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A refined shell theory is developed for the elastostatics of a moderately thick
spherical cap in axisymmetric deformation. This is a two-term asymptotic
theory, valid as the dimensionless shell thickness tends to zero. The theory is
more accurate than ‘‘thin shell’’ theory, but is still much more tractable than
the full three-dimensional theory. A fundamental difficulty encountered in

Ž .the formulation of shell and plate theories is the determination of correct
two-dimensional boundary conditions, applicable to the shell solution, from
edge data prescribed for the three-dimensional problem. A major contribu-
tion of this article is the derivation of such boundary conditions for our
refined theory of the spherical cap. These conditions are more difficult to
obtain than those already known for the semi-infinite cylindrical shell, since
they depend on the cap angle as well as the dimensionless thickness. For the
stress boundary value problem, we find that a Saint-Venant-type principle
does not apply in the refined theory, although it does hold in thin shell
theory. We also obtain correct boundary conditions for pure displacement
and mixed boundary data. In these cases, conventional formulations do not
generally provide even the first approximation solution correctly.
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As an illustration of the refined theory, we obtain two-term asymptotic
Ž .solutions to two problems, i a complete spherical shell subjected to a

Ž .normally directed equatorial line loading and ii an unloaded spherical cap
rotating about its axis of symmetry.

1. Introduction

The elastostatic theory of thin shells is a two-dimensional system of differ-
ential equations and boundary conditions that determines a first approxima-
tion to the behavior of three-dimensional shell structures subject only to
distributed edge loads. Thin shell theory is essentially identical to the

Ž . Ž .leading term as e ª0 of the interior outer asymptotic solution of the
corresponding three-dimensional problem; here e s hrR, where 2h is the

Ž w xthickness and R the midsurface radius of the shell. See 1 for a fuller
.explanation and original references. When applied to the axisymmetric

deformation of a spherical shell, thin shell theory yields particularly simple
and elegant results for the stress boundary value problem but does not
provide an estimate of the error incurred by neglecting higher-order contri-

Ž .butions. One reason for developing a properly formulated refined theory in
this article is to improve on the accuracy of thin shell theory away from the
shell edges. This gives an estimate of the errors involved in the thin shell
approximation and provides a theory of thicker shells. A more important
purpose of our work, however, is to remedy a serious deficiency of the
conventional shell theory for thin or thick shells. These conventional formu-
lations generally do not even provide a first approximation solution for
boundary value problems involving displacement edge data. This has previ-
ously been shown to be the case for flat plates and circular cylindrical shells
w x1]5 .

In the present article we develop a two-term asymptotic theory for a
spherical cap in axisymmetric deformation.1 We begin with the eigenvalues
and eigenfunctions of the exact three-dimensional theory, first obtained by

w xLur’e 6 . The determinantal equation satisfied by these eigenvalues and the
radial variation of the eigenfunctions are complicated but explicit combina-
tions of elementary functions. The angular variation of the eigenfunctions
involves Legendre functions of complex order. Of the eigenvalues lying in

Ž . y1r2the positive quadrant, just one the shell eigenvalue varies like e as
e ª0, while all the others vary like ey1. These latter eigenvalues are

Ž .associated with a boundary layer of thickness O h adjacent to the edge of
the cap, and the corresponding eigenfunctions are related to the

Ž .Papkovich]Fadle PF eigenfunctions for a semi-infinite strip in plane strain.

1 w xSee also 7 for further details.
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On the other hand, the shell eigenvalue is associated with a boundary layer
'Ž . Ž .of thickness O hR , which is large compared to O h when e is small. The
Ž .leading terms as e ª0 of the shell eigenvalue and eigenfunction coincide,

as expected, with those predicted by thin shell theory. To construct our
refined theory, we determine the shell eigenvalue, and eigenfunction, correct
to two terms. The expressions involved are obviously more complicated than

Ž .those of the one term thin shell theory, but still have a vastly simpler form
than their exact counterparts. For even an approximate theory to be uni-
formly valid throughout the shell, the PF-eigenfunctions must be included.
However, their influence is significant only in a narrow boundary layer of

Ž .thickness O h adjacent to the edge of the cap. Outside this boundary layer,
they can be disregarded, leaving only the shell eigenfunction and its conju-
gate.2 Even though the shell eigenfunction is itself significant only in its own
Ž .thicker boundary layer, we often refer to it as the ‘‘interior’’ solution.

