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Abstract

In this paper, the effects of a conventional form of negative feedback
on receptor synthesis rate as a mechanism to induce robustness of biologi-
cal development of the Drosophila wing imaginal disc is analyzed through the
initial-boundary value problem in a basic partial differential equation model
for the extracellular biological development activities. The existence, unique-
ness, linear stability and monotonicity of the steady state signaling gradient
are established rigorously. Solutions are then obtained for a special case of
the steady state problem to show explicitly the effects of the chosen form of
negative feedback. It is evident from the results that the principal effect of
such a feedback mechanism is to render the signaling bound morphogen gra-
dient more uniformly distributed except for a narrow layer adjacent to the
edge of the posterior compartment of the wing disc. While the change in the
magnitude of the maximum signaling morphogen concentration near the ligand
source may be kept at an acceptable level, the leveling and flattening of the
gradient render it less differential in space (except in the boundary layer) and
hence more deviating from the desired gradient for the target biological pat-
tern. The conclusion is then shown to apply to the general case with the help
of the theoretical results on monotonicity. These results suggest that negative
feedback on the receptor synthesis rate of the chosen form is not effective for
promoting robustness. In fact, it drives the system somewhat in the opposite
direction, a conclusion supported by the simulation results. The findings in
turn suggest more useful forms of the negative feedback for mediating receptor
synthesis to offset a higher ligand synthesis rate for our types of systems.
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1 Introduction

Morphogens (also known as ligands) are molecular substances (proteins) that bind to
selected signaling cell surface receptors (and other kinds of non-signaling molecules
not considered herein). The concentration gradients of morphogens bound to their
associated signaling cell receptors are known to be responsible for differential cell
expressions and the patterning of biological tissues during the developmental phase
of the biological host. For a number of morphogen families (including Dpp in the
wing imaginal disc of Drosophila fruit flies), it is well established that a signaling
morphogen is produced at a localized source at some synthesis rate VL and trans-
ported away from the source by diffusion (and possibly other transport mechanisms
not considered explicitly herein). Some of the transported ligand molecules bind
with cell receptors along the way forming signaling ligand-receptor complexes (called
bound morphogens or signaling morphogens for brevity). Some of the bound mor-
phogens endocytose into the cell interior while others dissociate to free up ligands
to be transported further downstream for possible binding with receptors at other
locations. The bound morphogens in the cell interior may degrade and dissolve or
exocytose back to the extracellular space. At any instance in time, the concentra-
tion of bound morphogen complexes generally decreases with distance away from the
morphogen source and this concentration gradient triggers differential cell expres-
sions resulting in a cell tissue pattern (see [2], [3], [5], [16] and other references cited
in [8]). The time evolution of the basic morphogen activities (diffusion, reversible
binding with renewable receptors and degradation) in Drosophila wing imaginal discs
toward a relatively steady signaling morphogen gradient for cell expression has been
investigated recently by systems of partial differential equations and auxiliary condi-
tions that mathematically characterize these basic activities [7, 9, 17]. By analyzing
mathematically the initial-boundary value problems for these models, the effects of
various system rate parameters were delineated. In particular, the concentration of
bound morphogen complexes was shown to tend respectively to a unique, linearly
stable steady state gradient that is monotone decreasing from the localized source to
the edge of the imaginal disc (see [7, 9, 17]).

While the mathematical models of [7, 9, 17] as well as those of [10] established the
consistency of diffusion as a morphogen transport mechanism with experimental ob-
servations on signaling morphogen gradients and cell expression, they do not exhibit
the expected robustness of biological development with respect to system parame-
ter changes. For example, doubling the ligand synthesis rate (due to a substantial
temperature change, say) was found to result in a substantial change in model re-
sponse in the magnitude and shape of the concentration gradients [12]. A numerical
measure E was introduced in [12] for characterizing robustness, with E = 0 being per-
fectly robust and E ≤ 0.2 taken (somewhat arbitrarily) to be acceptably robustness.
Numerically simulated responses to 106 different sets of parameter values in the six
dimensional parameter space are seen to be non-robust with E ≥ ln(2)/ln(5) & 0.43
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in all cases. Evidently, additional biological processes are at work and must be in-
cluded in the model to ensure robustness of the development with respect to changes
in system properties.
In [12], negative feedback, an often usedmechanism for mediating excessive changes,

was applied to the receptor synthesis rate VR in the form

VR = Vmin +
Vmax − Vmin
1 + Γ[LR]n

(1)

where Vmax and Vmin(< Vmax) are the maximum and minimum synthesis rates for
receptors, [LR] is the total concentration of signaling (bound) morphogens (both in
the cell interior and the extracellular space), and Γ and n are two constant para-
meters with the latter generally referred to as the Hill’s coefficient [4]. Evidently,
we have VR = Vmax in the absence of bound morphogens and VR tends to Vmin as
[LR] tends to infinity. It was expected that at high morphogen synthesis rate giving
rise to a high transient concentration of bound morphogens, the feedback mechanism
(1) would reduce the receptor synthesis rate to a substantially lower level to result
in concentration gradients differing insignificantly from the response to the normal
synthesis rate prior to the rate change and thereby ensuring robustness. Rather
surprisingly, the results of numerical simulations for 106 sets of parameter values for
a system with feedback mechanism (1) show no improvement in the robustness in
the model response to a doubling of ligand synthesis rate. In fact, more parameter
value sets with larger E values are found in the simulation results for the model with
negative feedback.
In this paper, we analyze the effects of a negative feedback of the form (1) on the

response of the model system. We will establish that similar to the original system
investigated in [9], the initial-boundary value problem for the model system with
feedback is well-posed. More specifically, we will prove the existence, uniqueness
and linear stability of the monotone decreasing steady state signaling gradient. The
various proofs for the present system are more intricate than those in [9] for reasons
that will become apparent after we have formulated the mathematical problem. We
then obtain useful solutions of the problem for the special case of n = 1 which will
provide us insight to the effects of our particular type of negative feedback. It will
be seen from the results that the principal effect of such a feedback mechanism is
to render the signaling bound morphogen gradient [LR] more uniformly distributed
except for a boundary layer adjacent to the edge of the wing imaginal disc. While
the change in the magnitude of the maximum bound morphogen concentration near
the ligand source may be kept at an acceptable level by our negative feedback, the
leveling and flattening of the gradient render the tissue patterning less differential in
space and hence deviate more from the target biological patterning.
The conclusions drawn from the solution for the n = 1 case will then be extended

to the original model system with a general Hill’s coefficient (n ≥ 1). This suggests
that negative feedback on the receptor synthesis rate of the form (1) is not effective
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for inducing robustness. In fact, it drives the system somewhat in the opposite
direction, a conclusion supported by the simulation results of [12]. The findings in
turn suggest more appropriate forms of the negative feedback for mediating receptor
synthesis should be explored for offsetting a higher ligand synthesis rate. The effects
of some of these forms of negative feedback on robustness are being examined.

