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Abstract Themoving boundary problem for the contact line evolution of a droplet is studied.
Local existence and uniqueness of classical solutions is established.
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1 Introduction

Consider the system
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−�u = λ in �t , for t > 0,

u = 0 on ∂�t , for t > 0,
∫

�
u dx = V0 > 0 for t > 0,

V = F(|∇u|) on ∂�t , for t > 0,

�t
∣
∣
t=0 = �0,

(1)

which is a widley accepted model [7] describing the quasi-static shape evolution of a liquid
droplet of height u(t, x) occupying the region �t = [u(t, ·) > 0] at time t ≥ 0. The
integral condition ensures volume conservation during the evolution and is related to the
appearance of the (negative) hydro-static pressure (as a Lagrange multiplier) λ in the first
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1148 J. Escher, P. Guidotti

equation.The fourth equation relates the contact line speed innormal direction to the steepness
|Du| = −∂νu at contact where ν = − ∇u

|∇u| is the outward pointing normal to �t = ∂�t .
While the exact empirical relation F can vary [4,12,13], for the purposes of this paper no
qualitative assumptions will be made beyond monotonicity

F ∈ Cω
(
R,R

)
with F ′(r) > 0 for r > 0 . (2)

The regularity assumption can be relaxed.1

While the introduction of the model goes back quite some time [7], not many analytical
results can be found in the literature. Numerical experiments on stability were performed
in [8] and, subsequently, a numerical scheme based on a boundary integral formulation
was proposed by [6]. Later Kim and Glasner [9] proposed a concept of weak generalized
solution by means of viscosity solution techniques. Since the problem does not admit a
comparison principle, they are forced to consider an approximate problem where λ is kept
constant on small time intervals. This way they regain access to a comparison principle
and use it to introduce a concept of viscosity solution, before taking the limit and thus
effectively removing the approximation step. While their most general result is local in time
well-posedness (in the sense of short time existence and uniqueness), they also obtain global
existence for solutions satisfying a geometric condition. Later [10] proposed a construction
of global in time weak solution via a discrete approach based on barriers and the gradient
flow structure of the system. Latter is only given when F(r) = r2 − 1 and thus the results
are limited to that case. To the best of our knowledge no result has appeared in the literature
concerning the short time existence of classical solutions for (1). This gap is filled by the
current paper.

2 Reformulation and main result

A domain fixing transformation will be used to reformulate problem (1) which was first
used in [5] and has hence come to be known as the Hanzawa transformation. It is obtained by
taking a compact closed C∞-surface � ⊂ R

n close to�0 = ∂�0 and introducing coordinates
derived from a foliation of a neighborhood of � in R

n . More precisely, let x ∈ � and denote
by ν(x) the unit outward normal to � at x . Since � is smooth and compact, there is a 	 > 0
such that the surfaces

�λ = {
x + λν(x)

∣
∣ x ∈ �

}
, λ ∈ (−	,	)

are equally smooth, disjoint, and fill a tubular neighborhood �	 of �. It is then possible to
parametrize �t (as long as it stays in �	) by a function

ρ = ρ(t, ·) : � → R

through

�ρ = {
x + ρ(x)ν(x)

∣
∣ x ∈ �

}
.

As the goal of this paper consists in obtaining classical solutions, it will be convenient to
work in so-called little Hölder spaces denoted by hβ(O) for an open subset O of Rn and
defined through

hβ(O) = rOS(Rn)
‖·‖BUCβ (O) ,

1 An inspection of the proof of the main result shows that existence and uniqueness of classical solutions can
be guaranteed for F of class C1+α with α ∈ (0, 1).
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Classical solutions for a droplet model 1149

i.e. by the closure of the space of restrictions to O of smooth and rapidly decreasing functions
in the norm of BUCβ(O). Latter denotes the space of bounded, uniformly Hölder continuous
functions2 on O with norm

‖u‖BUCβ (O) =
∑

|α|≤[β]
‖∂αu‖∞,Ō +

∑

|α|=β

[∂αu]β−[β],Ō

where [β] is the integer part of β and

[∂αu]β−[β],Ō := sup
x �=y∈O

| f (x) − f (y)|
|x − y|β−[β] , u ∈ C(O).

Given a smooth (compact) manifold M , hβ(M) is defined (similarly) by localization and
using a smooth (finite) atlas of M in the canonical way.