A fundamental difficulty encountered in the formulation of any shell or
plate theory lies in the determination of correct two-dimensional boundary
conditions, applicable to the interior shell solution, from edge data pre-
scribed for the three-dimensional problem. A major contribution of this
article is the derivation of such boundary conditions for our refined theory
of the spherical cap. These provide the appropriate modification to the
corresponding boundary conditions of thin shell theory. It is achieved in
Section 3 by a method, based on the elastic reciprocal theorem, which has

Ž w x w x.previously been used in thick plate theory see 2]5 and 8 and in the
w xaxisymmetric deformation of a moderately thick cylindrical shell 1 . This

method requires the construction of certain auxiliary elastic states in the
shell that satisfy appropriate homogeneous boundary conditions at the edge.
In the present case, for pure stress or mixed data at the cap edge, these

Ž .auxiliary states are constructed correct to relative order O e . The elastic
Ž .reciprocal theorem is then used to deduce O e -corrected boundary condi-

tions that must be satisfied by the interior solution. These refined boundary
conditions for the spherical cap are more difficult to obtain than those found
w x1 for the semi-infinite cylindrical shell, since they depend on the cap angle
as well as the dimensionless thickness. For the case of pure displacement
data we obtain only leading-order boundary conditions; however, even these
have not previously been formulated correctly in the thin shell literature.

When pure stress data are prescribed, the boundary conditions take a
Ž .particularly simple and elegant form. To leading order as e ª0 , they are

equivalent to the requirement that the interior solution have the same stress
Ž .and couple resultants integrated across the shell thickness as those of the

data; these are the conditions usually assumed in thin shell theory. However,

2This applies equally to thin shell theory, which is not valid inside the PF boundary layer.
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Ž .the O e -correction terms show that one cannot simply equate these stress
and couple resultants in the refined theory since the pointwise distribution
of the stress data across the shell thickness now matters. Thus an appeal to
Saint Venant’s principle to determine the interior solution is not only

Ž .unjustified, but is actually wrong in the O e -corrected theory.
As an illustration of our refined theory, we obtain two-term asymptotic

Ž .solutions to two problems. These are i a complete spherical shell subjected
Ž .to a normally directed equatorial line loading and ii an unloaded spherical

cap rotating about its axis of symmetry. In the course of solving the second
Ž . w xexample, we expand in powers of e the solution due to Goldberg et al. 9

Ž .for the complete spinning spherical shell see Appendix D . This expansion,
which is new to the literature, is more useful than the exact solution to this
classical problem when the spherical shell is thin, or moderately thick.

2. The exact eigenfunctions and their asymptotic approximations

Consider the spherical cap R : aF r F b, 0Ff F a , 0Fu -2p , where r,a

Ž .f, u are a set of spherical polar coordinates and a 0- a -p is a constant.
The cap is composed of homogeneous, isotropic, elastic material with
Young’s modulus E and Poisson’s ratio n . The small displacement linear
theory of elasticity is assumed throughout. Body forces are absent and the

Ž . 3spherical surfaces of the cap on r s a, b are traction free. The cap is
‘‘loaded’’ by prescribing boundary data on its edge EE lying in f s a , whicha

generates an axisymmetric 4 deformation of the cap. The boundary data may
actually be prescribed tractions, but displacements, or mixed data, may be
prescribed instead. In all cases, the problem is to determine the resulting

� Ž . Ž .4elastic field u r, f , t r, f in the cap.

Exact eigenfunctions

w x w xFollowing Lur’e 6 and Vilenskaia and Vorovich 10 , we first determine the
eigenfunctions for the spherical cap. These are elastic states regular in Ra

that satisfy traction-free conditions on the surfaces r s a, b.
Let the Cartesian axis Oz point along f s0, the axis of symmetry of the

Ž w x.cap. Then see 11 any axisymmetric elastic field can be expressed in the
form

u s grad Fq zC y4 1yn Ck, 2.1Ž . Ž . Ž .

3Other loadings can be reduced to this case. See Section 4 for an example with a nonzero body force.
4In this article, ‘‘axisymmetric’’ always refers to torsionless axisymmetry.
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where F, C are axisymmetric scalar potentials satisfying

=2 F s =2 C s 0, 2.2Ž .

and k is the unit vector in the direction Oz. Consider the potential pairs

F s rhP cos fŽ .h
2.3Ž .

C s 0

and

F s y hy2q4n rhq2P cos fŽ . Ž .h

2.4Ž .
hq1C s 2hq3 r P cos f ,Ž . Ž .hq1

Ž .where h is any complex constant and P z is the Legendre function ofh

Ž .degree h satisfying P 1 s1. The axisymmetric elastic fields derived fromh

Ž . Ž . Ž Ž ..2.3 or 2.4 via 2.1 are regular in the whole of space except along the
negatï e z-axis; in particular, they are regular in the cap R for anya

