
Chapter 11

Implicit Functions, Curves
and Surfaces

11.1 Implicit Function Theorem

Motivation. In many problems, objects or quantities of interest can only
be described indirectly or implicitly. It is then important to know when
such implicit representations do indeed determine the objects of interest.
Examples are

• Implicit representation of functions. An equation of type F (x, y) = c
might determine a function f(x) such that F (x, f(x)) = 0 but not
allow for an explicit calculation of it.

• The previous situation is for instance sometimes encountered when
solving ordinary differential equations such as

α(x, y) + β(x, y)ẏ = 0

if {
α(x, y) = ∂xF (x, y)
β(x, y) = ∂yF (x, y)

for some F (x, y). Then solutions of the ordinary differential equation
lie on level sets of F .

• Curves and surfaces are often best described implicitly. Take the circle
S1 as an example

S1 = {x ∈ R2 | |x|22 = 1} .
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These sketchy exampes should serve as motivation for considering the fol-
lowing general problem. Given a function

F : Rn × Rm → Rm , (x, y) 7→ F (x, y) ,

is it possible to find y : Rn → Rm such that F (x, y(x)) = 0 ∀ x ∈ Rn? Or,
in other words, is it possible to describe solutions of F = 0 as the graph of
a function y : Rn → Rm?
This is often too much asked or difficult to tell, but a local version of this
questions leads to an easy computable criterion. The local version can be
described as follows. Given (x0, y0) such that F (x0, y0) = 0, is it possible to
find neighborhoods U ∈ U(x0), V ∈ U(y0) and a map y : U → V such that
F (x, y(x)) = 0? Or, in other words, is it possible to desribe the solution set
of F = 0 about the point (x0, y0) as the graph of a function y?
The answer the this last question is contained in the so-called implicit func-
tion theorem, the proof of which relies on the following basic idea. We shall
assume that F is smooth. Then we have that

0 = F (x, y) ∼ F (x0, y0) + DxF (x0, y0)(x− x0) + DyF (x0, y0)(y − y0)

where we used the notation Dxf(x0, y0) = [∂xk
Fj ]1≤j≤m,1≤k≤n ∈ Rm×n and

Dyf(x0, y0) = [∂yk
Fj ]1≤j,k≤m ∈ Rm×m. Thus, locally and approximately,

the equation looks linear. In that case solving for y as a function of x
should be possible whenever DyF (x0, y0) is invertible. This is indeed the
case and we shall now give a precise formulation of the result and give a
rigorous proof for it.

Definition 11.1.1. (Matrix-Norm)
Let A ∈ Rm×m. Its (matrix)-norm is given by

‖A‖ := sup
0 6=x∈Rm

|Ax|
|x|

= sup
|x|=1

|Ax| .

Remarks 11.1.2. (a) Taking x = ek and observing that

|Ajk| = |(Aek)j | ≤ |Aek| ≤ ‖A‖|ek| = ‖A‖

it is easily seen that |Ajk| ≤ ‖A‖ ∀ j, k = 1, . . . ,m
(b) The estimate

|Ax|2 ≤
m∑

j=1

( m∑
k=1

Ajkxk

)2 ≤
m∑

j=1

( m∑
k=1

A2
jk

m∑
k=1

x2
k

)
=

( m∑
j,k=1

A2
jk

)
|x|2
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follows from the Cauchy-Schwarz inequality and readily implies

‖A‖ ≤
( m∑
j,k=1

A2
jk

) 1
2 .

(c) It holds that ‖AB‖ ≤ ‖A‖‖B‖ for A,B ∈ Rm×m as follows from

‖AB‖ = sup
|x|=1

|ABx| ≤ sup
|x|=1

‖A‖|Bx| = ‖A‖‖B‖ .

(d) The function ‖ · ‖ : Rm×m → [0,∞) defines a norm.

Lemma 11.1.3.

GLm(R) = {A ∈ Rm×m |A invertible}
o
⊂ Rm×m .

Proof. It is obvious that GLm(R) = det−1
(
R \ {0}

)
and the claim follows

from the continuity of the determinant function combined with theorem
4.1.10.

√

We are now ready for the main theorems of this section.

Theorem 11.1.4. (Implicit Function Theorem)
Let x̃ ∈ Rn, y ∈ Rm, U ∈ U(x̃), V ∈ U(ỹ) and

F ∈ C1(U × V, Rm) .