In order to obtain a problem on the fixed domain � bounded by �, diffeomorphisms from
� to �t need to be specified. To that end, let

ρ ∈ V := BC1(�)(0, a) ∩ h2+α(�), a < 	/4,

where BE (x, r) stands for the ball with radius r centered at x ∈ E in the normed space E .
Denote by �ρ the domain bounded by �ρ and let ϕ ∈ C∞(

R, [0, 1]) be a cutoff function
satisfying

ϕ(λ) =
{
1, |λ| < a,

0, |λ| ≥ 3a,

and, for any y ∈ �	, let
(
X (y),	(y)

)
be the “tubular” coordinates of y, i.e.

y = X (y) + 	(y)ν
(
X (y)

)
.

Notice that X ∈ BUC∞(�	, �) and 	 ∈ BUC∞(
�	, (−	,	)

)
. Defining

θρ(y) :=
{

X (y) + [
	(y) + ϕ

(
	(y)

)
ρ
(
X (y)

)]
ν
(
X (y)

)
, y ∈ �	,

y, y /∈ �	,
(3)

it is easily verified that

θρ ∈ Diff2+α(Rn,Rn) ∩ Diff2+α(�,�ρ),

and that θρ(�) = �ρ , due to the assumptions on ρ. The original problem can then be
rewritten in the new coordinate system. To do so, let θ∗

ρ and θ
ρ∗ denote the pull-back and the

push-forward maps induced by θρ , respectively, i.e.,

θ∗
ρ u := u ◦ θρ, u ∈ BUC(�ρ),

θ
ρ∗ v := v ◦ θ−1

ρ , v ∈ BUC(�).

It can be verified (see [5]) that

θ∗
ρ ∈ Isom

(
hk+α(�ρ), hk+α(�)

) ∩ Isom
(
hk+α(�ρ), hk+α(�)

)

and that θρ∗ = (θ∗
ρ )−1 for any choice of ρ ∈ V and k ∈ {0, 1, 2}. The function

Nρ : �	 → R, y �→ 	(y) − ρ
(
(X (y))

)

2 In contrast to hβ(O) the space BUCβ(O) is not separable. This shows particularly that hβ(O) is a proper
subspace of BUCβ(O).
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leads to the representation �ρ = N−1
ρ (0) and thus to the formula

νρ(y) = ∇Nρ(y)

|∇Nρ(y)| , y ∈ N−1
ρ (0),

for the unit outward normal to �ρ at the point y. The normal velocity V of the front �ρ(t,·)
is given by

V (y, t) = −∂t Nρ(t, y)

|∇Nρ(y)| = ∂tρ
(
X (y), t

)

|∇Nρ(y)| , y ∈ �ρ, t ∈ [0, T ],

for fixed

ρ ∈ C
([0, T ],V) ∩ C1([0, t], h1+α(�)

)
.

Definition 2.1 (i) A family of domains {�t | t ∈ [0, T ]} with h2+α-boundary �t together
with a family of functions

u(t, ·) ∈ h2+α(�t ), t ∈ [0, T ],
is called a classical h2+α-solution of (1) if all equations are satisfied pointwise.

(ii) A pair (v, ρ) such that

v ∈ C
([0, t], h2+α(�)

) ∩ C1([0, T ], hα(�)
)
and

ρ ∈ C
([0, T ],V) ∩ C1([0, T ], h1+α(�)

)
,

is called classical h2+α-solution of
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−θ∗
ρ�θ

ρ∗ v = λ in (0, T ) × �,

v = 0 on (0, T ) × ∂�,
∫

�
v(y)

∣
∣Dθρ(y)

∣
∣ dy = V0,

∂tρ = θ∗
ρ |∇Nρ |F

[
−θ∗

ρ
∇θ

ρ∗ v·∇Nρ

|∇Nρ |
]

on (0, T ) × �,

ρ(0, ·) = ρ0 on �,

(4)

if it satisfies the system in the pointwise sense.

Proposition 2.2 Problems (1) and (4) are equivalent in that any pair (v, p) with

v ∈ C
([0, t], h2+α(�)

) ∩ C1([0, T ], hα(�)
)
,

p ∈ C
([0, T ],V) ∩ C1([0, T ], h1+α(�)

)

is a classical h2+α-solution of (4) if and only if the domains �ρ(t,·) bounded by �ρ(t,·) and
the functions u := θ

ρ∗ v ∈ h2+α
(
�ρ(t,·)

)
yield a solution of (1).