Ž .a 0- a -p . It may also be verified that the stresses t and t derivedr r rf
Ž . Ž . Ž . Ž . X Ž .from either 2.3 or 2.4 vary with f as P cos f and sin f P cos fh h

respectively. Similar remarks apply to the two further elastic fields obtained
Ž . Ž .by replacing h by yhy1 in 2.3 , 2.4 . We now form a general linear

combination of these four elastic fields with coefficients A, B,C, D. Because
of the common angular dependence of the constituent terms, it is possible to
construct nontrivial elastic states that satisfy 5

t s t s 0 2.5Ž .r r rf

on r s a, b, 0Ff -p , 0Fu -2p provided that A, B, C, D satisfy a
certain 4=4 system of homogeneous linear equations; the matrix elements
are functions of h, a, b, n . For a nontrivial solution, the determinant of this
matrix must vanish, which leads to the eigenvalue equation

2 5 734 2 2b y b q y4nsinh gbŽ . 2 16s , 2.6Ž .5 94 2 2ž /b sinh g b q b 4 1yn y qŽ . 2 16

where

1b s h q , 2.7Ž .2

g s ln bra . 2.8Ž . Ž .

5The assumed axisymmetry implies that t ' 0.ru
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With a, b, n fixed, each eigenvalue b generates an eigenfunction,6 that is, a
Ž .nontrivial elastic state satisfying the boundary conditions 2.5 . The analytic

forms of the components of displacement and stress for a typical eigenfunc-
w xtion are given by Lur’e 6 . They have a complicated dependence on the

w xparameters b , a, b, n . Levine and Klosner 12, p. 199 state that Lur’e’s
w xformulae contain errors that are corrected by them in 13 , a source not

readily accessible. However, in this article, we use only asymptotic expan-
sions of the eigenfunction field components, and we obtain these directly
from the relatively simple 4=4 linear system. Our results therefore do not

Ž .depend on the correctness or otherwise of the formulae given by either of
the above mentioned sources.

Asymptotic approximations

Let the midradius R and dimensionless thickness e of the cap be defined by

1
R s aq b , 2.9Ž . Ž .2

by a h
e s s , 2.10Ž .bq a R

where 2h is the thickness of the cap. The distribution of the eigenvalues of
Ž . w x2.6 as e ª0 is described in 10 . Disregarding the roots b s"1, all the
eigenvalues are complex and appear in symmetrical sets of four; we may
therefore concentrate on those in the first quadrant. There is a countable
infinity of eigenvalues of the form

wn 2b s 1qO e 2.11Ž . Ž .Ž .n e

� 4as e ª0, where w are the nonzero roots ofn

22sinh 2w q 2w s 0 2.12Ž . Ž .

lying in the first quadrant. We call these the PF-eigen¨alues because of their
relationship to the Papkovich]Fadle eigenvalues for the elastic strip. On

Ž .applying the principle of the argument to 2.6 , we find that there is exactly
one eigenvalue lying in the first quadrant unaccounted for. This is the shell
eigen¨alue, which has the form

6The real roots b s"1 are exceptional in that they have no corresponding nontrivial eigenfunctions
Ž w x.see 10, p. 347 . We therefore do not regard the roots b s"1 as eigenvalues.
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21q i v 1q24nŽ . 2b s 1y i e qO e 2.13Ž . Ž .1r2 2ž /e 80v

Ž .as e ª0, where v n is the ‘‘shell constant’’ defined by

1r43 2v s 1yn . 2.14Ž . Ž .ž /4

Ž .The leading term in 2.13 is the shell eigenvalue predicted by thin shell
theory. In our refined theory, the full expression must be used.

Corresponding to each of these eigenvalues is an eigenfunction, unique to
within normalization. For reasons of accuracy, we obtained the asymptotic
forms of these eigenfunctions directly from the relatively simple 4=4 linear

w xsystem for A, B,C, D; Mathematica 14 was used to perform these computa-
tions, correct to two terms as e ª0. The method was similar to that used by

w xGregory and Wan 1 for the cylindrical shell. The resulting field compo-
nents for the shell eigenfunction are given in Appendix A. The leading terms
in these expressions are, as expected, the values predicted by thin shell
theory. The correction terms, which are new to the literature, are an
essential part of our refined theory. These fields are renormalized in
Appendix B to display more conveniently their values on the edge f s a .

7 Ž .We also computed two term approximations as e ª0 for the PF-eigen-
w xfunctions 7, Appendix B . We do not reproduce them here since they do not

Žappear explicitly in our refined shell theory. However, we did use them see
w x.7 to check the conditions for rapid decay derived in Section 3.