Assume that F (x̃, ỹ) = c and that DyF (x̃, ỹ) ∈ GLm(R).
Then there exists a neighborhood Ũ ∈ U(x̃) and a map y ∈ C1(Ũ , Rm) such
that

y(x̃) = ỹ and F (x, y(x)) = c ∀ x ∈ Ũ .

In other words,
(
x, y(x)

)
is the unique solution of F (x, y) = c in the given

neighborhood of (x̃, ỹ). Moreover

Dy(x) = −DyF
(
x, y(x)

)−1
DxF

(
x, y(x)

)
.

Theorem 11.1.5. (Inverse Function Theorem)
Let ỹ ∈ Rn, U ∈ U(x̃) and assume that

f ∈ C1(U, Rn) , Df(ỹ) ∈ GLn(R) .

Then there exists Ũ ∈ U
(
f(ỹ)

)
and g ∈ C1(Ũ , Rn) such that

f
(
g(x)

)
= x ∀ x ∈ Ũ .
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Also g maps one-to-one onto a neighborhood V of ỹ and

g
(
f(y)

)
= y ∀ y ∈ V .

The function g is unique in that g(x) is the unique solution of the equation
f(y) = x in V . Moreover

Dg(x) = Df(y)−1 for x = f(y)

Proof. Use theorem 11.1.4 setting

F (x, y) = x− f(y) , c = 0 .

Then DyF (x, y) = Df(y).
√

Remark 11.1.6. The inverse function theorem could be used to prove the
implicit function theorem as well. Given F as in theorem 11.1.4 define the
function f by

f : U → Rn+m , (x, y) 7→
(
x, F (x, y)

)
.

In this case

Df(x, y) =
[
idRn 0
DxF DyF

]
∈ GLn+m(R)⇐⇒ DyF ∈ GLm(R) .

The inverse function theorem then implies that f is locally invertible about
(x̃, ỹ) and there exists g such that f

(
g(x, c)

)
= (x, c) in appropriate neigh-

borhoods. Observe that g(x, c) =
(
x, y(x)

)
and therefore f

(
x, y(x)

)
= c.

Examples 11.1.7. (a) Consider the equation x2 + y2 = 1. Define the
function F (x, y) = x2 + y2, then DyF (x, y) = 2y. It follows that DyF (x, y)
is invertible if y 6= 0. This means that we can locally solve the equation for
y as a function of x about any point on the circle with the exception of (1, 0)
and (−1, 0).
(b) Consider

f : R2 → R2 , (x, y) 7→ (x2 − y2, 2xy) .

Then

Df(x, y) =
[
2x −2y
2y 2x

]
and J(x, y) = 4x2 +4y2. Thus, unless (x, y) 6= (0, 0), the assumptions of the
inverse function theorem are satisfied.



11.1. IMPLICIT FUNCTION THEOREM 163

Proof. (Of theorem 11.1.4)
Since F (x̃, ỹ) = c and F is smooth we have that F (x, y) ≈ c in the vicinity
of (x̃, ỹ). Also observe that

F (x, y) + DyF (x, y)(z − y) = c

⇐⇒ z = y + DyF (x, y)−1
(
c− F (x, y)

)
= T̃ (y) .

It thus follows that

(x, y) solves F (x, y) = c⇐⇒ z is a fixed-point of T̃

⇐⇒ z is a fixed-point of T .

for
T (y) = y + DyF (x̃, ỹ)−1

(
c− F (x, y)

)
.

If we can prove that T is a contraction in some neighborhood V of ỹ we could
use the contraction mapping theorem 8.3.16 to obtain a unique fixed-point
in V . We first show that T : B(ỹ, δ) → B(ỹ, δ) is a contraction if δ > 0 is
chosen small enough. The contractivity is obtained as follows. Observe that

|Ty − Tx| = y − z + DyF (x̃, ỹ)−1
[
F (x, z)− F (x, y)

]
= DyF (x̃, ỹ)−1

[
F (x, z)− F (x, y)−DyF (x̃, ỹ)(z − y)

]
= DyF (x̃, ỹ)−1

∫ 1

0

[
DyF

(
x, y + t(y − z)

)
−DyF (x̃, ỹ)

