Assignment 10

1. Let $\varphi \in \mathrm{C}(\mathbb{R}, \mathbb{R})$ and $f \in \mathrm{C}([a, b], \mathbb{R})$ for $a<b \in \mathbb{R}$. Assume that φ is convex, that is, that it satisfies
$\varphi((1-t) x+t y) \leq(1-t) \varphi(x)+t \varphi(y), x, y \in \mathbb{R}, t \in[0,1]$.
Prove the validity of the following Jensen's inequality

$$
\varphi\left(\frac{1}{b-a} \int_{a}^{b} f(x) d x\right) \leq \frac{1}{b-a} \int_{a}^{b} \varphi(f(x)) d x
$$

2. The Legendre ploynomials L_{n} can be defined by

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}, n=0,1,2, \ldots
$$

Show that

$$
\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=0, m \neq n
$$

3. Show that the improper integral

$$
\Gamma(\alpha)=\int_{0}^{\infty} t^{\alpha} e^{-t} d t
$$

exists for every $\mathbb{R} \ni \alpha>-1$ and verify that

$$
\Gamma(n)=n!, n \in \mathbb{N}
$$

4. Assume that $f \in \mathrm{C}^{1}([-1,1])$ and prove that the following principal value integral exists (i.e. that the defining limit always exists)

$$
\text { p.v. } \int_{-1}^{1} \frac{f(x)}{x} d x=\lim _{\varepsilon \rightarrow 0} \int_{|x| \geq \varepsilon} \frac{f(x)}{x} d x .
$$

Also show that

$$
\int_{-1}^{1} \log (|x|) f^{\prime}(x) d x=-p \cdot v \cdot \int_{-1}^{1} \frac{f(x)}{x} d x
$$

5. You ask a question.