3. Conditions for rapid decay

� b b 4Once the eigenvalues b and eigenfunctions u , t are known, one may, in
principle, construct the elastic fields generated by the prescribed edge data
in the form

� 4 � b b 4u, t s c u , t , 3.1Ž .Ý b
b g B

Ž . Žwhere B is the set of eigenvalues with R b )0 b and y b yield the same
. Ž .eigenfunction . The expression 3.1 satisfies the governing equations in Ra

and traction-free conditions on r s a, b. It remains to choose the coefficients
� 4 8c so as to satisfy the prescribed data on the edge EE .b a

7 Ž . Ž .Although the PF-eigenvalues 2.11 have no correction term of relative order O e as e ª 0, their
corresponding eigenfunctions do.
8We assume that this set of eigenfunctions is complete for the expansion of standard boundary data

� b b 4on EE . This has never been proved, but it is encouraging to note that the leading terms of u , ta
Ž . Ž w x.as e ª 0 are known to be complete for the expansion of traction or mixed data on EE see 15, 16 .a
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w xLevine and Klosner 12 have used this expansion to obtain numerical
solutions to three boundary value problems for a spherical cap. They
satisfied the edge conditions approximately by overdetermined boundary
collocation. The object of the present work, however, is to solve such
problems analytically in the context of a refined shell theory. This theory

Ž .disregards the contribution of the PF-eigenfunctions to 3.1 and approxi-
Žmates the shell eigenfunction by its two-term asymptotic approximation as

.e ª0 . A fundamental problem encountered in this approach is to establish
the connection between the prescribed data on EE and the values of thea

corresponding field components of the refined shell solution at the bound-
ary. For, on EE , the PF-eigenfunctions are not negligible, even when the capa

is thin. This problem is equivalent to finding the conditions that the data
Ž .prescribed on EE should satisfy in order to generate an elastic field in thea

cap that decays rapidly9 with increasing distance from the edge. Gregory and
w x w xWan 1]5 and Lin and Wan 8 have developed methods, for finding

conditions on the prescribed data that are necessary for this rapid decay. In
w xparticular, in 1 , Gregory and Wan developed a refined theory for the

axisymmetric deformation of a cylindrical shell based on elastic reciprocity.

Ž . Ž . Ž . Ž .Case A: Traction data t r, a st r , t r, a st r . Suppose thatff ff rf rf

the prescribed data on EE area

t r , a s t r , 3.2Ž . Ž . Ž .ff ff

t r , a s t r . 3.3Ž . Ž . Ž .rf rf

It is tempting to suppose that, for these data to generate a rapidly decaying
state, their stress resultants and stress couple must be zero. The analysis
below proves that such an appeal to the two-dimensional analogue of
‘‘Saint-Venant’s principle’’ is not only unjustified, but actually incorrect in
the refined theory. However, just as in the case of cylindrical shells, our
results do confirm that these conditions are correct in classical thin shell
theory.

Since the cap is closed at the pole, the data must satisfy

b
r cosa t r ysin a t r dr s 0 3.4Ž . Ž . Ž .H rf ff

a

9 Ž .That is, its expansion series 3.1 consists only of PF-eigenfunctions.
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in order that the whole cap be in equilibrium. In terms of the dimensionless
radial coordinate, j , defined by

r s R 1qje , 3.5Ž . Ž .

Ž .3.4 becomes

1
1qje cosa t j ysin a t j dj s 0. 3.6Ž . Ž . Ž . Ž .H rf ff

y1

ŽOur theory also applies to the spherical segment aF r F b, 0- a Ff F a1 2

-p , 0Fu -2p , having two edges on which data may be prescribed. In that
Ž .case 3.4 is no longer necessary for overall equilibrium but is a necessary

condition for rapid decay. This can be shown by using the general method
� 4set out below, taking U,T to be a rigid translation in the z-direction.

Ž . .Indeed, we could have obtained the condition 3.4 in this way.
w xBy using the elastic reciprocal theorem as in 3 , it follows that, to

generate a rapidly decaying state, the data t , t must satisfy necessaryff rf

conditions of the form

b
U t qU t r dr s 0. 3.7Ž .H r rf f ff

a

Ž . Ž .In 3.7 , U , U are the displacements on f s a of any axisymmetric elasticr f

� 4 Ž .field U,T that is regular in the cap except on f s0 and satisfies

T s T s 0 on r s a, b , 3.8Ž .r r rf

T s T s 0 on f s a , 3.9Ž .rf ff

and is not rapidly increasing10 as f decreases. We will now construct two
� 4 Ž . R Isuitable states U,T correct to relative order O e as e ª0. Let t , t

denote the real and imaginary parts of the shell eigenfunction, normalized
as in Appendix B. Also appearing in our construction is the shell eigenfunc-
tion for the ‘‘complementary shell’’ aF r F b, a Ff Fp , 0Fu -2p , simi-
larly normalized. This can be obtained from the expressions in Appendix B
by making the substitutions a ªp y a , f ªp yf, and by reversing the
signs of u , t . We denote the real and imaginary parts of this eigenfunc-f rf

tion by tC R, tC I.