]
(z − y) dt

which implies, by continuity of DyF , that

|Ty − Tz| ≤M |z − y|c(ε, δ) , x ∈ B(x̃, ε) , y ∈ B(ỹ, δ)

with a consant c(ε, δ) such that limε,δ→0 c(ε, δ) = 0. Thus, choosing ε and δ
small enough, contractivity is obtained. Next we need to make sure that T
is a self-map of B(ỹ, δ). To that end, consider

|Ty − ỹ| = y − ỹ + DyF (x̃, ỹ)−1
[
c− F (x, y)

]
= DyF (x̃, ỹ)−1

[
F (x̃, ỹ)− F (x, y) + DyF (x̃, ỹ)(y − ỹ)

]
= o(|x− x̃|+ |y − ỹ|)−DxF (x̃, ỹ)(x− x̃)

since

F (x, y) = F (x̃, ỹ) + Dx,yF (x̃, ỹ)
(
(x, y)− (x̃, ỹ)

)
= F (x̃, ỹ) + DxF (x̃, ỹ)(x− x̃) + DyF (x̃, ỹ)(y − ỹ)

+ o(|x− x̃|+ |y − ỹ|)
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as (x, y)→ (x̃, ỹ). Thus it suffices to choose ε such that

|DxF (x̃, ỹ)(x− x̃)| ≤ δ

2

and δ such that o(|x− x̃|+ |y − ỹ|) ≤ δ
2 which is possible by definition of o.

Observe that ε might need to be made smaller once more. Then

|T (y)− ỹ| ≤ δ ∀ x ∈ B(x̃, ε) ∀ y ∈ E(ỹ, δ) .

which is the desired self-map property. By theorem 8.3.16 we therefore
obtain that

∀ x ∈ B(x̃, ε) ∃ y = y(x) ∈ B(ỹ, δ) s.t F
(
x, y(x)

)
= c .

Finally

0 = F
(
x, y(x)

)
−F (x̃, ỹ) = DxF (x̃, ỹ)(x− x̃)+DyF (x̃, ỹ)(y(x)− ỹ)+R(x)

with R(x) = o(|x− x̃|+ |y(x)− ỹ|) as x→ x̃

implies that

y(x)− ỹ = −DyF (x̃, ỹ)−1
[
DxF (x̃, ỹ)(x− x̃) + R(x)

]
.

Thus, if DyF (x̃, ỹ)−1R(x) = o(|x− x̃|), then we obtain the desired differen-
tiability and that

Dy(x̃) = −DyF (x̃, ỹ)−1DxF (x̃, ỹ) .

The inequality

|DyF (x̃, ỹ)−1R(x)| ≤ c(x− x̃)[|x− x̃|+ |y(x)− ỹ|] ≤ c̃ c(x− x̃)|x− x̃|

which is valid for c with limx→x̃ c(x− x̃) = 0, shows that this is the case and
concludes the proof. How do you extend the validity of the formula for the
derivative away from the point (x̃, ỹ)?

√

11.2 Curves and Surfaces

11.2.1 Motivation and Examples

Motivation. How can we effectively describe “geometric” sets/subsets of
Rn? There are two quite general possibilities. One is a parametric descrip-
tion, in which case,a set A ⊂ Rn is described as the image space g(U) of a
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function g : U
o
⊂ Rm → Rn or, more in general, as

A =
n⋃

j=1

gj(Uj) , gj : Uj
o
⊂ Rm → Rn .

If m = 1 we obtain curves in n-dimensional space. The graph of a function
is a special way of parametrize a set. It occurs when

A = {(x, f(x)) |x ∈ U
o
⊂ Rm}

for some f : U → Rn−m.
A second method of describing sets is implicit. In this case sets are described
a the zero level set of some function F : Rn → Rk

A = {x ∈ Rn |F (x) = 0}

for k = n − m. The number m should tell us what the dimension of the
manifold A is. Why? Precise definitions will given in the rest of the section.

Examples 11.2.1. (a) Consider the circle S1 of radius 1 in R2. It can be
described as

{(x, y) ∈ R2 |x2 + y2 = 1} .

Alternatively, it could be described as S1 = g1

(
(0, 2π)

)
∪ g2

(
(−π

2 , π
2 )

)
for

g1 : (0, 2π)→ R2 , θ 7→ (cos(θ), sin(θ)) ,

g2 : (−π

2
,
π

2
)→ R2 , θ 7→ (cos(θ), sin(θ)) .

