
Math 205 Winter Term 2006

Final Examination – Solutions

1. Let g ∈ C1
(
[c, d], [a, b]

)
and f ∈ C

(
[a, b]

)
. Define

F (x) :=
∫ g(x)

a
f(y) dy , x ∈ (c, d) .

Show that F is differentiable and compute its derivative.
Solution:
Let G(x) :=

∫ y
0 f(ξ) dξ , y ∈ (a, b). Then, since f is continuous, G is

differentiable and the claim follows from the chain rule thanks to

F (x) = G(g(x)) , x ∈ (c, d) .

The chain rule and the fundamental theorem of calculus also give

F ′(x) = f
(
g(x)

)
g′(x) .

2. Let (xn)n∈N be a decreasing sequence in [0,∞) and prove that∑
xn < ∞⇐⇒

∑
2kx2k < ∞ .

Solution:
“⇐=”: Taking into account that the sequence is decreasing one sees
that

x1+x2 + x3︸ ︷︷ ︸ +x4 + x5 + · · ·+ x8︸ ︷︷ ︸ + · · · ≤ x1+x2 + x2︸ ︷︷ ︸ + 4x4︸︷︷︸ + · · · < ∞ .

“=⇒”: As for the converse the proof goes similarly since

x1 + x2 + x2︸ ︷︷ ︸ + 4x4︸︷︷︸ ≤ . . . x1 + x1 + x2︸ ︷︷ ︸ +x2 + x3 + x3 + x4︸ ︷︷ ︸ + . . .

= 2
∞∑

n=0

xn < ∞ .

1



3. Let a sequence of functions (fn)n∈N be defined by

fn(x) = cos(x)n , x ∈ [0,
π

2
] , n ∈ N .

Let g ∈ C
(
[0, π

2 ]
)

be such that g(0) = 0. What is the limit of (gfn)n∈N?
Is the convergence pointwise? Is it uniform? Justify your answer.
Solution:
The convergence is uniform to the limit f∞ ≡ 0 as the the following
argument shows. For any given ε > 0 we can find δ > 0 such that

|g(x)| ≤ ε whenever x ∈ [0, δ]

since g is assumed to be continuous. Also since

cos(x) ≤ cos(δ) ∀ x ∈ [δ,
π

2
] ,

we can find N ∈ N such that

cos(x)n ≤ ε

‖g‖∞
∀ n ≥ N .

Combining the two inequalities it is obtained that

g(x) cos(x)n ≤

{
ε , x ∈ [0, δ] ,
|g(x)| ε

‖g‖∞ ≤ ε , x ∈ [δ, π
2 ] .

, ∀ n ≥ N .

4. Show that f defined through

f(x) = log2(1 + x)

is analytic in a neighborhood of the origin. Compute the coefficients
of its power series expansion about x = 0.
Solution:
The function f satisfies f ′(x) = 1

1+x =
∑∞

n=0(−x)n , x ∈ (−1, 1). It
follows that

log(1 + x) =
∞∑

k=0

(−1)n xn+1

n + 1
=

∞∑
n=1

(−1)n−1 xn

n
, x ∈ (−1, 1) .

For the product it therefore follows that

[ ∞∑
n=1

(−1)n−1 xn

n

][ ∞∑
n=1

(−1)n−1 xn

n

]
= x2 +

∞∑
n=2

[ n∑
k=1

(−1)n+1

k(n + 1− k)
]
xn+1 .
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5. Let (M,d) be a metric space. For a subset A ⊂ M define

Ā = A ∪ LP(A)

and show that

Ā =
⋂
{B ⊂ M |A ⊂ B and B is closed} .

Solution:
Since A ∪ LP(A) is closed, it readily follows that

A ∪ LP(A) ⊃
⋂
{B ⊂ M |A ⊂ B and B is closed} .

As for the converse, we show that A ⊂ B implies that Ā ⊂ B̄ = B
where latter equality follows if B is closed. In fact, if x ∈ Ā, then we
can find a sequence (xn)n∈N in A such that xn → x as n → ∞. If B
is assumed to be closed, then x ∈ B̄ = B, since the sequence is clearly
also on B. Thus any closed set B which contains A also contains Ā
and the claim follows.