10That is, not increasing as rapidly as the PF-eigenfunctions regular at the opposite ‘‘pole.’’
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Consider the combination

tC R q t R . 3.10Ž .

Ž .The first term in 3.10 grows exponentially as f decreases, but is not
Ž . Ž .‘‘rapidly increasing.’’ On r s a, b, the expression 3.10 satisfies 3.8 exactly.

Ž 2 .On the edge f s a , its rf-component of stress is O e and its ff-compo-
nent is

2 E 2 2y 3n y5n y18q5 1yn cot aŽ .25 1ynŽ .

2 2 2q10 1yn j je q O e 3.11Ž . Ž . Ž .

Ž .as e ª0. The stress field 3.10 is thus an approximation, correct to order
Ž . Ž .O 1 , to a possible T for 3.7 . To obtain a better approximation consider

tC R q t R q a t R yt I e , 3.12Ž . Ž .1

where

1 2 2a s 3n q5n q12y5 1yn cot a . 3.13Ž . Ž .1 210v

Ž .The ff-component of 3.12 on f s a is

4E 2 3r23y5j je q O e 3.14Ž . Ž .Ž .5

Ž 2 .while the rf-component is still O e .
Now imagine that

4 2t s E 3y5j j , 3.15Ž .Ž .zz 5

t s 0 3.16Ž .jz

is the prescribed end-data for the plane semi-infinite elastic stripy1Fj F1,
z G0, whose long sides are traction free. This end-data is self-equilibrating in
Ž . Ž w x.j , z -space and so see 16 can be expanded as a series of the Papkovich]
Fadle eigenfunctions for this strip. Using this set of expansion coefficients,
replace the strip PF-eigenfunctions by those for the spherical cap. The
leading term of these eigenfunctions coincides with the strip eigenfunctions,
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and so the new expansion will generate a rapidly decaying state t PF in the
cap. The ff- and rf-components of this state on f s a are given by
4 2Ž . Ž . Ž .E 3y5j j qO e and O e respectively. It follows that the combination5

tC R q t R q a t R yt I e y t PFe 3.17Ž . Ž .1

Ž 3r2 . Ž 2 .has ff- and rf-components on f s a of orders O e and O e
Ž . Ž .respectively. Thus 3.17 is a refinement of 3.10 in the sense that the

Ž .conditions 3.9 are more accurately satisfied as e ª0.
In principle, this process of refinement could proceed indefinitely to yield

Ž . Ž .a T that satisfies 3.9 exactly. The corresponding infinite expression for U
Ž .could then be substituted into 3.7 to yield a condition for rapid decay that

Ž .was also exact. In practice, this cannot be achieved, since i the asymptotic
expansions of t R and t I would have to be found to an arbitrary number of

Ž . PF PFterms and ii the stress field, t , and its associated displacement field, u ,
11 Ž .are not actually known. However, it follows from 3.17 that, on f s a ,

Ry1U s 4q2 a y2nj e q a e 3r2 q O e 2 , 3.18Ž . Ž . Ž .r 1 2

Ry1U s 2 cota je y4v a je 3r2 q O e 2 3.19Ž . Ž .f 1

Ž .as e ª0, where a is a constant independent of e . On substituting 3.18 ,2
1 1 1 3r2Ž . Ž . Ž .3.19 into 3.7 , and multiplying by 1y a e y a e , we obtain1 24 2 4

1 21qje 1ynje qO e tŽ . Ž .Ž .H rf
y1

1 3r2 2q cot ae y v a e qO e j t djs0 3.20Ž . Ž .Ž .1 ff2

Ž .as e ª0 as a necessary condition for rapid decay.
A second condition for rapid decay can be obtained in a similar way by

starting with the combination

tC R ytC I y t R yt I . 3.21Ž . Ž . Ž .

11The determination of even the leading term of u PF requires the solution of the boundary value
Ž . Ž .problem 3.15 , 3.16 for the semi-infinite strip. This solution, which is independent of e , is not

y1 P F Ž .available in closed form. Fortunately however, since R u is of order O e as e ª 0, it follows
PF Ž .that u does not appear in the expansion of U correct to order O e .
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After mutual simplification, these two conditions become

1 21qje 1ynje t j dj s O e , 3.22Ž . Ž . Ž . Ž . Ž .H rf
y1

1 1 1 2 21qje 1y nje j t j y n cot a j et j dj s O eŽ . Ž . Ž . Ž . Ž .Ž .H ff rf2 2
y1

3.23Ž .

as e ª0. To simplify the writing, we have assumed that the data t , t areff rf
Ž . Ž 2 .of order O 1 as e ª0; if this is not so, then the error terms O e may be

modified.
The refined necessary conditions for rapid decay with Case A boundary

Ž . Ž . Ž .data are 3.6 , 3.22 , 3.23 . These conditions are similar, but not identical,
w xto the conditions obtained by Gregory and Wan 1 for the corresponding

cylindrical shell problem.