Finally we could use the graph patches

x = ±
√

1− y2
[
y ∈ (−1, 1)

]
, y = ±

√
1− x2

[
x ∈ (−1, 1)

]
.

(b) Consider the subset of R2 determined by

{(x, y) ∈ R2 | y3 − x2 = 0} .

It can be parametrized by g : R→ R2 given by

g(t) = (t3, t2) ,

or as the graph of the function f given by f(x) = x
2
3 , x ∈ R. Observe that

the set does not seem to be very smooth in spite of the fact that the first
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two descriptions only involve smooth functions.
(c) The sphere S2 of radius 1 has the following representations

x2 + y2 + z2 − 1 = 0 ,

(x, y, z) =
(
cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)

)
x = ±

√
1− y2 − z2

y = ±
√

1− x2 − z2

z = ±
√

1− x2 − y2

(d) We could also consider S2 as a subset of R3 in which case we could use
the descriptions{

x2 + y2 + z2 − 1 = 0
z = 0

,
(
cos(θ), sin(θ), 0

)
,{

(y, z) = (±
√

1− x2, 0) ,

(x, z) = (±
√

1− y2, 0)
.

(e) Consider the set {(x, y) ∈ R2 |xy = 0} which is the union of the two
lines {x = 0} and {y = 0}. Observe that no single graph or one-to-one
parametrization can be given of this set about the origin.

We now turn to precise definitions.

11.2.2 Immersions and Embeddings

Looking at simple fold or cusp singularities, it becomes clear that smooth
parametrization clearly exists for them. In this case the smoothness of the
parametrization can not be taken as an indicator of the smoothness of a
curve. How do we detect “bad points” then?

Example 11.2.2. Consider the surface parametrized by

g(t, s) = (t3, t2, s) , t, s ∈ R

and look at its derivative

Dg(t, s) =

3t2 0
2t 0
0 1
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Definition 11.2.3. (Immersion)
For a matrix A ∈ Rm×n we denote the dimension of its image space im(A),
also called rank of A, by rank(A) = r(A). Then, for U

o
⊂ Rm, we call a map

g : U → Rn , x 7→ g(x)

an immersion if r
(
Dg(x)

)
= m at every x ∈ U .

Remark 11.2.4. It follows that an immersion is locally one-to-one. It is,
however, not necessarily one-to-one globally.

Definition 11.2.5. (Embedding)
An immersion g : U → Rn is called embedding iff
(i) g is injective (one-to-one) and
(ii) g−1 : g(U)→ Rm is continuous.
Hereby g(U) is to be considered as a metric subspace of Rn endowed with
the induced metric.

Motivation. Why would we consider parametrizations (embeddings) as an
interesting object in the study of curves and surfaces? Well, we think of them
as a way to introduce (local) coordinates on the curve or surface. Think of
the coordinates’ domain as a (geographic) map of the curve or surface. Such
coordinates should give us an handle on performing some calculus on the
curve/surface.
More in general, let U be the parametrization domain of g : U → Rn and
consider a curve γ : (0, 1) → U through the point x in U , then, clearly,
g ◦ γ is a curve on the surface/manifold g(U) through the point g(x). In
particular we can take the simple curves

γj : (0, 1)→ U , t→ x + tej for j = 1, . . . ,m .

Then ∂jg(x) := d
dtg(x + tej)

∣∣
t=0

is a vector in Rn tangent to the manifold
g(U) at g(x). In view of the maximal rank condition, if g is an immersion,
then

∂1g(x), . . . , ∂mg(x)

span the whole tangent Tg(x)g(U) space to g(U) at g(x), that is,

Tg(x)g(U) =
{ m∑

j=1

αj∂jg(x)
∣∣ α ∈ Rm

}
.



168CHAPTER 11. IMPLICIT FUNCTIONS, CURVES AND SURFACES

Remarks 11.2.6. (a) Let γ be any C1-curve passing through x ∈ U , then
g ◦ γ is a curve through g(x) ∈ g(U) and the tangent vector is given by

d

dt

(
g ◦ γ

)∣∣
t=0

=
m∑

j=1

d

dt
γj(0)∂jg(x) .