6. Let (M,d) be a metric space. For a subset A ⊂ M define

◦
A := {x ∈ A | ∃ r > 0 s.t. B(x, r) ⊂ A} .

Prove or disprove: (A ∪B)◦ =
◦

A ∪
◦
B, (A ∩B)◦ =

◦
A ∩

◦
B

Solution:
The first equality does not hold since

A = [0,
1
2
] , B = [

1
2
, 1]

gives a counter-example in R with the standard metric. The second
equality holds. In fact, if x ∈ (A ∩ B)◦, then we find r > 0 such that
B(x, r) ⊂ A ∩B which implies

B(x, r) ⊂ A , B(x, r) ⊂ B

and therefore x ∈
◦

A as well as x ∈
◦

B. Also, if x ∈
◦

A ∩
◦
B, we find

r1, r2 > 0 with
B(x, r1) ⊂ A and B(x, r2) ⊂ B

which gives
B(x, r) ⊂ A ∩B

for r := min(r1, r2).
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7. Prove or disprove:

{ 1√
n

tanh(nx) : R → R |n ∈ N}

is uniformly equicontinuous.
Solution:
The sequence it is uniformly convergent to 0 since

1√
n

tanh(nx) ≤ 1√
n
∀ x ∈ R .

Thus it equicontinuous by the Arzéla-Ascoli Theorem. A more hands-
on approach would be to observe that

| 1√
n

tanh(nx)− 1√
n

tanh(ny)| ≤ 1√
n

,

and that

‖ d

dx

1√
n

tanh(nx)‖∞ = ‖
√

n
[
1− tanh2(nx)

]
‖∞ ≤

√
n .

Latter implies that

| 1√
n

tanh(nx)− 1√
n

tanh(ny)| ≤
√

n |x− y|

and thus

| 1√
n

tanh(nx)− 1√
n

tanh(ny)| =

| 1√
n

tanh(nx)− 1√
n

tanh(ny)|1/2| 1√
n

tanh(nx)− 1√
n

tanh(ny)|1/2

≤ 1
n1/4

n1/4 |x− y|1/2 = |x− y|1/2

which readily implies uniform equicontinuity.

8. Assume that the improper integral
∫∞
0

f(x)
x dx exists and show that∫ ∞

0

f(xy)
x

dx =
∫ ∞

0

f(x)
x

dx ∀ y ∈ (0,∞) .
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Solution:
The integration domain is invariant with respect to rescaling. Thus
simple substitution gives∫ ∞

0

f(xy)
x

dx =
∫ ∞

0

f(xy)
xy

d(xy) =
∫ ∞

0

f(z)
z

dz .

To be more detailed, first observe that∫ ∞

0
f(z) dz = lim

r→0

∫ 1

r

f(z)
z

dz + lim
R→∞

∫ R

1

f(z)
z

dz

and, then by change of variable, that∫ ∞

0
f(z) dz = lim

r→0

∫ 1

r

f(xy)
xy

d(xy) + lim
R→∞

∫ R

1

f(xy)
xy

d(xy)

= lim
r→0

∫ 1/y

r/y

f(xy)
x

dx + lim
R→∞

∫ R/y

1/y

f(xy)
x

dx =
∫ ∞

0

f(xy)
x

dx .

9. Let (fn)n∈N be a decreasing sequence of real-valued functions on [a, b]
which converges uniformly to f∞ ≡ 0. Show that

∞∑
n=1

(−1)nfn

converges uniformly.
Solution:
Arguing just like in the case of numeric sequence we obtain that

‖
m∑

j=n

(−1)jfj‖∞ ≤ ‖fn‖∞

by virtue of the fact that the sequence is decreasing. Now the claim
follows since the right-hand-side converges to 0 by assumption and the
Cauchy criterion for series (that is, the sequence of partial sums is
Cauchy).
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