


(rMr)’ + MTeo - Me - rQ,. = 0 ,

(rMre)’ + Me’ + Md - rQe = 0

(6)
(Cont.)

While these are satisfied identically by the given expressions for
the resultants and couples provided F and w satisfy (3), we will
use them on a later occasion to simplify the discussion of axial-
edge conditions.

The foregoing set of differential equations is supplemented by
appropriate sets of boundary conditions. In this work, we con-
sider a shell bounded by r = ri, r = ro (0 < r; < r,-J, and 8 =
*eo. Along the radial edges (r = r, and r = ro), the shell is
assumed to be free of tractions. The homogeneous Kirchhoff -
Bassett stress boundary conditions are:

N,. = N,.e = Mr = QV + r-lMTe* = 0 (7)

for r = ri and r = ro. Along the axial edges 8 = =t 00, we re-
quire that the resultant force vanish and that the resultant
moment be equal to AM, turning in the direction of the z-axis,
Fig. 1. In terms of the stress resultants and stress couples, these
requirements take the form

STO

(Ne cos B - No sin 0)dr = 0,
7%

STO

(N,.e sin 8 + No cos 0)dr = 0,Ti
S

TO

(a+&  + Qe + Mie)dr - [2M,.e]z = 0,
7-

Sro
rNedr = 0,

ri

- S” [Cd& + rQe + rM;e) cos 8 + Me sin O]&Ti + [2rM,.e cos 0];; = 0,

St=~ [(de + rQd + rM:e) sin 8 - Me cos O] drri - [2rM,.e sin 012 = M

Reduction

(11)
(Cont.)

Kil = nre(r) cos 8 = -(r+f)’  cos e
K = mr(r) cos e

Z -B[W” + vb(r+W) + z&w~l] cos 8

Me = me(r) cos e

C -.D[vbW” + (+W)’ + kxzr-l] cos 8
Mre = m&r) sin 8 = D(1 - vb)(r-W)’ sin 8

Qr = qr(r) cos 8 = -D[W”’ + (r_lW)” - kxzr-2] cos 8

QO = qe(r) sin 8 = Dr+[W” + (r-W) + km-l] sin 8

and the equilibrium equations (6) can now be written as

(rnJ’ - nre - ne = 0 , (r%e) + ne + %e = 0

(rqr)’ + qe - 2r+and = 0

(rmJ + mre - me - rqr = 0,
(12)

(rmre)’ - me + mrij - rqe = 0

The
form

boundary conditions at the edges (7) take on the

% = %e = rnv = qr + r-lmre = 0

where the nonintegrated terms represent the corner forces intro-
duced by the assumption of negligible transverse shear deforma-
tion.

In the subsequent development, we seek a solution to the dif-
ferential equations (3), which satisfies the boundary conditions
(7) at the radial edges, and the overall conditions (8) at the axial
edges. The inplane displacement components, Us and ue, can
then be computed through (5).

Motivated by the result for a flat plate (see Appendix), we
consider solutions to the differential equations ( 3) in the form

(r-y)’ = IV” + v&r+W) + v&ar-l

= Wf” + (r+W)” - P(1 - vJ(r+W)‘- karm2 = 0

(14)

@J for r = ri and r = ro. Note that these boundary conditions give
only three independent conditions at each edge.

The integrated boundary conditions (8) for the axial edges can
be written as

S
r0

S
r0

(n,.e cos2 8 - no sin2 0)dr = 0, (nre -I- nejdr = 0,Ti Ti

STO (ar+ne + qe + mie)dr - [2mre] Fi = 0,Ti

F(r, 0) = f(r) sin 0, w(r, ej = W(r) cos 8 + i kizer sin 8 (9)

where k is an arbitrary constant. The foregoing expressions for
F and w reduce (3) to two fourth-order-coupled ordinary differen-
tial equations forf(r) and W(r):

DAAW = 2ar+(+f)‘, AAAf = 2ar-2(r-1W)’ ( 1 0 )

A( ) = ( )” + r-l( )’ - r+( ).

