Final Examination

Print your name:	
Print your ID #:	

You have 2 hours to solve the problems. Good luck!

1. Solve the equation and determine how long its solution exists:

A.
$$\dot{x} = x^3$$
, $x(0) = 1$.

B.
$$\dot{x} = -x^{-3}$$
, $x(0) = -1$.

2. Solve the equation:

A.
$$x'' + 9x' + x = e^{-3t}$$
, $x(0) = 0$, $x'(0) = 1$.

B.
$$x'' - 9x' + x = e^{3t}$$
, $x(0) = 1$, $x'(0) = 0$.

3. Indicate which of the following equations are linear (l) and which are nonlinear (n) by circling your answer:

A.
$$x'' + e^t x' - x = \cos(t)$$
 l n

$$x'' + \cos(x')t - 3x = e^t$$
 l n

$$x''' + 5x = \sin(x)$$
 l n

$$x' = e^t \tanh(x)$$
 l n

$$x''' + 1/x = e^t \tanh(t)$$
 l n

B.
$$x'' + e^x t - x = \sin(t)$$
 l n

$$x'' - \sin(t)x + 5x = \cosh(t)$$
 l n

$$x'''' + x'' - x = \sin(t)$$
 l n

$$x' = e^x \tanh(t)$$
 l n

$$x''' - 2/x = \cos^2(t)$$
 l n

4. Find the general solution of:

A.
$$x'''' + 2x''' - 2x' - x = 0$$
.

B.
$$x'''' - 2x''' + 2x' - x = 0$$
.

5. Solve the equation:

A.
$$x''' + t^2x = 0$$
, $x(0) = 1$, $x'(0) = 0$, $x''(0) = 0$.

B.
$$x''' + tx = 0$$
, $x(0) = 0$, $x'(0) = 1$, $x''(0) = 0$.

6. For the following equations classify t = 0 into ordinary, regular singular or irregular singular point. Justify your answer and determine the exponents at the singularity for any regular singular point.

A. (i)
$$tx'' + t^2x' + t^3x = 0$$
,

(ii)
$$t^2x'' + t^2x' + tx = 0$$
,

(iii)
$$t^3x'' + x = 0$$
.

B. (i)
$$t^3x'' + t^2x' + tx = 0$$
,

(ii)
$$t^3x'' + x' + t^3x = 0$$
,

(iii)
$$(1+t)^2 x'' + x/e^t = 0$$
.

7. Solve the equation:

A.
$$x''' + x = -h_1(t)$$
, $x(0) = 0$, $x'(0) = 0$, $x''(0) = 1$.

B.
$$x''' - x = h_1(t)$$
, $x(0) = 0$, $x'(0) = 0$, $x''(0) = 1$.

Recall that
$$h_1(t) := \begin{cases} 0, & t < 1 \\ 1, & t \ge 1 \end{cases}$$
.

8. Solve the system:

A.
$$x' = \begin{bmatrix} 3/2 & 0 & 1/2 \\ 0 & 5 & 0 \\ 1/2 & 0 & 3/2 \end{bmatrix} x + \begin{bmatrix} 0 \\ t \\ 0 \end{bmatrix}$$
, $x(0) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

B.
$$x' = \begin{bmatrix} 3/2 & 0 & 1/2 \\ 0 & 5 & 0 \\ 1/2 & 0 & 3/2 \end{bmatrix} x, \ x(0) = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$