Ž . Ž . Ž . Ž .Notes: i The limiting forms of the conditions 3.4 , 3.22 , 3.23 as e ª0
Ž .can be written on restoring the radial variable r

b
t r r dr s 0, 3.24Ž . Ž .H rf

a

b
t r r dr s 0, 3.25Ž . Ž .H ff

a

b
r y R t r r dr s 0, 3.26Ž . Ž . Ž .H ff

a

which are equivalent to Saint-Venant’s principle. However, Saint-Venant’s
principle is not equivalent to the conditions for rapid decay in the refined
theory unless n s0.

Ž .ii A valuable check on any necessary condition for rapid decay is that it
must be satisfied by the edge values of the individual PF-eigenfunctions. All

Ž . Ž .our conditions, including 3.22 , 3.23 , were checked in this way.

( ) ( ) Ž . Ž .Case B: Mixed data u r, a su r , t r, a st r . To generate a rapidlyr r ff ff

decaying state in this case, the data u , t must satisfy necessary conditionsr ff

of the form

b
T u yU t r dr s 0, 3.27Ž .H rf r f ff

a
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� 4 Ž .where U,T satisfies the same conditions as in Case A, except that 3.9 is
replaced by

U s T s 0 on f s a . 3.28Ž .r ff

Hemispherical cap: The situation is simplified when a sp r2, that is,
when the cap is hemispherical. In this case, the equilibrium condition is

1
1qje t j dj s 0. 3.29Ž . Ž . Ž .H ff

y1

Two more necessary conditions for rapid decay can be found by following
w xthe same procedure as that used by Gregory and Wan 1 for the cylindrical

shell. The resulting refined necessary conditions are

1 1 1y1 2 2 y11qje j 1y nje E t j y j 1yj eR u j djŽ . Ž . Ž .Ž . Ž .H ff r2 4
y1

s O e 2 , 3.30Ž . Ž .

1 2 2 y11qje 3 1yj y 7qn j 1yj e R u jŽ . Ž . Ž .Ž . Ž .Ž .H r
y1

3 y1 2q 1qn 2yn j eE t j djsO e . 3.31Ž . Ž . Ž . Ž . Ž .ff

y1 y1w Ž .Here we have assumed that R u and E t are of order O 1 asr ff

xe ª0.

Cap of general angle. For the cap of general angle a , it does not seem
� 4possible to obtain refined states U,T in an explicit form. This is because

Ž . Žtheir PF-part is present at relative order O e , unlike Case A and Case C,
. Ž 2 .as it transpires , where the PF-part first appears at relative order O e . As

a result, we can only obtain the leading-order conditions

1 y11qje E t j dj s O e , 3.32Ž . Ž . Ž . Ž .H ff
y1

1 y11qje j E t j dj s O e , 3.33Ž . Ž . Ž . Ž .H ff
y1

1 2 y11qje 1yj R u j dj s O e . 3.34Ž . Ž . Ž . Ž .Ž .H r
y1

Ž .Note that 3.44 differs significantly from the conventional condition on ur

for thin shells.
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( ) ( ) Ž . Ž .Case C: Mixed data u r, a su r , t r,a st r . To generate a rapidlyf f rf rf

decaying state in this case, the data u , t must satisfy necessary conditionsf rf

of the form

a
T u yU t r dr s 0, 3.35Ž .H ff f r rf

b

� 4 Ž .where U,T satisfies the same conditions as in Case A, except that 3.9 is
replaced by

U s T s 0 on f s a . 3.36Ž .f rf

� 4 Ž .One possible choice for U,T , which satisfies 3.36 exactly, can be
� M M 4obtained from the membrane state u , t , given in Appendix C. In this

state, t M '0 and uM sconstant on f s a ; this constant may be annihilatedrf f

� M M 4by adding to u , t an appropriate rigid body translation in the z-direc-
tion. The corresponding condition for rapid decay12 is

1 y1 y1 y11qje 1qje R u j q 1qn E t j dj s 0. 3.37Ž . Ž . Ž . Ž . Ž . Ž .H f rf
y1

Ž .Like the equilibrium condition 3.6 , this condition is exact. Unlike Case
� 4 Ž .B, we are able to find two further states U,T that satisfy 3.36 with errors

Ž 2 .of order O e even at general cap angle a . The combinations we use are

cot a cot2 aC R R R I 1r2 It q t q t yt e y t e 3.38Ž . Ž .22v 4v

and

cot a cot2aC I I R I 1r2 Rt q t q t qt e q t e . 3.39Ž . Ž .22v 4v

12Actually, this condition is necessary for any type of exponential decay and so must also be satisfied
by the shell eigenfunction. This is a useful check on the formulae for u , t in Appendices A and B.f rf
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The resulting conditions for rapid decay have a complicated a depen-
dence, but simplify remarkably to give