(b) In the case of an embedding, any curve through g(x) on g(U) can be
viewed as the image of a curve in U since g−1 is continuous.

11.2.3 Parametric Description of Manifolds

Definition 11.2.7. (Manifold)
A subset Mm ⊂ Rn is called m-dimensioanl C1-manifold in Rn iff

∀ y ∈Mm ∃ V ∈ URn(y) and an embedding g : U
o
⊂ Rm → Rn

with g(U) = V ∩Mm .

Remark 11.2.8. A C1-manifold is locally parametrized by embeddings, or,
in other words, a patchwork of images of embeddings.

Theorem 11.2.9. Let g : U → Rn for U
o
⊂ Rm. Assume that g ∈ C1(U, Rn)

and that it is an immersion. Then

∀ x̃ ∈ U ∃ Ux̃ ∈ U(x̃) s.t. g
∣∣
Ux̃

is injective and

g(Ux̃) is the graph of a C1 -function .

Proof. Since g = (g1, . . . , gn) we have

Dg(x̃) =

Dg1(x̃)
...

Dgn(x̃)

 , x̃ ∈ U .

By assumption Dg has maximal rank and, therefore, we can find m linearly
independent rows in it. W.l.o.g we can assume that those are the first m
rows Dg1(x̃), . . . , Dgm(x̃). Considering the system

t1 = g1(x1, . . . , xm)
t2 = g2(x1, . . . , xm)
...
tm = gm(x1, . . . , xm)
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we can invoke the inverse function theorem 11.1.5 to find neighborhoods
Ux̃ ∈ U(x̃) and V ∈ U(h(x̃)) for h = (g1, . . . , gm) such that

(x1, . . . , xm) = h−1(t1, · · · , tm) for t ∈ V and h−1 ∈ C1(V,Ux̃)

In particular g is injective on Ux̃. Next consider
s1 = gm+1(x1, . . . , xm)
...
sn−m = gn(x1, . . . , xm)

and rewrite it as s = Φ(x). Then

s = Φ
(
h−1(t)

)
=: f(t)

and f ∈ C1(V, Rn−m). Furthermore

y = g(x) for some x ∈ Ux̃ ⇐⇒ y =
(
t, f(t)

)
for some t ∈ V

which gives the desired graph representation.
√

Examples 11.2.10. (a) Consider the immersion

g : R1 → R2 , θ 7→
(
cos(θ), sin(θ)

)
=: (x, y) .

About any point with g′2(θ) = cos(θ) 6= 0 [g′1(θ) = sin(θ) 6= 0], we can solve
for x [y] as a function of y [x]. Choose (x̃, ỹ) ∈ S1 with sin(θ̃) 6= 0, then
solve for θ as a function of x

θ = arccos(x)

in a small neighborhood about x̃. Finally conclude that

y = sin
(
arccos(x)

) (
= ±

√
1− x2

)
.

(b) Consider the mapping

g : R2 → R3 , (θ, ϕ) 7→
(
cos(θ) sin(ϕ), sin(θ) sin(ϕ), cos(ϕ)

)
= (x, y, z) .

Then g(R2) = S2. Is g an immersion? Looking at the derivative− sin(θ) sin(ϕ) cos(θ) cos(ϕ)
cos(θ) sin(ϕ) sin(θ) cos(ϕ)

0 − sin(θ)
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we see that its rank is only one if sin(ϕ) = 0, since the first column vanishes.
It can be checked that the rank is otherwise 2 and therefore maximal. We
get an immersion if we restrict g to where sin(ϕ) 6= 0. Let’s take ϕ ∈ (0, π),
for instance.
In order to obtain a local graph representation of the sphere, we can try to
solve for z as a function of x and y. To do so we can
(ii) determine θ, ϕ as functions of x, y.
(iii) plug the latter into the expression for z.
Consider therefore the system{

x = cos(θ) sin(ϕ)
y = sin(θ) cos(ϕ)

which has associated Jacobian

det
[
− sin(θ) sin(ϕ) cos(θ) cos(ϕ)
cos(θ) sin(ϕ) sin(θ) cos(ϕ)

]
= − sin(ϕ) cos(ϕ) .

