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A b s t r a c t - - T h e  detection of HIVol levels in human hosts is cast as a first exit time problem for a 
multidimensional diffusion process. We consider a four-component model for early HIV-1 dynamics 
including uninfected CD4+ T-cells, latently infected cells, actively infected cells, and HIV-1 virions. 
An analytical framework is presented for the distribution of the time at which a given virion level 
is attained. A one-dimensional diffusion approximation for a branching process leads to an estimate 
for the distribution of the virion density and an expression for the mean detection time for any given 
detection threshold. (~) 2000 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

T h e  d y n a m i c s  of  HIV-1 (human  immunodef ic iency  v i ru s - l )  popu la t i ons  in infec ted  hos ts  have 

been  mode l ed  m a t h e m a t i c a l l y  by  var ious  sys tems  of de te rmin i s t i c  o r d i n a r y  different ia l  equa t ions ,  

as for e x a m p l e  in [1-3]. These  have been used to  ascer ta in  the  effects of  var ious  d rug  t he r ap i e s  

t h r o u g h  a l t e r a t i ons  in the  p a r a m e t e r s  of the  mode l  [1,4,5]. However,  the  g rowth  of  HIV-1 popu-  

la t ions  is no t  de t e rmin i s t i c  in na tu r e  and  more  accu ra t e ly  desc r ibed  by  s tochas t ic  mode l s  [6-9]. 

In  a recent  communica t ion ,  a m a t h e m a t i c a l  mode l  for ea r ly  HIV-1 p o p u l a t i o n  d y n a m i c s  in 

p l a s m a  has  been  p resen ted  as a four -d imens ional  diffusion process  which m a y  be  desc r ibed  by  a 

s y s t e m  of  s tochas t i c  different ia l  equa t ions  [9]. Th is  is a s tochas t ic  vers ion of  t he  mode l s  deve loped  

in [1,2]. L e t t i n g  the  componen t s  be  Xk, k = 1, 2, 3, 4, we have t h a t  a t  t ime  t (days)  s ince in i t ia l  
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infection, for one cubic millimeter of plasma, X1 (t) is the number of activated uninfected CD4+ 
T-cells, X2 (t) is the number of latently infected cells, X3 (t) is the number of actively infected cells, 
and X4(t) is the number of circulating HIV-1 virions. The model has the following parameters: 

,k appearance rate of uninfected CD4+ T-cells, 
p net death rate of uninfected CD4+ T-cells, 

kl infection rate per virion, 
k2 infection rate per uninfected CD4+ T-cell, 
p proportion of infected cells which are latent, 

activation rate of latently infected cells, 
a death rate of actively infected cells, 
c rate of virion emission by infected CD4+ T-cells, 
3' death or clearance rate of virions, and 
T the fraction of activated uninfected CD4+ T-cells. 

However, because in the model equations we restrict attention to activated cells, the constant 7- 

does not appear explicitly. 
For the four-component diffusion model [9], the transition probability density function P (y ,  t; 

x, s), s < t, where y is a four-vector of forward variables and x is a four-vector of corresponding 
backward variables, satisfies the following backward Kolmogorov equation [10]: 

OP 
- -  + L × P  = O, 
Os 

where the operator L× is defined through 

0 0 
L,, = [A - p x l  - klXlX4] ~Xl  -l- [klpXlX4 - (# -t- a)x2] 0x2 

0 0 
+ [k1(1 - p ) z l x 4  + az2  - ax3] ~ + [cz3 - 7x4 - k2zlz4] c3x4 

[-12{ °2 0 2 0 2 0 2 } 
-t- XlX4 kl-~x~ Q- ~IP-~x~ -~- k1(1-  P)-~x23 -~- k2~x~ 

02 02 02 

02 02 02 
+klV/~I  -- P) Ox2Ox3 k~lk~Pcgx--~x 4 V/klk2(1-  P) ox---~3~x4] " 

There are extra terms here involving k2, relative to the deterministic models [1,2], in the equation 
for the virion density, as in [9], to allow for a decrease in viral numbers when a virus attaches to 
a CD4-cell. Simulations showed that  solutions of the system of stochastic differential equations 

are little changed when these extra terms are ignored. 
In [9], sample paths of the diffusion process were simulated and were found to give good 

agreement with the time course and variability of the acute phase of HIV-1 infection. In addition, 
it was found useful to find the times at which the virion density attains levels corresponding to 

the thresholds for detection of the virus in plasma samples. 
It  is possible to find the properties of the distribution of the time to detection by the using 

first passage time theory [10,11] for diffusion processes, which results in the following analytical 
framework. Let the threshold level of detection of the virus be 0 /mm 3. Let A be a set in R 4 

containing the initial value x of the process such that  x4 E (0, 0). Then we consider the time to 
detection as the first exit time, T0(x), of the process from A. The distribution function of this 