1 y1 3 y1 21qje 1ynje E t j qj eR u j dj s O e , 3.40Ž . Ž . Ž . Ž . Ž . Ž .H rf f
y1

1 1 y11qje j 1y 2qn je R u jŽ . Ž . Ž .Ž .H f2
y1

1 2 y1 2q n 1qn j eE t j dj s O e 3.41Ž . Ž . Ž . Ž .rf2

y1 y1Ž Ž .as e ª0. Here we have assumed that R u and E t are of order O 1f rf
.as e ª0.

The refined necessary conditions for rapid decay with Case C boundary
Ž . Ž . Ž .data are 3.37 , 3.40 , 3.41 ; these are valid for general cap angle a .

( ) ( ) Ž . Ž .Case D: Displacement data u r, a su r , u r, a su r . In this case,r r f f

even the conditions for rapid decay in classical thin shell theory are
unavailable in explicit form. In fact one may argue as for the case of the

w xcylindrical shell 1 that these conditions have the form

1 X Xt j , 0 u j qt j , 0 u j dj s O e 3.42Ž . Ž . Ž . Ž . Ž . Ž .H jz r zz f
y1

X Ž . Ž .as e ª0. Here t j , z X sT , B, or F denote the stress fields of three
canonical problems for the plane semi-infinite strip y1Fj F1, z G0,

Ž .whose end z s0 is clamped and which is subject to tension T , bending
Ž . Ž .B or flexure F at z sq`.

X Ž . XŽ .Since the functions t j , 0 , t j , 0 are not polynomials in j , it followsjz zz

that the plausible conditions

1 1 1
u dj s u j dj s j u j dj s 0 3.43Ž . Ž . Ž .H H Hr f f

y1 y1 y1

are generally not the conditions for rapid decay, even in thin shell theory.

Examples

EXAMPLE 1: A HOLLOW SPHERE COMPRESSED BY AN EQUATORIAL LINE

LOAD. Consider the problem of a hollow sphere compressed along its outer
equator by a normal line load of magnitude P per unit length. We apply our
theory to the upper half of this complete spherical shell. By the symmetry of
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the sphere and the loading, it follows that, on the edge f sp r2,

2p Rq h
rt drdu s yp Rq h P . 3.44Ž . Ž .H H rf

0 Ry h

ŽNote that we have assigned half the line load P applied to the full hollow
.sphere to the upper hollow hemisphere. If we now write

r s R q hj s R 1qej , 3.45Ž . Ž .

Ž .equation 3.44 becomes

1 1qe PŽ .
1qej t j dj s y . 3.46Ž . Ž . Ž .H rf 2 Rey1

By symmetry, on the edge f sp r2,

u j s 0, 3.47Ž . Ž .f

and

t j s 0 j /1 . 3.48Ž . Ž . Ž .rf

Ž . Ž . Ž .Equations 3.46 , 3.48 imply that t j must be a delta function of therf

form

t s Kd j y1 , 3.49Ž . Ž .rf

Ž . Ž .where K is a constant. On substituting 3.49 into 3.46 , we find that

P
t s y d j y1 3.50Ž . Ž .rf 2eR

on f sp r2.
Ž . Ž .Equations 3.47 , 3.50 are a particular example of Case C data for the

upper hollow hemisphere. We now ask: What is the refined shell solution
arising from these data? This is determined from the fact that the difference
between the boundary values of the refined shell solution on f sp r2 and

Ž . Ž .the prescribed values 3.47 , 3.50 must generate a rapidly decaying state in
the hollow hemisphere. This difference must therefore satisfy the necessary

Ž . Ž . Ž .conditions 3.37 , 3.40 , 3.41 . We write the displacement field of the shell
solution in the form

A uR qu I q B uR yu I q C Rk , 3.51Ž . Ž . Ž . Ž .
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where A, B, C are constants and k is the unit vector in the direction Oz.
Here uR, u I are the real and imaginary parts of the ‘‘edge-normalized’’ shell
eigenfunction of Appendix B, with the edge angle taking the value13 a sp r2.

Ž .On applying the condition for rapid decay 3.37 , we obtain

1qn 1qe PŽ . Ž .
C s , 3.52Ž .4ERe

Ž . Ž .while from the conditions 3.40 , 3.41 we obtain

v P 2A s y 1q 1yn e qO e , 3.53Ž . Ž . Ž .3r28 ERe

P
B s y 1r2320ERve

2 2 3 2= 31q10n y6n q 31y21n y56n y34n e qO e . 3.54Ž . Ž . Ž . Ž .