Proof Observe that ∂νρ u < 0 for any smooth solution of (1) by the strongmaximumprinciple
and that

−|Du| = ∇u ·
(

− ∇u

|∇u|
)

= ∂νρ u,

since �t is the zero level set of the nonnegative function u. It follows that

θ
ρ∗ ∂tρ

|∇Nρ | = F
(|Du|) = F

(−∂νρ u
) = F

(

−θ∗
ρ

∇θ
ρ∗ v · ∇Nρ

|∇Nρ |
)

,
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Classical solutions for a droplet model 1151

if v = θ∗
ρ u. This can also be rewritten as

∂tρ = θ∗
ρ |∇Nρ |F

(

−θ∗
ρ

∇θ
ρ∗ v · ∇Nρ

|∇Nρ |
)

.

The rest follows from the regularity properties of the diffeomorphism θρ . ��
In the next step system (4) is reduced to a single evolution equation by solving the time
dependent elliptic boundary value problem

⎧
⎪⎨

⎪⎩

−A(ρ)v = λ in (0, T ) × �,

v = 0 on (0, T ) × �,

I (ρ)v = V0 on [0, T ],
(5)

obtained by fixing ρ ∈ C
([0, T ],V) ∩ C1

([0, T ], h1+α(�)
)
. The short-hand

A(ρ)v := −θ∗
ρ�θ

ρ∗ v,

I (ρ)v :=
∫

�

v(y)|Dθρ(y)| dy,

are used to simplify the notation. The operator given by

B(ρ)v = −γ�θ∗
ρ

(∇θ
ρ∗ v

∣
∣∇Nρ

)
, (6)

where γ� is the restriction operator to the boundary, will also be needed later on.

Lemma 2.3 The above operators all depend analytically on ρ, i.e.

(A,B) ∈ Cω
(
V,L(

h2+α(�), hα(�) × h1+α(�)
))

, (7)

I ∈ Cω(V,R), (8)

[ρ �→ |∇Nρ |] ∈ Cω
(V, h1+α(�)

)
. (9)

Proof Let dx2 denote the Euclidean metric onRn and θ∗
ρ dx2 the pull-back metric on�, i.e.,

θ∗
ρ dx2

∣
∣
x (ξ, η) := dx2

∣
∣
θρ(x)

(
dxθρ(ξ)

∣
∣dxθρ(η)

)
, x ∈ �, ξ, η ∈ Tx (�).

It follows thatA(ρ) and B(ρ) are the Laplace–Beltrami operator and the unit outward normal
derivative of (�, θ∗

ρ dx2), respectively. The metric depends analytically on ρ as do |Dθρ | and
|∇Nρ |. All maps are therefore analytic, since θρ depends analytically (algebraically, in fact)
on ρ. ��
Lemma 2.4 The boundary value problem

⎧
⎪⎨

⎪⎩

−A(ρ)v = λ f in (0, T ) × �,

v = 0 on (0, T ) × �,

I (ρ)v = V0 on [0, T ],
(10)

can be solved uniquely for any given f ∈ hα(�) and V0 ∈ R. The solution is given by

v = V0

I (ρ)S̃(ρ) f
· S̃(ρ) f, λ = V0

I (ρ)S̃(ρ) f
,
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1152 J. Escher, P. Guidotti

where S̃(ρ) f is the unique solution of
{

−A(ρ)v = f in �,

v = 0 on �.

It holds that

S̃(ρ) ∈ Cω
(V,L(hα(�), h2+α(�))

)
(11)

and there is a C = C(ρ) such that

‖S̃(ρ) f ‖2+α,� ≤ C‖ f ‖α,�

Proof The results follow fromclassical regularity results for elliptic boundary value problems
and the fact that the additional degree of freedom introduced by λ is compensated by the
integral condition. ��
It is convenient to introduce some further notation:

S(ρ) := λ(ρ) · S̃(ρ), ρ ∈ V.

Remark 2.5 The strong maximum principle implies that, given f ≥ 0 and V0 > 0, we have

∂νρ

(
θ

ρ∗ S(ρ) f
)

< 0 on �ρ

since the solution is positive in �ρ .