2 An Extracellular Formulation with Receptor Syn-
thesis

As in [8, 9], we simplify the development of the wing imaginal disc of a Drosophila fly
as a one-dimensional phenomenon. In doing so, we ignore variations in the ventral-
dorsal direction and the apical-basal direction since extensions of the one-dimensional
model to account for developments in these other directions are straightforward (see
[11, 17, 18] for example). To investigate the consequences of negative feedback of
signaling morphogen concentration on the receptor synthesis rate, we will work with
an extracellular formulation similar to [9]. As we have shown in [10, 13], the re-
sults for such a model may be re-interpreted as the corresponding results for a model
where morphogen-receptor complexes internalize (through endocytosis) before degra-
dation.
To simplify our discussion, we note that the morphogen production zone divides

the wing imaginal disc into the anterior compartment and the posterior compartment.
We consider in this paper the part of the wing disc extending from the midpoint,
X = −Xm, of the Dpp production zone to the edge of the posterior compartment
at X = Xmax with morphogen produced only in −Xmin < X < 0. Let [L(X,T )]
be the concentration (in micromoles) of the diffusing morphogen Dpp at time T
and location X. Let [R(X,T )] and [LR(X,T )] be the concentration of unoccupied
receptors and morphogen occupied receptors (or bound morphogens), respectively.
For the underlying biological processes of the development described in [8, 9], we add
to Fick’s second law for diffusive transport of Dpp (∂[L]/∂T = D∂2[L]/∂X2, D being
the diffusion coefficient) terms that incorporate the rate of morphogen binding with
receptors, −kon[L][R], and dissociation, koff [LR], with kon and koff being the binding
rate constant and dissociation rate constant, respectively. In living tissues, molecules
that bind receptors do not simply stay bound, some will dissociate and others will
(endocytose and) degrade [16]. In accounting for the time rate of change of the Dpp-
receptor complexes, we allow for constitutive degradation of [LR] by introducing a
degradation rate term with a rate constant kdeg. There is also a separate accounting
of the time rate of change of the concentration of unoccupied receptors as they are
being synthesized and degrade continuously in time (with a degradation rate constant
rdeg as in [9]). In this way, we obtain the following reaction-diffusion system for the
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evolution of three concentrations [L], [LR] and [R]:

∂[L]

∂T
= D

∂2[L]

∂2X
− kon[L][R] + koff [LR] + VL(X,T ) (2)

∂[LR]

∂T
= kon[L][R]− (koff + kdeg)[LR] (3)

∂[R]

∂T
= VR(X,T )− kon[L][R] + koff [LR]− rdeg[R] (4)

for −Xmin < X < Xmax and T > 0 where VL(X,T ) and VR(X,T ) are the rate at
which Dpp and receptors are synthesized, respectively.
In [7, 8, 10], we were interested only in the portion of the wing disc corresponding

to X > 0 where there is no morphogen production (so that VL(X,T ) = 0 for X > 0)
with the introduction of Dpp into the region 0 < X < Xmax characterized by a point
source at the end X = 0. A model with a finite Dpp synthesis region of the form (2)
- (4) but without feedback has been investigated in [9] where the relation between
that model and point source models was discussed. Here, we add to the finite Dpp
production region model of [9] negative feedback of the [LR] concentration on the
receptor synthesis rate in the form (1) where the Hill’s coefficient n and multiplier Γ
are constants to be specified.
In the absence of morphogens so that [LR] = 0, we take VR(X,T ) = Vmax(X)

in order to have a steady state receptor concentration for that case. In the limit
as [LR] −→ ∞, we require that VR tends to Vmin(X) (< Vmax(X)) to allow for the
possibility of steady state [L], [R], and [LR] concentrations also.
With −Xmin being the midpoint of the Dpp production region, we have by sym-

metry

X = −Xmin :
∂[L]

∂X
= 0 (T > 0). (5)

The far end of the wing disc, i.e., the edge of the posterior chamber, is taken to be a
sink so that

X = Xmax : [L] = 0 (T > 0). (6)

At T = 0, we have the initial conditions

[L] = [lR] = 0, [R] = Ri(X) (−Xmin < X < Xmax) (7)

where Ri(X) is some initial distribution of signaling receptors.
To reduce the number of parameters in the problem, we introduce a reference

unoccupied receptor concentration level R̄0 (to be specified later) and the normalized
quantities

t =
D

X2
max

T, x =
X

Xmax
, xm =

Xmin

Xmax
, (8)

{a, b, r, ri} =
1

R̄0
{[L], [LR] , [R], Ri}, γ = R̄0Γ, (9)
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{vL, vR, vmin, vmax, ρR} =
1

D/X2
max

½
VL
R̄0

,
VR
R̄0

,
Vmin
R̄0

,
Vmax
R̄0

,
Vmin
Vmax

¾
, (10)

{f0, g0, gr, h0} =
1

D/X2
max

{koff , kdeg, rdeg, konR̄0}. (11)

In terms of these scaled quantities, we write the IBVP in the following normalized
form

∂a

∂t
=

∂2a

∂x2
− h0ar + f0b+ vL(x, t) (−xm < x < 1) (12)

∂b

∂t
= h0ar−(f0+g0)b,

∂r

∂t
= vR(x, t)−h0ar−grr+f0b (−xm ≤ x ≤ 1) (13)

with

x = −xm :
∂a

∂x
= 0, x = 1 : a = 0 (14)

for t > 0 and

t = 0 : a = b = 0, r = ri(x) (−xm < x < 1) (15)

where

vR =
Vmax/R̄0
D/X2

max

∙
ρR +

1− ρR
1 + γbn

¸
= vmax(x, t)

∙
1 + ρRγb

n

1 + γbn

¸
≡ vmax(x, t)fR(b), (16)

and

0 ≤ ρR =
Vmin(X,T )

Vmax(X,T )
=

vmin(x, t)

vmax(x, t)
≤ 1. (17)

3 Time Independent Steady State Behavior

3.1 Reduction of the Steady State Equations

For cells to express differentially, it is important that the signaling morphogen con-
centrations in the wing imaginal disc evolves toward to a time independent steady
state with a reasonable slope and convexity. For the present investigation, it suf-
fices to consider a localized Dpp synthesis rate in the form of a step function with
VL(X,T ) = V̄LH(−X) for some constant V̄L. Correspondingly, we have

vL(x, t) = vL(x) = v̄LH(−x) =
½

v̄L
0

, v̄L =
V̄L/R̄0
D/X2

max

. (18)
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We will also consider uniform maximum and minimum receptor synthesis rates with

{Vmax(X,T ), Vmin(X,T )} =
©
V̄max, V̄min

ª
(19)

so that the normalized nonnegative receptor synthesis rate vR takes the form

vR(x, t) =
V̄max/R̄0
D/X2

max

fR(b) ≡ v̄maxfR(b) (20)

where we have now a constant ratio of the two limit receptor synthesis rates: ρR =
V̄min/V̄max ≡ v̄min/v̄max. Note that the case of different receptor synthesis rates in and
outside the morphogen production zone has been examined in previous publications
[7, 8]. Here we focus only on the case where Vmin and Vmax are constants so that,
in the absence of feedback, the receptor synthesis rate is uniform throughout the
posterior compartment (given that we have fR(b) = 1 for γ = 0).
With the initial receptor concentration taken to be the steady state receptor dis-

tribution prior to the onset of morphogen production, Ri(x) = [VR(X)/rdeg][LR]=0, we
set

