Assignment 4

1. Compute the Fourier transform with respect to the variable x of the following functions:
(i) $u_{y}(x)=e^{-y|x|}, y>0, x \in \mathbb{R}$.
(ii) $u(x)=e^{-\frac{|x|^{2}}{2}}, x \in \mathbb{R}^{n}$.
(iii) $u(x)=\frac{y^{2}-x^{2}}{\left(y^{2}+x^{2}\right)^{2}}, y>0, x \in \mathbb{R}$.
2. Show that G defined through $G(x, y)=\frac{1}{\pi} \frac{y}{x^{2}+y^{2}}$ for $x \in \mathbb{R}$ and $y>0$ is harmonic, that is, $\triangle G=0$, and conclude that

$$
u_{g}(x, y):=\int_{-\infty}^{\infty} G(x-\tilde{x}, y) g(\tilde{x}) d \tilde{x},(x, y) \in \mathbb{R} \times(0, \infty)
$$

represents a solution of

$$
\begin{cases}\Delta u & =0 \text { in } \mathbb{R} \times(0, \infty) \\ u & =g \text { on } \mathbb{R} \times\{0\}\end{cases}
$$

for $g \in \mathrm{~L}_{1}(\mathbb{R})$. What is $\lim _{y \rightarrow \infty} u_{g}(\cdot, y)$?
3. Let $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ with $\operatorname{supp}(f) \subset \mathbb{B}(0, R)$ for $0<R<\infty$. Show that its Fourier transform \hat{f} is holomorphic and satisfies

$$
|\hat{f}(\xi+i \eta)| \leq c_{N} \frac{1}{\left(1+|\xi|^{2}\right)^{N / 2}} e^{R|\eta|},(\xi, \eta) \in \mathbb{R}^{2 n}
$$

4. Assume $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right), a \in \mathbb{R}^{n}$ and let

$$
T: \mathbb{R} \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right), t \rightarrow \varphi(\cdot-t a)
$$

Prove that $T \in \mathrm{C}^{1}\left(\mathbb{R}, \mathcal{S}\left(\mathbb{R}^{n}\right)\right)$ and compute

$$
\dot{T}(0) \in \mathcal{L}\left(\mathbb{R}, \mathcal{S}\left(\mathbb{R}^{n}\right)\right) \hat{=} \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

5. Let $u_{0} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and consider the homogeneous heat equation

$$
\begin{cases}u_{t}-\triangle u=0, & \text { in }(0, \infty) \times \mathbb{R}^{n} \\ u(0)=u_{0}, & \text { in } \mathbb{R}^{n}\end{cases}
$$

Prove that it has a unique solution

$$
u \in \mathrm{C}^{\infty}\left([0, \infty), \mathcal{S}\left(\mathbb{R}^{n}\right)\right)
$$

and derive a representation formula for it.

Homework due by Wednesday, November 22009