Problem (4) therefore reduces to
{

∂tρ = θ∗
ρ |∇Nρ | · F

(
−θ∗

ρ
1

|∇Nρ |B(ρ)S(ρ)1
)

on [0, T ] × � ,

ρ(0, ·) = ρ0 ∈ V,
(12)

where 1(x) ≡ 1, x ∈ �. To shorten the notation, let

�(ρ) := −θ∗
ρ |∇Nρ | · F

(
−θ∗

ρ

1

|∇Nρ |B(ρ)S(ρ)1
)
, ρ ∈ V. (13)

It can be seen from Lemma 2.3, (2), and (11) that

� ∈ Cω
(V, h1+α(�)

)
. (14)

Definition 2.6 A function ρ ∈ C
([0, T ],V) ∩ C1

([0, T ], h1+α(�)
)
is called a classical

Hölder solution of (12) it it satisfies the equation pointwise on [0, T ].
Lemma 2.7 The function ρ is a classical Hölder solution of (12) if and only if

(
S(ρ)1, ρ

)

is a classical Hölder solution of (4).

Evolution equation (12) will be analyzed by means of linearization and maximal regularity
in the sense of Da Prato and Grisvard, cf. [11]. For this, a good understanding of the Fréchet
derivative of � is required. This analysis will be carried out in the next section. In fact, The-
orem 4.1 below and the characterization of small Hölder spaces as continuous interploation
spaces allows us to apply Théorème 4.1 in [11], cf. also Theorem 2.7 and Theorem 2.14 in
[2]. As a consequence we find the following result.

Theorem 2.8 Given ρ0 ∈ V , there exists T > 0 and a unique solution

ρ ∈ C
([0, T ],V) ∩ C1([0, T ], h1+α(�)

)

of (12) with ρ(0, ·) = ρ0. This implies the existence of a unique classical Hölder solution of
(4) and (1) on [0, T ], as well.
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Classical solutions for a droplet model 1153

3 Linearization

In this section we compute the linearization of the operator � from 14. Its structure will be
analyzed in the next section. Since we already verified that � is smooth, will use Gâteaux
derivatives to find the Fréchet derivative ∂�. Let ρ ∈ V be given. In order to compute the
linearization of (13), the following terms need to be considered

θ∗
ρ |∇Nρ |, B(ρ), S̃(ρ), I (ρ).

Starting from the first term notice that

d

dε

∣
∣
ε=0θ

∗
ρ+εh |∇Nρ+εh | = d

dε

∣
∣
ε=0θ

∗
ρ+εh |∇Nρ | + θ∗

ρ

d

dε

∣
∣
ε=0|∇Nρ+εh | =: I + II.

Recall that

Nρ(x) = d(x, �) − ρ
(
pr�(x)

) ≡ 	(x) − ρ ◦ X (x),

so that

II = −θ∗
ρ

∇Nρ

|∇Nρ | · ∇(h ◦ X) = −(
θ∗
ρ ∂νρ X

)
dX (·)h

where dy f denotes the tangential of f at y ∈ �. As an operator acting on h this amounts to
a (tangential) differential operator (on �). As for I, we recall the definition (3) of θρ together
with the fact that θρ(�) = �ρ . Let u ∈ h2+α(�ρ) and consider

d

dε

∣
∣
ε=0θ

∗
ρ+εhu = lim

ε→0

1

ε

[
u(θρ+εh) − u(θρ)

]
.

Notice that

θρ+εh − θρ = εh
(
X (y)

)
ϕ
(
	(y)

)
ν
(
X (y)

) = εh
(
X (y)

)
ν
(
X (y)

)
,

in a neighborhood of �ρ . It follows that

d

dε

∣
∣
ε=0θ

∗
ρ+εhu = (

θ∗
ρ ∂νu

)
h ◦ X. (15)

Then

I = (
θ∗
ρ ∂ν |∇Nρ |)h ◦ X,

which requires the computation of ∂ν |∇Nρ |. Notice first that

∇Nρ(x) = −
n−1∑

j=1

∂τ j ρ
(
pr�(x)

)
τ j + 1 ν

(
pr�(x)