R̄0 =
V̄max
rdeg

(21)

so that we have from (16)

v̄max = gr, Ri(x) = R̄0ri(x). (22)

For our choice of receptor synthesis rate VR(X), we have

ri(x) =

∙
VR(X)

V̄max

¸
= 1 (23)

given that we have taken VR(X) = Vmax(X) = V̄max in the absence of bound mor-
phogen concentration (b = 0).
We are interested in a time independent steady state solution

{a(x, t), b(x, t), r(x, t)} =
©
ā(x), b̄(x), r̄(x)

ª
(24)

for the system (9) - (12). For such a solution, we may set all time derivatives in
these equations to zero to get

0 = ā00 − h0ār̄ + f0b̄+ vL(x) , (25)

0 = h0ār̄ − (f0 + g0)b̄, 0 = grfR(b̄)− h0ār̄ − grr̄ + f0b̄ , (26)

where a prime indicates differentiation with respect to x. The nonlinear second order
system of ODE (25) - (26) is augmented by the boundary conditions

ā́(−xm) = 0, ā(1) = 0. (27)
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With vL(x) being piecewise constant, the form of (25) - (26) requires that ā(x) and
its first derivative to be continuous at x = 0.
In previous investigations without feedback [7, 8, 9, 10], the two equations in (26)

were solved for b̄ and r̄ in terms of ā and the results used to reduce (25) to a single
ODE for ā. For the present problem, we can solve the first equation in (26) to
get r̄ = α0b̄/ā. Upon substituting this in the second equation of (26), we obtain a
polynomial equation in b̄ with ā in the various coefficients:

P (b̄) ≡ γA(ā)b̄n+1 − γB(ā)b̄n +A(ā)b̄− [B(ā) + C(ā)]

= (Ab̄−B)(γb̄n + 1)− C = 0 (28)

where

A(ā) = g0h0ā+ gr(f0 + g0) ≡ A1ā+A0, (29)

B(ā) = h0v̄minā ≡ B1ā, C(ā) = h0ā(v̄max − v̄min) ≡ C1ā . (30)

Except for the special case n = 1, the relation (28) cannot be used to express b̄
explicitly in terms of ā.
On the other hand, P (b̄) is linear in ā so that we can use (28) to express ā in

terms of b̄:

ā =
α0b̄

fR(b̄)− ςb̄
(31)

where

α0 =
f0 + g0
h0

, ς =
g0
gr
. (32)

The expression (31) can then be used to eliminate ā from (25) to get a single second
order ODE for b̄ :∙

α0b̄

fR(b̄)− ςb̄

¸00
− g0b̄+ vL(x) = 0 (−xm < x < 1), (33)

keeping in mind that fR(b̄) depends on x through b̄(x) (see (16)). Unfortunately, the
form of this ODE is awkward both for theoretical analysis and numerical solutions
even if the boundary conditions for b̄ also take relatively simple forms:

b̄́(−xm) = 0, b̄(1) = 0. (34)

3.2 Existence of a Unique Set of Steady State Gradients

Whether we work with ā(x) or b̄(x) as the primary unknown, it is not enough to
compute solutions of the BVP governing the steady state gradients for some sets of
values for the system rate constants. Biologists want to be assured that such steady
state gradients exist for any biologically realistic set of parameter values. For this
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and other reasons, we will show in this section that there is a unique solution of the
relevant BVP for the steady state morphogen concentrations. Since the auxiliary
conditions are naturally prescribed in terms of the free morphogen concentration, we
will stay with the unknown ā(x) and take b̄(x) and r̄(x) in terms of ā(x). For this
purpose, we need the following preliminary result:

Lemma 1 For a fixed γ and n, there exists a unique b̄ in (B(ā)/A(ā),∞) for any
nonnegative ā, denoted by b∗(ā), which is an increasing function of ā.

Proof. Since b̄ is non-negative, we have from (28) b̄ = b∗(0) = 0 and P (b̄) ≤
−C(ā) ≤ 0 for ā > 0 and 0 < b̄ ≤ B(ā)/A(ā). For larger values of b̄, P (b̄) is
strictly increasing for all b̄ in (B(ā)/A(ā),∞) with P (b̄) → ∞ as b̄ → ∞. Since
P (b̄) is a polynomial, we have by intermediate value theorem a value b∗ in (B/A,∞),
depending on ā, for which P (b̄) vanishes, i.e., P (b∗) = 0. Furthermore, b̄ = b∗(ā) is
unique for any ā(x) ≥ 0 by the monotonicity of P (b̄) in (B/A,∞).

Lemma 2 For fixed γ and n, b∗(ā) is an increasing function of ā for all ā > 0.

Proof. To show that b̄ = b∗(ā) is an increasing function of ā, we differentiate (28)
with respect to ā to get

db∗

dā
=

A0(1 + γb̄n)

∆

b̄

ā
, ∆ =

(1 + γb̄n)

(1 + γb̄n)2A+ nγb̄n−1C
. (35)

Since the right side of the first relation above is positive for b̄ in (B/A,∞), the second
part of the lemma is proved.

With Lemma 1 above, we can write

−ā00 + g0b
∗(ā)− vL(x) = 0 (−xm < x < 1), (36)

ā0(−xm) = 0, ā(1) = 0 (37)

where b∗(ā) a well-defined continuous and monotone function of ā. Hence we have
a well-defined BVP for ā(x) for which we will show presently that there is a unique
monotone solution.

Proposition 3 The BVP (36)-(37) has a nonnegative solution ā(x) ≥ 0.

Proof. The existence of a nonnegative solution of the boundary value problem is
proved by producing a nonnegative upper solution and a nonnegative lower solution
for the problem. From (28), we have P (b̄) ≡ (Ab̄ − B)(γb̄n + 1) = C so that
b̄ ≤ (B + C)/A and therewith

−a00 + g0
B + C

A
− v (x) ≤ −a00 + g0b

∗(a )− v (x) (−xm < x < 1).
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Hence, a lower solution a of the BVP for ā is therefore given by the solution of

−a00 + g0
B(a ) + C(a )

A(a )
− v (x) = 0, a0 (−xm) = 0, a (1) = 0.

For an upper solution, we note from C ≥ 0 and (28) that b(a) ≥ B(a)/A(a) so that

−a00u + g0
B(au)

A(au)
− v (x) ≥ −a00u + g0b

∗(au)− v (x) (−xm < x < 1).

An upper solution au of the BVP for ā is therefore given by the solution of the

−a00u + g0
B(au)

A(au)
− v (x) = 0, a0u(−xm) = 0, au(1) = 0.