quantity, Fo(x; t) = Pr {To(x) <_ t}, satisfies 

OFo 
= LxFo,  

Ot 
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with initial condition F0(x; 0) = 0, if x e A and Fe(x; 0) = 1, if x ~ A, with boundary condition 
F0(x; t )  = 1, x ~ A , t  >_ O. Furthermore, the moments / t  n : E[T~(x)],  n = 1 , 2 , . . . ,  satisfy the 

recursive system 
Lx#n = - n # n - 1 ,  

for x G A, with boundary conditions #n(x) = 0, x E OA. Here, #0 = 1 is the probability of ever 
leaving A. There may be some escape of probability mass at zero virion level but this is expected 
to be insignificant compared to that  associated with paths which attain level 0, so T0(x) will be 
very close to the time to detection. The accuracy of this approximation can also be determined 

using first exit t ime theory. 

2. A P P R O X I M A T I O N S  

The above four-component framework can be simplified to a two-component one at early times 
by not distinguishing between latently and actively infected CD4+ T-cells, as in [12], and by 
considering the number of uninfected CD4+ T-cells as constant. This approach is vindicated by 
observations on the sample paths in the four-component model. Neglecting also the interaction 
term in the viral dynamical equation, which has been shown to only have a small effect, one 
obtains a simplified stochastic model for the very early (less than 15 days) period of HIV-1 
dynamics. Put t ing the numbers of infected cells and of free virions as Y ( t )  and V(t) ,  respectively, 

we find 

d Y  = ( k~ V - aY)  dt + v/k~ V dW, 

dV = (cY  - 7V) dt - x /k~V dW, 

where k~ = Xok l ,  k~ = Xok~, Xo being the initial number of actively infected CD4+ T-cells, 
and where W is a standard Wiener process. The operator Lx then simplifies to 

L* = (k lv  - ay)-~y + (cy - Vv)-~v + v kl-~y 2 Jr" k2--~v 2 - ~k/~l~"~'~l.  

Further simplification is possible by means of a one-dimensional diffusion approximation to a 
branching process. Here the viral population is modeled as follows. At time t there are V( t )  = v 
virions and in (t, t + 5t] each has probability pSt of being replaced by m +  1 virions and probability 
1 - pSt of being unchanged. Then the number of virions at t + 5t is v + m B ( v ,  pSt) where B 
denotes a binomial random variable. Determining the first and second infinitesimal moments of 
this continuous time branching process leads to the diffusion approximation 

dV = m p V  dt + m v / - ~  dW. 

For this diffusion process it is known that  the origin is an exit boundary and it is possible to 
obtain the transition probability density as a solution of the forward Kolmogorov equation 

OQ 0 0 2 
= -mp  (vQ) + m2pw-  (vQ). 

Ot 

The explicit solution for an initial number v0 of virions is [13] 

Q(v, t; vo) = p exp [ -p(v  + M)] 11 2pv/v--M , O < v <  oe ,  

where M ( t )  = v o e  rapt, 

p ( t )  - - 1 ) '  
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and 

is a Bessel function. 
2emptm( e rapt - 1). 

oo (z/2)2 +1 
el(z) = E n!(n + 1)! 

n=O 

The mean of the number of virions at time t is M(t)  and the variance is 

If we put To as the time to reach level 0, and assume that the paths of V(t)  are almost surely 

monotonically increasing, then we may use the fact that  

Pr {To > t} = Pr {V(t) < 0}, 

to find the approximation for the distribution function of To as 

/0 ° ( ) FTo (t) 1 - px/-Me -pM e-P" = - - 1 1  2pv/--M~ dv. 

Note that  here the t-dependence is contained within p and M. 
We can also apply first passage time theory to this approximation to estimate the mean time at 

which the virion level first reaches a threshold level of detection, again ignoring the small fraction 

of paths which attain zero virion level in the early period. Letting the mean first exit time be 

~I(X)  = f(x), with x = V(0) = v0, we have as a particular case of the theory outlined above, 

that  
d2 f ~x mpX~x2 + m2px = L 1, 0 < x < 0. 

There is a necessary exit condition f(0) = 0 at zero and we require f(O) = O. Then the solution 

is found by quadratures to be 

where 

// /o - -  d t  d z ,  

1 m ~oOj~o ze-m(z- t )  t~ - - -  dt dz. p o] t 

These expressions can also be extended to the case where the death rate, 7, of virions is included 

so that  
dY  = (~ - mp)V dt + m v / - ~  dW. 

The results of the numerical evaluation of the quantities relating to the time to detection and 

comparisons with simulations and experimental results will require considerable journal space 
and be reported elsewhere. We may remark that there is no question concerning the validity 

of the theory outlined for the first-passage time to detection in the four-component model, as 
this theory is exact. The two-component approximation will be valid in the early phase of virion 

growth where there has been little change in the numbers of uninfected CD4+ T-cells. The 
branching-process approximation or one-component approximation is only expected to provide a 
crude estimate of the virion density, but is considered worthy of inclusion since no other analytical 

results are available. 
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