)
,

if the gradient is computed in a local orthogonal basis τ1, . . . , τn−1 for the tangent space to
� at pr�(x) completed to a basis of Rn by means of the normal ν to � at the same point. It
is apparent that ∇Nρ does not vary in the ν-direction as the only non-trivial dependence is
in the tangential directions. Therefore one has that ∂ν |∇Nρ | = 0. Summarizing, we get the
following relation:

d

dε

∣
∣
ε=0θ

∗
ρ+εh |∇Nρ+εh | = −(

θ∗
ρ ∂νρ X

)
dX (·)h, h ∈ h2+α(�). (16)
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1154 J. Escher, P. Guidotti

Next recall that

S(ρ)1 = λ(ρ)S̃(ρ)1 for λ(ρ) := V0

I (ρ)S̃(ρ)1
,

so that

d

dε

∣
∣
ε=0B(ρ + εh)S(ρ + εh)1

= d

dε

∣
∣
ε=0B(ρ + εh)S(ρ)1 + B(ρ)

d

dε

∣
∣
ε=0λ(ρ + εh)S̃(ρ)1 + B(ρ)λ(ρ)

d

dε

∣
∣
ε=0S̃(ρ + εh)1

=: III+IV+V.

As for III for now just introduce the following notation which will be useful later

M(ρ) := ∂B(ρ)
[ · , S(ρ)1

] ∈ L(
h2+α(�), h1+α(�)

)

where it is thought ofM(ρ) as defining a linear operator acting on h so that the interpretation
of the inclusion ought to be clear. As for V let

G
(
ρ, S̃(ρ)1

) := (
A(ρ)S̃(ρ)1, γ� S̃(ρ)1

)
,

and notice that G
(
ρ, S̃(ρ)1

) = (1, 0). Thus we get

0 ≡ ∂1G
(
ρ, S̃(ρ)1

)
h + ∂2G

(
ρ, S̃(ρ)1

) d

dε

∣
∣
ε=0S̃(ρ + εh)1.

Latter implies that

d

dε

∣
∣
ε=0S̃(ρ + εh)1 = −S̃(ρ)∂A(ρ)

[
h, S̃(ρ)1

]
,

where ∂A(ρ)[h, v] := d
dε

∣
∣
ε=0A(ρ + εh)v. Again it is useful to introduce the notation

K(ρ) := ∂A(ρ)[ · , S(ρ)1] ∈ L(
h2+α(�), h1+α(�)

)
.

The only remaining term is

IV = d

dε

∣
∣
ε=0λ(ρ + εh)B(ρ)S̃(ρ)1

since λ is real-valued. Recalling the definition of λ, it follows that

d

dε

∣
∣
ε=0λ(ρ + εh) = V0

(
I (ρ)S̃(ρ)1

)2
d

dε

∣
∣
ε=0

∫

�

S̃(ρ + εh)1 · |Dθρ+εh | dx .

Clearly

d

dε

∣
∣
ε=0

∫

�

S̃(ρ + εh)1 · |Dθρ+εh | dx

=
∫

�

d

dε

∣
∣
ε=0S̃(ρ + εh)1 · |Dθρ | dx +

∫

�

S̃(ρ)1 · d

dε

∣
∣
ε=0|Dθρ+εh | dx

= −
∫

�

S̃(ρ)K(ρ)h · |Dθρ | dx +
∫

�

S̃(ρ)1 · d

dε

∣
∣
ε=0|Dθρ+εh | dx .
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Classical solutions for a droplet model 1155

The first term after the last equality sign amounts to a (nonlocal) rank 1 (and thus compact)
operator in L(

h2+α(�),R
)
acting on h. As for the second term, it is easily checked with the

help of Liouville’s theorem that

d

dε

∣
∣
ε=0|Dθρ+εh |

= |Dθρ | trace(Dθ−1
ρ

)[∇(h ◦ X) ⊗ D(ϕ ◦ 	ν ◦ X) + (h ◦ X)D(ϕ ◦ 	ν ◦ X)
]
,

and it therefore acts as a (nonlocal) rank 1 operator in L(
h1+α(�),R

)
. Letting

L(ρ)h := d

dε

∣
∣
ε=0λ(ρ + εh), h ∈ h2+α(�),

the above computations can be summarized by

Lemma 3.1 Given ρ ∈ V , the operator L(ρ) belongs toL(
h2+α(�),R

)
and, therefore,L(ρ)

defined by

L(ρ)h = (
L(ρ)h

) · B(ρ)S̃(ρ)1

is of rank 1.