The corresponding expressions for resultants and couples are

Nr = nr(r) sin 0 = (r-y)’ sin 0, No = no(r) sin 0 = f” sin 6

w

J rnedr = 0,
Ti

S TO be + me -f- rqd -I- rrn:e)dr - [2rrnre]ri = 0Ti
S

r0
[(an@ -l- rqe + rm/e) sin2 0 - me COG e]drTi

- [2rm,.e sin2 01;: = M

at 0 = heo. Judicious uses of the equilibrium equations (12), as
well as of the boundary conditio:ls (13) for the radial edges, show
that the first five conditions of (15) are satisfied identically. For
example, using the second and third equilibrium equations alow
with integration by parts, we get for the third condition

S
ro

E bmlw + qe)dr - [m,.e]Ffri
S” WVZ [ -2Ur?&~ + qe - anie]dr - [m,.e] go

Ti
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The right-hand side vanishes because of the last boundary con-
dition of (13). Similarly, the last condition of (15) becomes

W(r) = !!!5!! {c@&

simply
aR2

+ c2P-aR

+P BaRi*[c3 cos (m ln p) + c4 sin (a~ ln p)]- -
-t- paR’2[c5 cm (m h p) + c6 sin (a1 h p)] } -f- c~?i)p

which, upon carrying out the integration, gives

M
= [VbW’ + r_lW + k a  ln(r)]Ff w +P - aR/2

5-
[Q ax (a~ ln p) + c4 sin (err ln p)]

- p‘W2[c5 cm (a!1 h p) -t- c6 sin (a1 h p)] ] + c8rOp

The system of ordinary differential equations for f and W (10)
and the boundary conditions (14) form a two-point (inhomoge-

where cl, . . ., cs are dimensionless real constants.

neous) boundary-value problem, notwithstanding the fact (as we
Correspondingly, we have

shall see in the next section) that (14) comprises only three ka D
independent conditions at each edge. The boundary-value
problem effectively determines f and W in terms of the parameter

% = -%t~ = crimp 67 1 OUR -f- W -aR

k; k will then be related to the applied bending moment M by the +P - an’2kaGr4p) + c4Gr4(p)]

condition (18).
- paR’*[c5Gr5(p) + &iW ]

Solution of the Two-Point Boundary-Value Problem
The system of ordinary differential equations (10) for f(r) and

ka 5

n6 = rap
- & {&(I + ctR-‘)paR - c2(1 - aB-l)p-aR

W(r) is equidimensional. It is not difficult to verify that the
solutions of this system are + p - aR’2[c3Ge3(~) + c4Ge4(p)l  - p aR’2k5G9sC~) + ~&th01 1

W(r) = Cg + Clral + C2ra2 + Cgua

+ Z3raa + C4ra4 + cara
rnr = -kz {cl[l + (1 + @aR-‘]p=

f ( r )  =
d

D
A (Dar + clrul - C2ra2 + Cara

(W
+ Q[l - (1 + vb)aR-llp-aR

+P - aR’2[ca( Goa + v@R - lGr3) + c4( Go4 + ~K’Cr4)1

j- Z3raa - C4ra4 - c4ra4)

where Do, Co, Cl, . . . ., CJ are constants of integration, CY~ is the
real root, cz3 and 53 are the complex conjugate roots of the cubic
equation:

+ P~~‘~[c~(Go~ + v@R- lGr5) + c5(G,93 + ~+,a& -%)I + vb]

kaD
me = - G {c&b + (1 + v&R-‘]paR

(24)

+ CA% - (1 + QJQ-llp-aR

(a2 - l)(a! - 3) = A- - - - - -2f_ s A263
dDA

( 0)2 +P - aRi2[c3(vbGo3 + @$-‘Gr3) + c4(vbG94 + aR-‘Gr4)1

with the upper sign, and as, a4, and 54 are the corresponding roots
+ paR’2[C5(Q,G,j5  + Q-Y&~) + C&Go6 + aR -lGr6)1 + I]

for the lower sign. In terms of the parameter 6, we have - ka(1 - vb)D aR--p
sloop hP - c2P-aR + P-aR’%3Gr3  + c4Gr41