By the results of [9], we know both a (x) and au(x) exist and are nonnegative. A
theorem of D.H. Sattinger established in [14] (see also [1, 15]) assures the existence
of a nonnegative ā(x) for the BVP (36) - (37) with

0 ≤ a (x) ≤ ā(x) ≤ au(x).

Proposition 4 The solution of the BVP for ā(x) is unique.

Proof. Let a1(x) and a2(x) be two (nonnegative) solutions and a(x) = a1(x) −
a2(x). Then as a consequence of the differential equation (33) for a1(x) and a2(x),
the difference a(x) satisfies the following differential equation:

−a00 + g0[b
∗(a1)− b∗(a2)] = −a00 + g0b

·(ξ)a = 0

where b·(a) = db∗/da and where we have used the mean value theorem for some
intermediate value ξ between a1 and a2. FormZ 1

−xm
[− a00 + g0b

·(ξ)a] a(x)dx = 0.

Upon integration by parts and applications of the boundary conditions in (37), the
relation above may be transformed intoZ 1

−xm
[á ]2dx+ g0b

·(ξ)

Z 1

−xm
[a(x)]2dx = 0.

Given Lemma 2, the left side of the equation above is nonnegative and vanishes only
if a(x) ≡ 0 and hence uniqueness.
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3.3 Monotonicity

Proposition 5 ā(x) is monotone decreasing in (0, 1).

Proof. First, we prove that ā(x) does not have a local maximum in (0, 1). If an
interior maximum occurs at x0, then á(x0) = 0 and a00(x0) ≤ 0. But we have from (36)
ā00(x0) = g0b

∗(ā) ≥ 0. Hence, we must have a00(x0) = 0 and therewith b∗(ā(x0)) = 0.
In that case (28) reduces to B(x0) + C(x0) = 0 or, with the expressions for B and
C in (30), ā(x0) = 0. But ā(x0) = 0 is a local maximum and ā(x) ≥ 0, it follows
that ā(x) = 0 for all x in (0, 1). But continuity conditions on ā and ā0 at x = 0
determines ā(x) for (−xm, 0), contradicting the ODE for ā(x) in that interval where
vL(x) does not vanish identically.
On the other hand, ā(x) does not have a local minimum in (0, 1). If it should

attain a minimum at x1, then ā(x) must attain a maximum at a point x2 in (x1, 1)
or ā(x) = 0 in (0, 1), given ā(x) ≥ 0 and ā(1) = 0. Neither is possible. Thus, ā(x)
must be monotone in (0, 1). Since ā(1) = 0, ā(x) must be monotone decreasing.

Proposition 6 ā(x) is monotone in (−xm, 0).

Proof. First, ā(x) does not have a local maximum in (−xm, 0). If there should
be at least one interior extremum, consider the one closest to −xm, say at −x0 with
ā́(−x0) = 0. Then the ODE together with the two auxiliary conditions ā́(−x0) = 0
and ā(1) = 0, completely determines ā(x) (uniquely by the result of the previous
subsection) in (−x0 , 1). By continuity, the terminal values ā(−x0) and ā́(−x0) de-
termines ā(x) uniquely in the interval at [−xm,−x0].
If ā(−x0) should be a local maximum then the ODE in this interval requires

ā(−xm) to be a local maximum also. In that case, there must be a local minimum
inside the interval (−xm,−x0) which contradicts the stipulation that fact that ā(−x0)
is closest extremum to the end point x = −xm.
If ā(−x0) should be a local minimum, then either ā(x) attains a local maximum at

some x1 in (−x0, 1) or ā(x) ≡ 0 there. Neither is possible. The former is impossible
given

ā00(−x1) = g0b
∗(ā(−x1))− v̄L ≥ g0b

∗(ā(−x0))− v̄L = ā00(−x0) ≥ 0

with ā(x1) ≥ ā(x0). The latter is impossible because vL(x) > 0 in (−xm, 0). Thus,
ā(x) must be monotone in (−xm, 0).

Proposition 7 ā(x) is monotone decreasing in (−xm, 1).

Proof. Since ā́(0) < 0 by Proposition 5 and ā́(x) is continuous at x = 0, we must
have ā́(x) < 0 in (−xm, 0] given that ā(x) has no interior minimum or maximum
there. It follows that ā(x) is monotone decreasing in (−xm, 0) and, by Proposition
5, in the larger interval (−xm, 1).
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4 Linear Stability

4.1 A Nonlinear Eigenvalue Problem

In addition to the existence of unique steady state concentrations ā(x), b̄(x),and r̄(x),
it is important for these concentrations to be asymptotically stable. To investigate
the stability of the steady state solution known to exist from Theorem 3, we consider
small perturbations from the steady state solution in the form

{a(x, t), b(x, t), r(x, t)} = {ā(x), b̄(x), r̄(x)}+ e−λt{â(x), b̂(x), r̂(x)} . (38)

After linearization, the differential equations (12)-(13) become

−λâ = â00 − h0(r̄â+ ār̂) + f0b̂ , (39)

−λb̂ = h0(r̄â+ ār̂)− (f0 + g0)b̂ , (40)

−λr̂ = −h0(r̄â+ ār̂)− grr̂ + [f0 − p(b̄)]b̂ , (41)

where

p(b) = nγ(v̄max − v̄min)
b̄n−1

(1 + γb̄n)2
≥ 0. (42)

The relations (40) and (41) are then solved for b̂ and r̂ in terms of â to get

r̂ =
h0r̄(x)[λ− p(b̄)− g0]â

(gr − λ)(f0 + g0 − λ) + h0ā(x)[g0 − λ+ p(b̄)]
, (43)

b̂ =
h0r̄(x)(gr − λ)â

(gr − λ)(f0 + g0 − λ) + h0ā(x)[g0 − λ+ p(b̄)]
. (44)

The expressions (43) and (44) are used to eliminate b̂ and r̂ from (39) to obtain

â00 + [λ− qr(x;λ)] â = 0, (45)

where

qr(x;λ) =
h0r̄(x)(gr − λ)(g0 − λ)

(gr − λ)(g0 + f0 − λ) + h0ā(x)[g0 − λ+ p(b̄)]
.

The ODE for â(x) is supplemented by the boundary conditions

â0(−xm) = 0, â(1) = 0. (46)

Together, (45) and (46) define an eigenvalue problem with λ as the eigenvalue pa-
rameter. Though the ODE is linear, the eigenvalue problem is nonlinear since λ
appears nonlinearly in qr(x;λ) so that (45) and (46) is not a Sturm-Liouville prob-
lem. In the next subsection, we will show that the eigenvalues of the homogeneous
boundary value problem defined by the differential equation (45) and the homoge-
neous boundary conditions (46) must be positive. It follows then that the steady
state gradients are asymptotically stable according to linear stability theory.
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4.2 Positive Eigenvalues and Asymptotic Stability

We will prove linear stability of the steady state solution in two steps. First, we
prove that the eigenvalues of (45) and (46) are real. These real eigenvalues are then
proved to be positive.

Lemma 8 All the eigenvalues of the nonlinear eigenvalue problem (45) and (46) are
real.