To further unravel the structure of the linearization ∂�(ρ), it is useful to introduce the
following nonlinear composition operators:

P(ρ) := θ∗
ρ |∇Nρ |, Q(ρ) := B(ρ)S(ρ)1, ρ ∈ V.

The next result will be needed later on.

Lemma 3.2 P, Q ∈ Cω
(V, h1+α(�)

)
and, given ρ ∈ V , the functions P(ρ) and −Q(ρ)

are positive on �.

Proof The first assertion follows from Lemma 2.3 and (11). Clearly P(ρ) := θ∗
ρ |∇Nρ | is

positive on � and the relation

−B(ρ)S(ρ)1 = −P(ρ) · θ∗
ρ ∂νρ

(
θ

ρ∗ S(ρ)1
)

implies the positivity of −Q(ρ) on � in view of Remark 2.5. ��
Based on Lemma 3.2 we introduce further notation.

F0(ρ) := F(−Q(ρ)/P(ρ)), F1(ρ) := F ′(−Q(ρ)/P(ρ)), ρ ∈ V.

Lemma 3.2 and assumption (2) imply that

F0, F1 ∈ Cω
(V, h1+α(�)

)

and that

F1(ρ) > 0 on � for any ρ ∈ V. (17)

Finally, let

D1(ρ) := ∂ P(ρ), D−1(ρ) := ∂
(
1/P(ρ)

)
,

where ∂ again indicates the Fréchet derivative. Using this notation, we have

∂�(ρ) = F1(ρ) · λ(ρ) · B(ρ) ◦ S̃(ρ) ◦ K(ρ) + F1(ρ) · M(ρ) − F0(ρ) · D1(ρ)

+ P(ρ) · F1(ρ) · Q(ρ) · D−1(ρ) + F1(ρ) · L(ρ).
(18)
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1156 J. Escher, P. Guidotti

Lemma 3.3 Given ρ ∈ V , each of the operators D1(ρ), D−1(ρ), and M(ρ) is a first order
differential operator on � with coefficients depending on ρ, which are of class h1+α(�).
Moreover,

D1, D−1,M ∈ Cω
(V,L(h2+α(�), h1+α(�)

)
.

Proof The assertions on D1(ρ) follow from Lemma 3.2 and (16); those on D−1(ρ) can be
derived similarly. Invoking Lemma 2.3, (6), (15) the assertions concerning M follow easily.

��

4 Localization

The focus of this section is to outline the structure of ∂�(ρ). Consider a point x ∈ �. By intro-
ducing local coordinates in tangential and normal direction to � in a tubular neighborhood
O	 ⊂ �	 of x , it can be assumed without loss of generality that

� = R
n−1 × {0} , � = H

n− = [xn < 0] ,
and that

�ρ = [xn < ρ(x ′)] , �ρ = [xn = ρ(x ′)] , x = (x ′, xn) .

Then the map θρ is simply given by

θρ : � → �ρ , x = (x ′, xn) �→ (
x ′, xn + ρ(x ′)

) = y = (y′, yn) .

For v : � → R it is easily seen that

A(ρ)v = θ∗
ρ�yθ

ρ∗ v =
n∑

j=1

α
ρ
j (x ′)∂2x j

v − 2∇ρ · ∇x ′∂nv − �ρ(x ′)∂xn v ,

for α
ρ
j ≡ 1 if j = 1, . . . , n − 1 and α

ρ
n = 1 + |∇ρ|2. While the structure and properties

of the differentiations involved can be more readily read off the above representation of
A(ρ), a computation performed in [5] shows that the corresponding expression in the general
coordinates considered for the Hanzawa transformation would read

A(ρ)v = −
n∑

j,k=1

a jk(ρ,∇ρ)∂x j xk v +
n∑

j=1

a j (ρ,∇ρ)∂x j v + (Wρ) ∂xn v ,

where the last direction points along ν�(x) and a jk, a j ∈ C∞. The above notation for the
coefficients a jk(ρ,∇ρ) has to be understood in the sense of substitution operators. This
means that there are smooth functions ã jk in n + 1 variables such that a jk(ρ,∇ρ)(x ′, xn) =
ã jk(ρ(x ′),∇ρ(x ′)), where (x ′, xn) indicates local coordinates . Finally, W is a second order
uniformly elliptic differential operator of the tangential variables. For later pruposes we
denote a representation of W in local coordinates by