a1

0
= 1 zt a!&,

a2
+ ~~~‘~[c5Gr5 + dh,] ]

where kaD

q0 = (Z
{cl(1 + 2aR-‘)paR + &1 - 2aR-1)p-aR

cfR = s[(l + dw)“*  + (1 - 41 - ($)3y’a] f;z;;;GfP;aR-‘Gr3) + c4(Gt94 + :-$I+ lo

5 -%s) + Q(Ge3 + aR r

&aD

_ (l _ dl _ ($i)i)1’a] ‘t. = -=--‘~;;  ; il:; 1 ;II:;;;:aR

To insure real-valued W(r) and f(r), we take DO, Co, Cl, and C2 to
+P -aRi2(c3Gq3 + c4Gt24) + P~~‘~(c~G~s + ~Gqo) - aR-‘)

be real and c3 and c4 to be the complex conjugates of C3 and C4, where
respectively.

For an isotropic homogeneous medium, we have (&, G4, G5, Gr6) = cos ( CXI ln p) - -$ 2, i, $
R

+ sin (a~ ln p) l a1

1

2,

1

-
G,

-
--,

-
2

1
For typical shell behavior, we are mainly interested in the range
6 > 1. In this range, we have

(Ge3, Ge4, Go5, Gw) =
1 4aP 2

,

afi w 456, a!1 - da/q% \ (22b)

4 cos (CYI ln p)
K

1  - --- - -
aR

so that Q and ~YI are 0( fla).
For our purpose, it will be more convenient to write (19) in

-Z(l-;), (l-z+;), 2(1+;)}

terms of a dimensionless variable p = r/r,-, in the form (25)
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1
+ 4 sin (a~ ln p) {z (l-;),(l-~-;)d@;;

-E(l+;j(l-z+;)]

Gq3 = -+ [(I + ;)(Go3+ &Gr3) '

4a1
+ - Ge4+ -!- Gr4

aR aR

Gq4 = -$ [(I +i)(Go4+ kGr4)

4cYI
+ - Ge5 + -!- GT5

Q!R aR

The six independent conditions of no stress at the outer edge
P = 1 and at the inner edge p = pi = Q/Q now take on the form

cl + c2 + c3Gr3(1) + c4Gr4(1) - c5Gr5(1) - CcGr0) = 0

CI[l + (1 + v&R--'] + C2[1 - (1 + Vb)aR-‘]

+ C3[Go3(1) + VbaR -lGr3( I)] + ~4 IGe4( 1) + Vba~-‘Gr4(1)]

+ c5[Ge5(1) + v&?Gr5(~)~

f CdG&(l) -k WQ?Gd~)l = -Vb

cl[l + aR-’ - ( 3  - v&R-2]

- c2[1 - aR--’ - ( 3  - v&&-2]

+ C3&3(1) - (1 - J'&$.-2Gr3(l)l

+ C4lIGq4U) - (1 - +&%i!-2Gf'4(1)~

+ C5[Gq5(1) - (1 - h)WF2G~5(~)l

and

+ C6[Gq6(1) - (1 - V&R-2G~6(l)] = aR-’

QpiaR + c2pi-aR + pi-- aR’2 IC3Gr3h) + C4Gr4(pd

- Pi aR'2[C5Gr5(pi) + c&3(pdl = 0

cI[l + (1 + v&!R-‘]piaR + c2[1 - (1 + v&%-llp~-aR

+ Pi-- aR’2{ c3 [Ges( PJ •k Vb~R+Gdpi)l

+ c4LGe4(pA + VbQ!R -lGr4( Pi111

+ 0 aR12{c5 LGd5(pi) + v&Y~-'Gr5(pdj

+ C'dGdpd + VbaR -lGrdpi)l } = - V b

c&i. + aR--’ - ( 3  - v&$--2]piaR

- &‘[1 - c$f-’ - ( 3  - z&YR-2]pi-aR

+ Pi- aR’2{ c3[&3(pi)  - (1 - V&R-‘G&pi)] 1

+ c4LGq4(pi) - (1 - d%-2G~4(pi)]]

+ piaR’2{ c5[Gq5(pi) - (1 - V&%-2Gr5(pi)]

c6[Gq6(pi) - (1 - vb)aR-3Gr6(pd]} = aI/’

These six inhomogeneous conditions determine the six dimension-
less constants cj in terms of pi, 6, and vb.

0.5 -

Id , l,l,l  lllll
o'40.6 I.0

, * II IllI.
IO IO0

8 =

Fig. 2 Dimensionless overall bending stiffness coefficient versus i$ for
Vb = 0.3

Overall load- Deformation Relation and Stress Distributions
The remaining undetermined parameter k can now be related

to the applied moment M by means of (18). The result is a
linear relation between k and M in the form

M  = Bk z hD - ln pi + cyRwl (& CA)} (26)

where

_+ v Fw+z%l~b
aR I [I - pi7aR/2 ~0s (a2 h pi)1

I

piT aR12 sin (ar ln pi)

The variation of B as a function of 6 is shown in Fig. 2 for repre-
sentative values of pi and for vb = 0.3. This graph shows that
for 6 > 1, we have

Bw -Da ln pi F BI (27)

Thus only the multivalued portion of the solution in (9) con-
tributes significantly to B for 6 > 1. As a tends to zero so
that 6 tends to zero, Fig. 2 shows that B tends to the correspond-
ing result for a flat plate (see Appendix) :

BP = -