Proof. Suppose λ is a complex eigenvalue and aλ(x) an associated nontrivial
eigenfunction, then λ∗ is also an eigenvalue with eigenfunction a∗λ(x) where ( )∗ is
the complex conjugate of ( ). The bilinear relationZ 1

−xm
[(a∗λ)a

00
λ − (a∗λ)00aλ]dx = 0

(which can be established by integration by parts and applications of the boundary
conditions in (46)) requiresZ 1

−xm
{(λ− λ∗)− [qr(x;λ)− qr(x;λ

∗)]} (a∗λaλ)dx = 0. (47)

It is straightforward to verify that qr(x;λ)− qr(x;λ
∗) = −(λ− λ∗)Φ(x;λλ∗), where

Φ(x;λ) =
f0 |gr − λ|2 + h0ā(x) |g0 − λ|2 + h0ā(x)p(b̄)[g0 + gr + 2Re(λ)]¯̄

(gr − λ)(g0 + f0 − λ) + h0ā(x)[g0 − λ+ p(b̄)]
¯̄2 , (48)

is a positive real value function of λ, given the definition of p(x) in (42). In that
case, the condition (47) becomes

(λ− λ∗)

Z 1

−xm
aλa

∗
λ[1 + Φ(x;λ)]dx = 0. (49)

Since the integral is positive for any nontrivial aλ(x), we must have λ−λ∗ = 0. Hence,
λ does not have an imaginary part.

Theorem 9 All eigenvalues of the nonlinear eigenvalue problem (39)-(41) and (46)
are positive and the steady state concentrations ā(x), b̄(x) and r̄(x) are asymptotically
stable with respect to small perturbations from the steady state.

Proof. Suppose λ ≤ 0 . Let âλ(x) be a nontrivial eigenfunction of the homoge-
neous BVP (45) and (46) for the nonpositive eigenvalue λ. Multiply (45) by âλ and
integrate over the solution domain to getZ 1

−xm

©
âλâ

00
λ − qr(x;λ)(âλ)

2
ª
dx = −λ

Z 1

−xm
(âλ)

2dx .
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After integration by parts and applications of the homogeneous boundary conditions
(46), we obtain

λ

Z 1

−xm
(âλ)

2dx =

Z 1

−xm
(â0λ)

2dx+

Z 1

−xm
qr(x;λ)(âλ)

2dx. (50)

With λ = − |λ| ≤ 0, we have

qr(x;− |λ|) =
r̄(x)h0(g0 + |λ|)(gr + |λ|)

(gr + |λ|)(g0 + f0 + |λ|) + h0ā(x)[g0 + |λ|+ p(b̄)]
≥ 0

given the definition of p(x) in (42). For any nontrivial solution of the eigenvalue
problem under the assumption λ ≤ 0, the right-hand side of (50) is positive which
contradicts the assumption λ = − |λ| ≤ 0. Hence the eigenvalues of the eigenvalue
problem (45) and (46) must be positive and the theorem is proved.

4.3 A Rayleigh Quotient

Similar to the case of no feedback in [9], we want to know the actual magnitude of
the smallest eigenvalue to give some idea of how quickly the system returns to steady
state after small perturbations. As parametric studies require that we repeatedly
compute the time evolution of the concentration of both free and bound morphogens
from their initial conditions, the value of the smallest eigenvalue will also give some
idea of the decay rate of the transient behavior and thereby the time to reach steady
state.
Let λ (> 0) be an eigenvalue of (45) and (46) and âλ(x) the corresponding eigen-

function. Upon multiplying ODE (45) for this eigen-pair by âλ(x) and integrating
by parts, we obtain the following Rayleigh quotient-like relation for λ after observing
the boundary conditions (46) which apply to âλ(x):

λ

Z 1

−xm
(âλ)

2dx =

Z 1

−xm
(â0λ)

2dx+

Z 1

−xm
qr(x;λ)(âλ)

2dx . (51)

The following key result can be proved similar to that in [9]:

Lemma 10 There exists some ξ = ξ(λ) in (0,1) for which

λ

Z 1

−xm
(âλ)

2dx =

Z 1

−xm
(â0λ)

2dx+ qr(ξ;λ)

Z 1

−xm
(âλ)

2dx (52)

or, in the form of a Rayleigh quotient,

Λ

Z 1

−xm
(âλ)

2dx =

Z 1

−xm
(â0λ)

2dx, with Λ = λ− qr(ξ, λ). (53)
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With the auxiliary conditions (46), it is well known that the minimum value of Λ
is

Λs =

µ
π/2

1 + xm

¶2
attained when âλ(x) is a multiple of the corresponding eigenfunction sin(

√
Λs(1−x))

[19]. It follows that we have
Λ ≥ Λs (54)

since the actual solution âλ(x) of (45) and (46) is not sin(
√
Λs(1− x)). In fact, if we

let λs denote the smallest eigenvalue of the eigenvalue problem (45) and (46). Then
we have also

Lemma 11 Λ(λs; ξ) ≥ Λs.

What we really want to know is the smallest eigenvalue λs of the nonlinear eigen-
value problem (45) and (46) which determines the decay rate of transients. Unfor-
tunately, strict inequality generally holds in Lemma 11. Even if we have equality
instead of inequality, it is still not possible to solve for λs because we do not know ξ
(which depends on λs). Our goal will have to be a more modest one of finding some
useful upper and lower bound(s) for the smallest eigenvalue λs. The obvious lower
bound, λs > 0 (which we know from the previous subsection), is not particularly
helpful. More useful bounds have been obtained in [6] by methods similar to those
used in [9].

5 Some Steady State Gradients

5.1 Simplification for n = 1

Whether we take the primary dependent variable as ā or b̄, it is not possible to
obtain a useful exact solution of the BVP for the steady state solution in terms of
known functions even when the morphogen synthesis rate is piecewise uniform. In
this section, we obtain one relatively tractable solution for n = 1 to provide some
insight to the effect of negative feedback on the steady state morphogen gradients.
The qualitative conclusions can be extended to the general case with the help of the
theoretical results of Subsection 3.3.
In varying degree of severity, the main obstacle in obtaining any kind of solution

when the problem is formulated in terms of ā is our inability to express b̄ in terms of
ā. This obstacle does not exist for the case n = 1. In that case, we can solve (28),
P (b̄) = 0, which is now a quadratic equation for b̄, to get the following expression for
b̄ in terms of ā:

b̄(x) = b∗(ā) =
− |α0 + ςγ ā|+

p
(α0 + ςγ ā)2 + 4γā(α0 + ςā)

2γ(α0 + ςā)
, (55)
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with

ςγ = ς − γρR =
g0
gr
− γ

V̄min
V̄max

. (56)

(We have used |α0 + ςγ ā| to anticipate the possibility of α0 + ςγā may be negative
for sufficiently large γ.) With (55) and the first relation in (26), equation (25) may
then be written as a single ODE for ā with the help of b̄(x):

ā00 − g0b
∗(ā) + vL(x) = 0 (−xm < x < 1) . (57)

The second order ODE (57) is supplemented by the two boundary conditions (37),
keeping in mind also the continuity conditions on ā and ā́ at x = 0.
Note that for sufficiently small γ so that 4γā(α0 + ςā)/(α0 + ςγ ā)

2 ¿ 1, we have
as a two-term Taylor approximation

b̄(x) = b∗(ā) ∼ ā

α0 + ςγā

½
1− 2γā(α0 + ςā)

(α0 + ςγā)2

¾
. (58)

The first term corresponds to the case of no feedback and the ODE (57) reduces
to the corresponding governing ODE in [9] for γ = 0. The effects of a small γ is
characterized by the second term shown the consequence of a small feedback on the
receptor synthesis rate.