Since sin(ϕ) 6= 0 (0 < ϕ < π) we only need stay away from the region where
cos(ϕ) = 0, which is the equator, in order to be able to make use of the
inverse function theorem to solve for theta and ϕ. In fact, in that case{

x2 + y2 = sin2(ϕ)
y
x = tan(θ)

yields
ϕ = arcsin

√
x2 + y2 and θ = arctan(

y

x
) .

Finally

z = cos(ϕ) = cos
(
arcsin

√
x2 + y2

)
= ±

√
1− x2 − y2

where the sign is determined by which emisphere the point of interest is on.
For points lying on the equator we have

Dg =

− sin(θ) 0
cos(θ) 0

0 −1


and can thus solve for x as a function of y, z by first solving for theta and
ϕ in terms of y and z. In this case we obtain{

z = cos(ϕ)
y = sin(θ) sin(ϕ)

=⇒

{
ϕ = arccos(z)
θ = arcsin

( y
sin arccos(z)

)
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and finally

x = cos(θ) sin(ϕ) = cos
(
arcsin(

y

sin arccos(z)
)
)

= ±
√

1− y2 − z2 .

Remarks 11.2.11. (a) A C1-manifold could as well have been defined as
being locally the graph of some function. Beware that, just as in the last
example considered, the arguments of the function might vary from patch
to patch.
(b) A local parametrization g : U → V ∩Mm of a patch V ∩Mm of a mani-
fold Mm always gives rise to a local coordinate map g−1 : V ∩Mm → U .
(c) What does the theorem say in terms of coordinate maps? Well, it makes
sure that we can always choose coordinates on Mm ∩ V such that the coor-
dinate map is just the projection onto a Rm.
(d) Given two overlapping patches Mn ∩ V1 and Mn ∩ V2 of a manifold Mm

with parametrizations g1 and g2, we obtain C1 change of coordinate maps

g−1
2 ◦ g1 : g−1

1 (V1 ∩ V2 ∩Mm)→ g−1
2 (V1 ∩ V2 ∩Mm)

g−1
1 ◦ g2 : g−1

2 (V1 ∩ V2 ∩Mm)→ g−1
1 (V1 ∩ V2 ∩Mm) .

(e) Using local coordinates it is possible to transplant calculus from U
(which has a linear structure) onto the manifold Mm. For instance, given
f ∈ C(Mm, R), how would we define whether the function is continuously
differentiable? A viable definition is

f ∈ C1(Mm, R) :⇐⇒ f ◦ g ∈ C1(Ug, R) ∀ coordinate patch g

where Ug is the parametrization domain of g.

11.2.4 Implicit Description of Manifolds

In this section we turn to implicit representations of surfaces/manifolds as
the zero-level set of some function. Let Mm ⊂ Rn be a C1-manifold and
assume that

Mm = {x ∈ Rn |F (x) = 0}

for some F ∈ C1(Rn, Rn−m). Let γ C1
(
(0, 1),Mm

)
a curve in Mm, then it

follows that

Fj(γ(t)) = 0 ∀ t ∈ (0, 1) , j = 1, . . . , n−m ,

which, by differentiation implies

0 =
d

dt
Fj ◦ γ(t) = ∇Fj(γ(t))γ̇(t) ∀ j = 1, . . . , n−m .
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Geometrically, this means that the vectors ∇Fj(γ(t)) and γ̇(t) are orthogo-
nal. Since γ̇(t) is a vector tangent to Mm at γ(t) we conclude that

∇Fj(γ(t)) ⊥ Tγ(t)Mm ∀ j = 1, . . . , n−m .

In other words, we can say that the vectors

∇F1(γ(t)), . . . ,∇Fn−m(γ(t))

are in the normal space Nγ(t)Mm =
(
Tγ(t)Mm

)⊥ to Mm at γ(t). If they were
linearly independent, they would span it and thus determine Tγ(t)Mm itself.

Theorem 11.2.12. Let F ∈ C1(Rn, Rn−m) with

r(DF (x)) = n−m ∀ x ∈ Lc F := {x ∈ Rn |F (x) = c} .

Then Lc F is an m-dimensional C1-manifold.

Proof. Let x ∈ Lc F . Then, by assumption, we can find n − m variables
xj1 , . . . , xjn−m such that

∂xjk
F (x) , k = 1, . . . , n−m ,

are linearly independent. Let s = (xjk
)k=1,...,n−m and t be the remaining m

variables. If we can show that

V ∩ Lc F = {(t, s) | s = f(t)}

for some V ∈ U(x), U
o
⊂ Rm and f ∈ C1(U, Rn−m), we are done. This is

a direct consequence of the implicit function theorem since it amounts to
solving F (t, s) = c for s as a functions of t which is possible on the very
assumption that DsF (x) be invertible.