Da( 1 - vb)

(3 + vb)2 ln pi +
(1 - Vb)2(l - pi2)

4(3 + 6) 1 + pi2 1
In order for the result to be meaningful, we keep 7c0 = ka finite as a
tends to zero.

Turning now to the stress distributions, the expressions for the
resultants and couples given by (23) suggest that for 8 > 1, there
are two distinct stress states in the shell. The contribution from
the term +karO sin 0 in (9) to the stress couples is significant
everywhere in the shell and can therefore be considered as the
interior state. Inasmuch as this same term does not contribute
to the inplane stress resultants, the interior state of the shell is
purely an inextensional bending state.

In contrast, the contribution of term associated with the con-
stants cj becomes insignificant at a distance O(r& from the
edges for 6 > 1. As such, they are of the nature of a boundary-
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= 0.5

0.6

I 1 I I I
0.5 0.6 0.7 Q.8 0.9 I.0

P

Fig. 4 variation of stress couple /Me across shell width for zq, = 0.3,
r& = 0.5, and 8 = 0

I I I I I I
xl.5 0.6 0.7 0.8 0.9 Lo_

P

Fig. 3
f&() =

Variation of stress resultant /Ve across shell width for ZQ = 0.3,
0.5, and 8 = ~/2 displacement components Us and ue. The expression for e,. can be

written as
layer effect and may therefore be considered as an edge-zone state.
These two distinct stress states can be seen from the graphs for
no and me shown in Figs. 3 and 4.

The presence of the edge-zone state can also be seen from the
structure of the differential equations (10) which can be written
as one equation of the form

4 = CT = A[(r+f)’ - vJ”] sin 8

or

UT = A(r+f - v8ft) sin 6 + H.(e) (31)

where H(e) is an arbitrary function of 6.
The expression for ee can be written as

= {A[rf’/ - (1 - %)r-‘f] + ar_lWj sin 8in which the dimensionless quantity &A/a may be (and in
general is for shells) small compared to unity. It follows (as can
also be seen from (19)) that the dimensionless characteristic
length for the edge-zone solution is of the order 1/6 = 0( $‘h/a)
which is the same as that suggested by the differential equation
for the edge effect for shells with negative Gaussian curvature as
given in [l, p. 4241.

To see the relative order of the direct and bending stress near
the edges of the shell, we consider

- H’(e) - i ka2(0 sin 0)’

or upon integration

2450 = -{A[# - (1 - qJr+f] + ar_lWj cos e

- H( 0) - ka2iY sin 8 + K(r) (32)

where K(r) is an arbitrary function of r.
To determine H( 0) and K(r), we make use of the last equation

of (5) which, upon using (31), (32), (9), and the last equation of
(4), becomes

{ A[ry”’ - 3j’ + 3r+f] - 2a+W} cos  e

+ r2(rm1K)’ + H** + H + ka26 sin 0 = 0 (33)
so that

p = l

We now use (19) and (20) to reduce the foregoing equation to

(H’. + H + ka20 sin 8 - 2acT cos e) + r2(r+K) I = 0 (34)

+ KI
(35)

From Figs. 3 and 4, we see that both rorn@lia and ron&iadD/A or
are 0( 1) for 6 2 2. Therefore, we have K = Kor + Kj

1
H=T lS(P cos 8 - esine) + ~~d?sinO

With these, the expressions for u,. and ue now take the form

?.&. = A(r-y - vJ’) sin 8 + c7a (sin e + e cos e)

- i ka2[(l + e2) sin e - e cos ej

-{A[rf” - (1 -
(36)

Ue = v&-y] + ar+Wj cos e

1- 4 W[e2 cos 8 + 8 sin ej + &T

For a homogeneous and isotropic medium, we have &A =
O(h). Therefore, the edge direct and bending stress are of the