5.2 Exact Solution

For our choice of synthesis rates VL and VR, we have vL = 0 in the range 0 < x < 1
so that

ā00 = g0b
∗(ā) (0 < x < 1) . (59)

The ODE (59) admits a first integral. The auxiliary condition ā(1) = 0 determine
the constant of integration to give

[ā0(x)]2 − s21 = g0I(ā), (x > 0) (60)

with
dI(ā)

dā
= b̄(ā), [I(ā)]x=1 = I(0) = 0, s1 = ā́(1). (61)

Similarly, we have for the interval (−xm, 0)

[ā0(x)]2 = g0[I(ā)− I(am)] (x < 0), am = ā(−xm). (62)

In (60) and (62), s1 and am are two unknown constants to be determined by the
solution process. The continuity of ā́(x) and ā(x) at x = 0 requires

g0I(am) + s21 = 0. (63)
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The first order ODE (60) and (62) can be integrated once more to giveZ a0

ā

dap
I(a) + s21/g0

=
√
g0x (0 < x < 1), a0 = ā(0) (64)

and Z am

ā

dap
I(a)− I(am)

=
√
g0(x+ xm) (−xm < x < 0). (65)

It remains to determine s1 and a0 by the continuity condition on ā at x = 0 :Z am

a0

dap
I(a)− I(am)

=
√
g0(xm), (66)

and the end condition ā(1) = 0:Z a0

0

dap
I(a) + s21/g0

=
√
g0. (67)

The relations (63), (67) and (66) are three conditions for determining the three un-
known constants a0, am and s1 to complete the solution process.

5.3 A Narrow Ligand Source Width

A significant simplification of the solution can be attained when Xmin is small com-
pared to Xmax. In that case, we may, to a good first approximation, take Xmax to
be infinite. (Correspondingly, we should use some other reference length X0, such as
Xmin or the typical span of the posterior compartment which is about 100 cell deep,
instead of Xmax in (8) - (11).) For this approximation, the end condition at x = 1 is
replaced by

lim
x→∞

ā(x) = 0, lim
x→∞

ā́(x) = 0. (68)

The second condition requires s21 = 0 so that the condition (63) simplifies to an
equation that determines a single unknown am:

I(am) = 0. (69)

The condition (66) then becomes an equation for determining a0 alone.
Even with these simplifications, the values for the two unknown parameters am

and a0 must still be obtained numerically by some iterative methods. For each
iteration, the values of the two integrals involved must be calculated numerically by
an appropriate quadrature formula. Though it is theoretically gratifying to have an
exact solution for the problem, the actual solution process is no simpler than to solve
the original BVP in the interval (−xm, 1) directly by some suitable numerical method.
For our relatively simple BVP for a single second order ODE of the form y00 = f(y),
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there exist a number numerical software for its solution in Maple (desolve) or MatLab
(bvp4c). The same results can also been obtained by numerical integration of the
original IBVP (12)-(16) in Section 2. Some accurate numerical simulations of our
problem will be reported in the next section for the special case of n = 1 to provide
some insight on the typical effects of our form of negative feedback on the morphogen
gradients. They will also serve as background information and motivation for some
rigorous results to be obtained there for the general case of n ≥ 1.

6 Effects of the Negative Feedback

To see the effects of the negative feedback of the form (1), we have implemented nu-
merical simulations using Maple desolve (and independently confirmed with Matlab
software) for a unit Hill’s coefficient, i.e., n = 1 in (1), and for a set of typical para-
meter values in Table I below which was used in [9]. Simulations were implemented
also for some positive values of the feedback parameter γ which did not appear in
[9].

Table I: System Parameter Values
Xmax Xmin rdeg kdeg koff konR̄0 γ
0.01cm 10−3cm 10−3/ sec . 2× 10−4/ sec . 10−6/ sec . 0.01/ sec . 1.0

2.0
D VL/R̄0 gr g0 f0 h0 10.

10−7cm2/ sec . 10−3/ sec .∗ 1.0 0.2 0.001 10 50.
∞

V̄max V̄min ρ ρR ∆R n 0∗

10−3/ sec . 10−4/ sec . 1.0 0.1 0.9 1
*Normal Dpp synthesis rate (of VL/R̄0 = 10−3/sec.) to be doubled for cases with feedback.

Figure (1) shows a typical comparison of the computed distributions of b =
[LR]/R̄0 (for n = 1). The lower dashed curve is the distribution for a normal ligand
synthesis rate of VL/R̄0 = 10−3/ sec . without feedback (γ = 0). The upper dashed
curve is a similar distribution with the ligand synthesis rate doubled (again without
feedback). Naturally, the concentration of the normalized bound morphogen is much
higher for the latter case since Dpp is produced at a higher rate. When negative
feedback of the form (1) is introduced with γ = 1 for the higher synthesis rate case,
the distribution of bound morphogens is changed to the solid curve. While [LR]/R̄0
is reduced near the ligand source to a level close to that before doubling the ligand
synthesis rate, the shape of the gradient curve is less convex, in fact slightly concave
in the important range of (0, 1) where the original gradient is appropriately convex.
Figure (2) shows computed distributions of [LR]/R̄0 across the posterior compart-

ment for selected values of γ (and n = 1). Of the two solid curves, the one that
is markedly convex in the interval (0, 1) is one for the normal ligand synthesis rate
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without feedback. The corresponding signaling ligand concentrations after doubling
ligand synthesis rate and adding feedback with γ = 1, 2, 10 and 50 are shown as the
four (dash and dot) curves in the figure. The magnitude of the signaling ligand
concentration near the source region is lower for higher γ. However, the situation is
more complex near the sink edge. While the magnitude of [LR]/R̄0 increases slightly
as γ increases from 1 to 10, the increase over the previous level occurs in a smaller
and smaller interval adjacent to the edge x = 1. For still larger γ (such as γ = 50),
[LR]/R̄0 actually decreases with γ for the entire posterior compartment, approaching
in the limit as γ tends to ∞ the solution for b̄ = B/A (obtained by taking γ =∞ in
(28)) given by the lower solid (concave) line curve in the figure.
For the n = 1 case, the shape of the signaling gradient for any positive γ is gener-

