Math205b WINTER TERM 2003
Assignment 13

1. Let f € C([0,1],R) and define the Bernstein polynomials by
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Show that
Hpn(fa ) - f”oo nj(;o 0.

[Hint: Use the identity
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and split the sum into two parts according to whether |x — %\ <4d or
z— 5 >6>0.]

2. Determine the radius of convergence of the following power series
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3. Assume that the power series
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have positive radii of convergence. Suppose that there exists a se-
quence (y;);en with y; — 0 (j — oo0) and y; # 0 such that
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Prove that a,, = b,, n € N.

4. Assume D C R and let f D — R be analytic. Show that, for every
xg € D, constants M, 7,6 > 0 can be found such that
1F®)(2)] < ME!'rF | 2 e (zo — 0,20 +6).

5. You ask a question.

The Homework is due on Friday, February 21.