same order of magnitude. It is not difficult to check that the
transverse shearing stresses are at least an order of magnitude
smaller.

Inplane Displacement Components \

We now use the strain-displacement relations (5) and the
stress-strain relations (4) to determine the expression for the
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Note that & does not appear in the final expressions  and can
therefore be set equal to zero. Note also that the &-term is a
rigid-body rotation about the z-axis.

The final expressions for Us and ue along with the expression
for w are significant in that they suggest the appropriate form of
the displacement field which allows the reduction of the problem
of pure bending of nonshallow helicoidal shell to a two-point
boundary-value problem in ordinary differential equations [6].

APPENDIX
Pure Bending of Ring Plate Sectors

For the limiting case of a flat plate for which a = 0, the
governing equations of the section, “Formulation,” uncouple into
two groups. The generalized plane-stress equation for F and the
homogeneous boundary conditions lead to a trivial solution
F = 0. For the transverse bending of the plate, the governing
partial differential equation is

DV2V% = 0 (37)
In terms of w, we have

Mr = -D(wtf + vbr+.u’ + vbr+w”),

Me = -D(vbwrr + r+w’ + r+w’*),

Mre = - D( 1 - vb)(r+we)‘,
(38)

Qr C -D(V%o)‘, Qo = -D+(V%)*

At the radial edges r = rj and r = ro, the Kirchhoff conditions
require that

MV = Qr + r+Mreo = 0 (39)
while the overall equilibrium conditions at 8 = A& become

S
TO

(Qe + W/W - P&J 2 = 0,
ri

r0- [(Qe + Me,+ cos e + Me sin l?]dr

+ [2rMre c o s  e];f = 0 (40)

STO
[(Qe + Mer’)r sin 8 - Me cos tl]dr

?Y
- [2rM,.e sin t?] rf = M

Guided by the result of [2], we consider a solution of (37) in the
form

w, 0) = k.
1

[cg + + c2r3 + car ln r] cos e + 2 r0 sin0

(41)

where ko, cl, Q, and c3 are four arbitrary constants. Correspond-
ingly, we have

Mr = m&r) cos 8 = -Dko[2(l - vJclr-3 + 2(3 + v&r

+ ( 1 + v&r+ + ~f-l] cos 8

Me = me(r) cos 8 = -Dko[ -2(l - v&r+ + 2(1 + 3v&r

+ (1 + v&r-l + r-l] cos 8 (42)

We = m&r) sin 8

= D(1 - vb )k() [ - 2clr -’ + 2cg + c3r +] sin e

Qr = q&) cos 8 = -Dko[8h - 2c3rB2 - re2] cos e

Qe = Q(T) sin 8 = -Dko[8h + 2c3rV2 + rw2] sin 8
The conditions of no stress at the radial edges are satisfied by

UCl =
- vb)r02ri2 U - vb12

8(ro2 + ri2) ’
c!2=

8(3 + v&o2 + riV

1 + +J
c3s --

4

Through an analysis similar to that of the section, “Reduction,”
it can be shown that the first two conditions of (41) are satisfied
identically by (42) and (43) while the last condition becomes

S
r0

Mz- medr
r3

= DkJ (1 - vJc~r-2 + (I + 3vb)c#

+ b3(1 + vb) + 11 ln r) Fi

(44)

which can be put in the form of a linear
stant ko and the applied moment M

relation between the con-

M = DU - v*)
4(3 + v*)

f&
O

(45)

1
(46)

(3 + G2 h pi +
(1 - vb)2(l - pi21E-

1 + pi2

Equations (45) and (46) are exactly the same as those obtained
in [2]. The foregoing outline of a derivation of these results in a
form different from that in [2] serves the purpose of indicating
the appropriate e-dependence of the solution for the shell
problem, as well as supplies the stress distributions in the plate
(which were not given in [2] ) to be used as a reference state for
the shallow helicoidal shells.
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