ally less convex and more concave than the corresponding gradient without feedback
(γ = 0). Though the reduction in convexity is not monotone in γ near the sink edge,
the general increase in concavity over the γ = 0 case indicates that our negative feed-
back on receptor synthesis rate leads to a leveling effect on the signaling morphogen
gradient. The change in gradient convexity results in undesirable deviations from the
target gradient for the original biological pattern and does not promote robustness
in development.
The qualitative effects of a low level negative feedback of the form (1) for n = 1

can also be seen from (58) for a sufficiently small γ (not shown in the two figures).
Had the free Dpp gradient ā(x) remained unchanged, the (sufficiently small) negative
feedback would reduce the magnitude of the bound morphogen gradient b̄(x) for all
x in (−xm, 1). While this generally contributes to the robustness of the development
of the wing imaginal disc, this positive effect is mediated by the differential reduction
induced by the spatial variation of the free Dpp concentration. With ā(x) monotone
decreasing from −xm to 1, the percentage reduction of b̄(x) is most severe near the
morphogen source and much less substantial adjacent to the wing disc edge. While
b̄(x) would remain convex for sufficiently small γ, this differential magnitude adjust-
ment has the net effect of leveling the gradient in addition to magnitude reduction.
However, the presence of the negative feedback does in fact alter the steady state

free Dpp concentration gradient and thereby complicates its actual effect on the final
steady state signaling (bound) Dpp gradient responsible for differential cell expres-
sion. To the extent that the negative feedback does not alter the monotone decreasing
property of ā(x), the leveling of the bound Dpp gradient by a negative feedback of
the form (1) continues to operate, differing only in the degree of severity. Hence, for
sufficiently small values of γ, the particular form of negative feedback (1) tends to
reduce cell expression differentially, higher reduction (for the lower receptor synthesis
rate) near the source and lower (for the higher receptor synthesis rate) near the edge.
Similar to the moderate and high γ values, this leveling effect of a low level negative
feedback also changes the biologically desirable convexity of bound morphogen gra-
dient and thereby works against robustness of wing disc development.
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These observations (supported by results of numerical solutions of the relevant
BVP and by the approximate formula (58)) provide an explanation for the nega-
tive simulation results (that feedback of the form (1) does not improve robustness of
the biological development of the Drosophila wing imaginal disc). Clearly, a reduc-
tion in receptor synthesis rate leads to more Dpp available for downstream binding
with signaling receptors. However, the differential reduction of Dpp synthesis rate
induced by a spatially nonuniform bound morphogen concentration changes b̄(x) dif-
ferentially in space, higher reduction near the source end and lower reduction near
the sink edge,resulting in a less convex and (for a sufficiently large γ) possibly con-
cave b̄(x). We will now validate rigorously the aforementioned explanation for the
negative simulation results first reported in [12] for the n = 1 case for the entire range
of γ values and extend it to the more general case of n > 1.
By Proposition 7, the steady state free Dpp concentration gradient for a fixed γ

is always monotone decreasing as x increases. By Lemma 2, the change in steady
state bound morphogen gradient b̄(x) for a fixed γ is also monotone decreasing for
increasing x as a consequence. With a spatially nonuniform b̄(x), the leveling effect
of our form of negative feedback therefore persists for the general case. However,
there are some qualitative differences in this effect for γ not sufficiently small so that
(58) is not an accurate characterization of the effects of (1). The following results
provide a rigorous and more complete characterization of the effect of our negative
feedback for a general Hill’s coefficient.

Proposition 12 ā(x; γ) is an increasing function of γ for −xm < x < 1.

Proof. Let w(x) = ∂ā/∂γ. Upon differentiating the ODE (36) and BC (37) for
ā partially with respect to γ, we obtain with the help of (28)-(30)

−w00 + g0σaw − g0σγ = 0 (−xm < x < 1) (70)

w0(−xm) = 0, w(1) = 0 (71)

with

σa ≡
∂b∗(ā, γ)

∂ā
=

A0b
∗

∆ā
≥ 0, (72)

σγ ≡ −∂b
∗(ā, γ)

∂γ
=
1

∆

(b∗)nC

1 + γ(b∗)n
≥ 0, (73)

∆ = A[1 + γ(b∗)n] +
nγ(b∗)n−1C

1 + γ(b∗)n
(74)

where A(ā) and C(ā) are as defined in (29) and (30). Evidently, w (x) = 0 is a lower
solution of the BVP for w. For an upper solution, let σmax be the maximum of σγ(x)
and wu(x) be the solution of the BVP

−w00u + g0σawu − g0σmax = 0 (−xm < x < 1) (75)

w0u(−xm) = 0, wu(1) = 0 (76)
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Then wu(x) is an upper solution of the BVP for w(x). It follows that there exist a
unique w(x) that is non-negative. Furthermore w(x) ≡ 0 does not satisfy the ODE
(70). Hence, the proposition is proved.
For b̄(x, γ), we obtain from (28)-(30)

∂b̄(x, γ)

∂γ
=

gr(f0 + g0)

∆(1 + γb̄n)

b̄

ā

½
(1 + γb̄n)2

dā

dγ
− (1− ρR)

ā2b̄n−1

α0

¾
(77)

where ∆ is as defined in (74) and where the ratio b̄/ā has a finite limit as x → 1:

lim
x→1

b̄(x, γ)

ā(x, γ)
=

B1 + C1
A0

=
1

α0
.

Unlike the special case of small γ and n = 1, the effects of the feedback parameter
γ in (1) on the signaling gradient now depends on the sign of the right hand side of
(77).
In the source region and nearby, numerical results for the case of γ = 1, 2, 10

and 50 all lead to a negative value for ∂b̄(x, γ)/∂γ. Adjacent to the edge sink at
x = 1, the addition of a negative feedback on receptor synthesis rate of the form
(1) gives a positive value for right hand side of (77) for γ = 1, 2 and 10 with the
interval for the positive value shrinking with increasing γ. For γ > 50, the region
of positive right hand side of (77) is imperceptible, consistent with the numerical
simulation results showing that beyond a certain critical value of γ, the signaling
morphogen concentration decreases monotonically and pointwise toward the limiting
distribution corresponding to the case of b̄ = B(ā)/A(ā) = B1ā/[A1ā + A0]. The
gradient of this limiting solution is still concave for the n = 1 case though somewhat
less so compared to those for (finite but) large values of γ. As such the addition of
a negative feedback of the form (1) drives the signaling gradient away from its target
shape for biological development.
This is not to say that negative feedback mechanisms are generally not effective

for robustness. But if robustness is to be achieved, the feedback process should not
promote a leveling effect on the convex signaling gradient. Rather, our observations
suggest that an effective negative feedback mechanism for robustness through reg-
ulating the receptor synthesis rate should be spatially uniform. For example, the
desired spatial uniform feedback effect may be attained with a negative feedback on
the receptor synthesis rate of the form

VR = Vmin +
Vmax − Vmin
1 + Γ([LR])

= Vmax

½
ρR +

∆R

1 + γ(b̄(x))

