s)) is a self map of BS(tg, ε) for an appropriate ε > 0, for �i ,
i = 1, 2, defined as in the proof of 3.5. Then, by reducing the interval length, if necessary,
it is possible to obtain contractivity by using Theorem 3.6. and Proposition 3.2. �

We conclude the paper with some final remarks.
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REMARK 3.1. It is natural to ask the question about maximal or global existence for
the solution. A distinction need to be made between the two cases δ = 0 and δ > 0. In the
first the characteristics of (3.6)–(3.7) generically cross in finite time. It is not clear if any
benefit could come from the coupling to singular BVPs. In the second case it is possible to
continue the solution to its maximal existence interval with the same technique used in the
above existence proof. The question of global existence remains open.

REMARK 3.2. The results concerning singular BVPs of Section 2 can be generalized
to higher dimensions if the domain degeneration only occurs in one direction. Indeed the
nature of the symbols involved is not affected in this case. Multidirectional degenerations
remain an open problem.

Acknowledgements

The author gratefully acknowledges the support of the Swiss National Science
Foundation.

REFERENCES

[1] Alfrey, T., Gurnee, E. F. and Lloyd, W., Diffussion in glassy polymers, J. Polymer Sci. Part C,
12 (1966), 249–261.

[2] Amann, H., Operator-Valued Fourier Multipliers, Vector-Valued Besov-Spaces and Applications, Math.
Nachr., 186 (1997), 5–56.

[3] Amann, H., Linear and Quesilinear Parabolic Problems, vol II, Birkhäuser, Basel, in preparation.
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1995.
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