√

Example 11.2.13. Consider the set in R3 defined by

x2 + y2 + z2 = c .

Since
DF (x, y, z) =

[
2x 2y 2z

]
6= 0⇐⇒ (x, y, z) 6= 0

we see that Lc F is a 2-dimensional C1-manifold whenever c 6= 0. How can
you compute the normal space at one of its points?
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11.3 Maxima and Minima on Surfaces

Given a manifold Mm a function defined on it, we can ask the question about
the existence of extremal points, that is points, of minimum or maximum of
it. In Euclidean space we found necessary conditions in terms of the gradient
of f . This approach cannot be directly implemented in this case since we
don’t have a the concept of a gradient for f ∈ C1(Mm, R). What is it then
that we can do in order to derive a necessary condition which would provide
a computational recipe for searching for extrema?

11.3.1 Lagrange Multipliers

Let Mm ⊂ Rn be a C1-manifold and assume that f ∈ C1(Mm, R). If the
manifold is locally described by a parametrization g : U → g(U) ⊂ Mm,
then, clearly, f has a local extremum at g(x) ∈ g(U) iff f ◦ g has one at
x. In this case local extrema can be looked for in the way we have learned
already by considering the patch maps f ◦ g which are defined on open sets
of a linear space. But, what if the manifold is described implicitly?
Assume the Mm = G−1(0) for some G : Rn → Rn−m and that f ∈ C1(Rn, R).
How can we locate local extrema of f |Mm?
Let k = n−m and consider the function

H(x, λ) := f(x) +
k∑

j=1

λjGj(x) , x ∈ Rn , λ ∈ Rk .

Clearly H coincides with f on the manifold Mm. Its critical points satisfy

0 = ∇H(x, λ) =


∇f(x) +

∑k
j=1 λj∇Gj(x)

G1(x)
...

Gk(x)


and are therefore necessarily located on the manifold Mm. The vanishing
of the first component says, that at such a point, the gradient of f is a
linear combination of vectors normal to the manifold Mm. Its tangential
components therefore vanish!

Theorem 11.3.1. (Lagrange Multipliers)
Assume that f ∈ C1(Rn, R) and G ∈ C1(Rn, Rk) for some k ≤ n. Let
x̃ ∈ Rn with G(x̃) = 0 and such that r(DG

(
x̃)

)
= k. If x̃ is a point of local

minimum [maximum] for f |G−1(0), that is, if

∃ U ∈ URn(x̃) s.t. f(x̃) ≤ [≥]f(x) ∀ x ∈ U ∩G−1(0) ,
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then
∃ λ̃ ∈ Rk s.t. H(x, λ) = f(x) + λ ·G(x)

has a critical point at (x̃, λ̃).

Warning. The maximal rank condition is important! Consider G(x, y) =
y3−x2 and f(x, y) = y. Then (0, 0) is a point of minimum for f on G−1(0).
However, ∇f(0, 0) = (0, 1) and is clearly not a scalar multiple of ∇G(0, 0) =
(0, 0).

Example 11.3.2. Consider the function f(x, y) = x2−y2 and locate points
of minimum and maximum within the unit circle [x2 + y2 ≤ 1]. Since
∇f(x, y) = 2(x,−y) the only candidate point is (0, 0) and therefore in the
interior of the circle. By inspecting the function behavior in the vicinity of
the origin, we conclude that it is no minimum nor maximum. Extrema in
this case can be taken on in the interior or on the boundary. We therefore
need to locate extrema on the unit circle itself to complete the task. To that
end, consider

H(x, y, λ) = x2 − y2 − λ(x2 + y2 − 1)

the critical points of which are solutions of
2x + 2λx = 0
−2y + 2λy = 0
x2 + y2 − 1 = 0

which has solutions

(x, y, λ) = (0,±1, 1) or (±1, 0,−1) .

Evaluating f a points nearby we see that (±1, 0) are points of maximum
and (0,±1) of minimum. How would you proceed using a parametrization
of the circle instead?