¾
(78)

where γ(b̄(x)) is a functional of the signaling gradient b̄(x). Possible choices of γ(b̄(x))
include γ0b̄(0) and some average value of the signaling morphogen concentration,

γ(b̄(x)) = γ0

Z 1

0

b̄(x)dx. (79)

The effects of such spatially uniform feedback mechanisms are being investigated.
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7 Conclusion

The present research was motivated by the results of [12] on negative feedback as an
instrument for achieving robustness in biological developments. The basic models
for morphogen gradient formation that accounts only for diffusion, reversible binding
with renewable signaling receptors, and degradation (with or without transcytosis
of bound morphogens) were found to be sensitive to changes in system parameters.
Doubling the morphogen synthesis rate changes the corresponding signaling bound
Dpp gradient substantially, exceeding the acceptable range of a robustness measure
introduced in [12] for all sets of parameter values simulated. Conventional wisdom
would have the sensitivity to system characteristics lowered by some form of nega-
tive feedback which is expected to ameliorate the response to the system parameter
changes. It was therefore rather surprising that a negative feedback mechanism of
the form (1) known to be effective in other applications was found not to render the
development of the Drosophila wing imaginal disc more robust [12]. In fact, numer-
ical simulations for 106 sets of system parameter values showed generally a higher
sensitivity to a doubling of Dpp synthesis rate than the basic models. The unex-
pected finding prompted the present examination of the cause of the ineffectiveness
of the negative feedback mechanism (1).
From the approximate analysis and numerical simulations for the special case

of n = 1, we found that in addition to reducing the receptor synthesis rate and
thereby lowering the signaling bound morphogen concentration near the source end,
the particular feedback mechanism (1) has a leveling effect on the (normalized) signal
bound morphogen gradient b̄(x) = [LR]/R̄0 which works against robustness. The
manner in which the particular feedback mechanism changes the slope and convexity
of the bound morphogen distribution drives the signaling gradient away from the
appropriate gradient shape for the targeted tissue pattern. It would not serve the
intended purpose of ensuring robustness to system characteristics changes.
The observations for the special case above were then made rigorous and extended

to the general case of n ≥ 1. For this extension, the results in Lemma 2 and
monotonicity result of Proposition 7 played a key role. This reason alone requires
the development of the basic existence theory for the basic model with the negative
feedback (1) as presented in Section 2.
The cause of the negative results of [12] suggests more appropriate negative feed-

back mechanisms for mediating the sensitivity to system parameter changes and
thereby ensuring robustness. Such mechanisms should not cause a substantial change
in the signaling gradient shape, either by leveling the monotone decreasing gradient
or steeping it and making it more convex. Some possible feedback mechanisms for
this purpose are currently being investigated.
Acknowledgment: The research of F.Y.M. Wan has supported in part by NIH

grants P20GM66051, R01GM067247and R01GM075309. The two NIH R01 grants
were awarded through the Joint NSF/NIGMS Initiative to Support Research in the

22



Area of Mathematical Biology. The research project was motivated by and has
benefitted from the earlier work by the second author jointly with his UCI colleagues
A.D. Lander and Qing Nie on robustness by numerical simulations.

References

[1] Amann, H., "On the existence of positive solutions of nonlinear boundary value
problems," Indiana Univ. Math. J., Vol. 21, 1971, 125-146.

[2] Entchev, E.V., Schwabedissen, A. and Gonzalez-Gaitan, M., "Gradient forma-
tion of the TGSF-beta homolog Dpp," Cell Vol. 103, 2000, 981-991.

[3] Gurdon, J.B., and Bourillot, P.Y., "Morphogen gradient interpretation," Na-
ture, Vol. 413, 2001, 797-803.

[4] Hill, A.V., "The combinations of haemoglobin with oxygen and with carbon-
monoxide," I. J. Physiol., vol. 40 (iv-vii), 1910.

[5] Kerszberg, M. and Wolpert, L., Mechanisms for positional signalling by mor-
phogen transport: a theoretical study,” J. Theor. Biol., Vol. 191, 1998, 103-114.

[6] Khong, M., "Feedback and Morphogen Gradients," Ph.D. dissertation research,
University of California, Irvine, in progress.

[7] Lander, A.D., Nie, Q., Vargas, B. andWan, F.Y.M., "Aggregation of Distributed
Sources in Morphogen Gradient Formation," J. Comp. Appl. Math., Vol. 190,
2006, 232-251.

[8] Lander, A.D., Nie, Q. and Wan, F.Y.M., "Do Morphogen Gradients Arise by
Diffusion?" Developmental Cell, Vol. 2, 2002, 785-796.

[9] Lander, A.D., Nie, Q. and Wan, F.Y.M., "Spatially distributed morphogen
production and morphogen gradient formation," Math. Biosci. Eng. (MBE), Vol.
2 , 2005, 239 — 262.

[10] Lander, A.D., Nie, Q. and Wan, F.Y.M., "Internalization and end flux in mor-
phogen gradient formation," J. Comp. Appl. Math 2006, 232-251.

[11] Lander, A.D., Nie, Q., Wan, F.Y.M., and Xu, J., "Diffusion and Morphogen
Gradient Formation - Part I: Extracellular Formulation," submitted to J. Math.
Bio.

[12] Lander, A.D., Wan, F.Y.M., and Nie, Q., "Multiple Paths to Morphogen Gra-
dient Robustness," 2005, submitted for publication.

23



[13] Lou, Y., Nie, Q. and Wan, F.Y.M., "Nonlinear eigenvalue problems in the
stability analysis of morphogen gradients," Studies in Appl. Math., Vol. 113,
2004, 183-215.

[14] Sattinger, D.H., "Monotone Methods in Nonlinear Elliptic and Parabolic Bound-
ary Value Problems," Indiana University Math. J., Vol. 21, 1972, 981-1000.

[15] Smoller, J., Shock Waves and Reaction-Diffusion Equations, Springer Verlag Inc.,
New York, 1982.

[16] Teleman, A.A., and Cohen, S.M., "Dpp gradient formation in the Drosophila
wing imaginal disc," Cell, Vol. 103, 2000, 971-980.

[17] Vargas, B., Leaky boundaries and morphogen gradient formation, Ph.D. Disser-
tation, University of California, Irvine, December, 2006.

[18] Lander, A.D., Q. Nie, Q., Vargas, B. and Wan, F.Y.M., "Apical-Basal Cell
Depth and Morphogen Robustness," to appear.

[19] Wan, F.Y.M., Introduction to the Calculus of Variations and Its Applications,
Chapman & Hall, New York, 1995.

8 Legends for Figures

Figure (1): [LR]/R̄0 vs. x for different combination of {γ, v̄L} with the remaining
parameters values given in Table 1. The dash-dot curve is for {0, 1}, the dash curve
is for {0, 2}, and solid curve is for {1, 2}.

Figure (2): [LR]/R̄0 for γ = 0 with v̄L = 1. and for γ = 1, 2, 10, 50, ∞ (=
upper solution) with v̄L = 2 in all five cases. All other parameter values are as given
in Table 1.

9 Figures
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Figure 2:
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