W h =
n−1∑

j,k=1

w jk∂ j∂k, h ∈ h2+α(�). (19)

It may be worth mentioning, that the coefficients w jk depend only on the geometry of �, but
are otherwise independent of ρ. The precise calculation has been carried out in [5] and we
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Classical solutions for a droplet model 1157

refer the interested reader to that paper. Similarly it can be checked that

B(ρ) =
n∑

j=1

b j (ρ,∇ρ)∂x j

in local coordinates.
Given two Banach spaces E1 and E0 such that E1 is dense and continuously injected in

E0, let H(E1, E0) denote the space of all A ∈ L(E1, E0) such that −A, considered as an
unbounded operator on E0, generates a strongly continuous analytic semigroup on E0. It
follows from well-known perturbation results for analytic semigroups that H(E1, E0) is an
open subset of L(E1, E0) (see for instance [1, Thm.1.3.1]). On H(E1, E0) we always use
the relative topology induced by L(E1, E0).

Given any ρ ∈ V , it follows from Theorem 5.2 in [5] that the operator

G(ρ) := B(ρ) ◦ S̃(ρ) ◦ K(ρ) + M(ρ)

belongs to H(h2+α(�), h1+α(�)). The method of proof is to associate to G(ρ) a Fourier
multiplication operatorG acting on h1+α(�), to prove thatG ∈ H(h2+α(Rn−1), h1+α(Rn−1))

and to use sharp perturbation results for the class H(h2+α(�), h1+α(�)) based on estimates
of the form

‖μ∗
l (ψlG(ρ)h)−Gμ∗

l (ψl h)‖h1+α ≤ ε‖μ∗
l (ψl h) ‖h2+α +C‖h‖h2+β , h ∈ h1+α(�). (20)

Here β ∈ (0, α) is fixed, ε > 0 is arbitrarily small, and C > 0. To explain further the
notation used in (20), we start with the Fourier multiplication operator G. The construction
of G is based on the choice of a suitable partition of unity {(Ul , ψl) ; 1 ≤ l ≤ m} of a tubular
neighbourhood of � and by freezing the coefficients of (A(ρ),B(ρ)) at the point 0 ∈ R

n−1.
To be more precise, let sl ∈ C∞ (

(−δ, δ)n−1, Ul
)
with δ > 0 be a parametrization of Ul ∩ �

and set

μl : (−δ, δ)n−1 × [0, δ) → Ul , (ω, r) �→ sl(ω) − rν�(sl(ω)).

We denote the pull-back operator corresponding to the parametrizationμl byμ∗
l , i.e.μ

∗
l h :=

h ◦ μl . In order to unburden the notation we drop the index l ∈ {1, . . . , m} in the following
and set ρ̂ := ρ ◦ μ, as well as

a0
jk := a jk(ρ̂,∇ρ̂)(0), b0j := b j (ρ̂,∇ρ̂)(0), 1 ≤ j, k ≤ n. (21)

The symbol of the above mentioned Fourier operator G splits naturally in two parts g1(ξ)

and g2(ξ), stemming form the operators B(ρ)S̃(ρ)K(ρ) and M(ρ), respectively. To give the
precise expressions for g1(ξ) and g2(ξ), we need some notation. Let

a :=
(

a0
1n, . . . , a0

(n−1)n

)
and a0 := −

n−1∑

j,k=1

a0
jkξ

jξ k, ξ ∈ R
n−1

and set

γ (ξ) := i(a|ξ)

a0
nn

+ 1

a0
nn

√

a0
nn

[
1 + a0(ξ)

] − (a|ξ)2.

Note that for ξ ∈ R
n−1 fixed, γ (ξ) is the unique root with positive real part of the quadratic

polynomial

qξ (z) := 1 + a0(ξ) + 2i(a|ξ)z − a0
nnz2.
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1158 J. Escher, P. Guidotti

in the variable z ∈ C. It should be remarked that qξ is the characteritic polynomial of
the second order ordinary differential equation for û(ξ, ·) = Fu(ξ, ·), the partial Fourier
transform3 of the solution u of

u +
n∑

j,k=1

a0
jk∂ j∂ku = 0 on R

n−1 × (0,∞).

Finally, we need

b0j := b j (ρ,∇ρ)(0), b := (
b01, . . . , b0n−1

)
,

for 1 ≤ j ≤ n, (21), and

w
jk
0 := w jk(0), 1 ≤ j, k ≤ n − 1,

cf. (19). After these preparations, let

g1(ξ) := b0n · γ (ξ) · 1 + ∑n−1
j,k=1 w

jk
0 ξ jξk

1 + a0(ξ)
, ξ ∈ R

n−1.

Then g1 is the symbol of the Fourier multiplication operator associated to B(ρ)S̃(ρ)K(ρ).
To give the symbol g2 of the second addend, notice that there are smooth functions

m j ∈ C∞(R × R
n−1), j ∈ {1, . . . , n − 1}

such that

M(ρ)h =
n−1∑

j=1

m j (ρ,∇ρ)∂ j h, h ∈ h2+α(�). (22)

Letting now m0
j := m j (ρ,∇ρ)(0) and

g2(ξ) := i
n−1∑

j=1

m0
jξ j , ξ ∈ R

n−1,

we have

G = F−1(g1 + g2)F .

It has been shown in Theorem 4.2 in [5] that there exists C > 0 such that

g1(ξ) ≥ C · b0n ·
√
1 + |ξ |2 for all ξ ∈ R

n−1. (23)

This estimate is the crucial ingredient needed to apply the Mikhlin-Hörmander multiplier
theorem and establish that

G ∈ H(
h2+α(Rn−1), h1+α(Rn−1)

)
,

cf. the proof of Theorem 4.2 in [5]. It is worth mentioning that no assumption on g2 is needed
in this procedure, since g2 is purely imaginary.

Theorem 4.1 � ∈ Cω
(
V,H(

h2+α(�), h1+α(�)
))

.

3 Throughout this paper F stands for the Fourier transform on R
n−1.
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Proof (i) In view of (14) it suffices to show that

∂�(ρ) ∈ H(
h2+α(�), h1+α(�)

)

for given ρ ∈ V .
(ii) In order to investigate the first term on the right-hand side of (18), let

F0
1 := F1(ρ̂)(0), λ0 := λ(ρ̂),

and notice that F0
1 > 0 and λ0 > 0 by (17) and the assumption V0 > 0, respectively.

Hence, letting again g1(ξ) denote the symbol of the Fourier multiplication operator
induced by

GF (ρ) := F1(ρ) · λ(ρ) · B(ρ) ◦ S̃(ρ) ◦ K(ρ),

we get from (23) the estimate

g1(ξ) ≥ C · F0
1 · λ0 · b0n ·

√
1 + |ξ |2 for all ξ ∈ R

n−1,

from which it can be concluded that F−1g1F ∈ H(h2+α(Rn−1), h1+α(Rn−1)), cf. the
proof of [5, Thm4.2]. Pertubation arguments, based on (20) then imply that

GF (ρ) ∈ H(h2+α(�), h1+α(�)),

cf. Lemma 5.1 and the proof of Theorem 5.2 in [5]
(iii) It follows from Lemma 3.3 that each of the operators

F1(ρ) · M(ρ), −F0(ρ) · D1(ρ), P(ρ) · F1(ρ) · Q(ρ) · D−1(ρ)

is a first order differential operator acting on h2+α(�) and having coefficients of class
h1+α(�). Hence replacing M(ρ) of (22) by

MF (ρ) := F1(ρ) · M(ρ) − F0(ρ) · D1(ρ) + P(ρ) · F1(ρ) · Q(ρ) · D−1(ρ)

we conclude that

GF (ρ) + MF (ρ) ∈ H(h2+α(�), h1+α(�)). (24)

(iv) Invoking Lemma 3.1 and (18) and we see that

∂�(ρ) − GF (ρ) − MF (ρ) = F1(ρ) · L(ρ)

is a rank 1 operator and, thus in particular, compact. Combing (24) and Corollary 3.7 in
[3], the proof is completed.

��
We observe that Corollary 3.7 in [3] simply states that additive compact perturbations of
generators of analytic C0-semigroups also generate such a semigroup.
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