The above expression for C is ‘‘exact’’ in the sense that it has exponentially
small error as e ª0, while the expressions for A, B are correct to relative

Ž .order O e .
Ž . Ž .The term C Rk in 3.51 represents a rigid body translation CR in the

R I Ž .direction Oz. When u , u are negligible near the poles for example , this is
the only significant part of the solution. It follows that, under the action of
this compressive line load, the polar diameter of the sphere expands by 2CR.
In terms of the inner and outer radii a, b, this expansion is given by

2 1qn bRPŽ .
, 3.55Ž .2 2E b y aŽ .

a formula correct to within exponentially small error as e ª0.
As a measure of the influence of the correction terms appearing in the

refined theory, we calculate14 the stress resultant N at f s p r2. This isuu

2 231y40n y36n q40v 1ynv P Ž . 2N s y 1q e qO e . 3.56Ž . Ž .uu 1r2 22e 40v

13The choice a sp r2 leads to a considerably simpler form of the edge-normalized shell eigenfunc-
tion. In particular, all correction terms are in integer powers of e relative to their leading terms.
14We are aware that the PF-part of the solution cannot be neglected when f sp r2. However, this
is still a convenient measure of the difference between the refined and thin shell theories.
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Ž .The coefficient of e in 3.56 depends strongly upon Poisson’s ratio n ,
decreasing from about 1.89 when n s0 to about 0.57 when n s0.5.

EXAMPLE 2: THE SPINNING SPHERICAL CAP. Consider the problem of a
spherical cap of semi-angle a rotating with constant angular speed V about
its axis of symmetry. Surface loadings, edge loadings, and body forces are
absent. By taking a frame of reference rotating with the cap, this becomes
an equilibrium problem for a cap acted upon by the usual ‘‘centrifugal body
force.’’

w xGoldberg et al. 9 have solved the special case of a complete spinning
spherical shell, for which they presented some numerical results for Poisson’s
ratio equal to 0.3 and a selection of shell thicknesses. We repeated the

w xanalysis in 9 and expanded the solution in powers of e , correct to relative
Ž 2 .order O e ; the results are given in Appendix D. Let this ‘‘sphere’’ solution

be called t S, and let the required solution for the spinning cap be called tC.
Then the difference t D, given by

t D s tC y t S , 3.57Ž .

Ž .satisfies Case A traction -type edge data for a cap with no surface loading
and no centrifugal body force. The prescribed edge values of t D, t D are justrf ff

Ž . Ž .the negatives of the expressions D.4 , D.5 with f replaced by a .
One may now solve for the refined shell solution corresponding to t D by

using the Case A conditions for rapid decay. Write

t D s AR t R q AIt I q t PF , 3.58Ž .

where t R, t I are the real and imaginary parts of the shell eigenfunction
Ž . PF Dnormalized as in Appendix B , and t is the PF-part of t . The equilib-

Ž . Ž . Ž .rium condition 3.4 is satisfied identically while the conditions 3.22 , 3.23
give AR, AI to be

24Ev cot aR 2 3r2 2A s yke q 5k y2 1qn 9yn e q O e , 3.59Ž . Ž . Ž . Ž .2 2 2vrV R

2 1yn k cot a4Ev Ž .I 3r2 2A s ke q e q O e , 3.60Ž . Ž .2 2 vrV R

where the dimensionless constant k is given by

k s n 2qn q 3q2n cos 2a . 3.61Ž . Ž . Ž .
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The solution to the spinning cap problem, given by our refined shell theory,
is thus

t S q AR t R q AIt I . 3.62Ž .

An interesting feature of this problem is that the difference between the
complete spinning spherical shell solution and that for the spinning cap is
rather small, a fact only evident from an asymptotic method of solution. This

Ž .is because the residual tractions at the cap edge are, at worst, of order O e
R I Ž .as e ª0. This in turn causes the coefficients A , A to be of order O e .

Appendix A. The shell eigenfunction

Ž . Ž .The shell eigenvalue lying in the first quadrant is given by 2.13 to be

21q i v 1q24nŽ . 2b s 1y i e qO e A.1Ž . Ž .1r2 2ž /e 80v

Ž .as e ª0, where the constant v is given by 2.14 . Let the corresponding
� b b 4shell eigenfunction be denoted by u , t , and define the dimensionless

radial coordinate j by

r s R 1qje . A.2Ž . Ž .

� b b 4Then, as e ª0, the components of u , t are given as follows.

Displacements

u b j , f s ¨ j P cos f , A.3Ž . Ž . Ž . Ž .r r by1r2

where

Ry1 R ¨ s 2y2nje q O e 2 , A.4Ž . Ž . Ž .r

2nv 2j 2
y1 2R I ¨ s y e q O e . A.5Ž . Ž . Ž .r 1yn

and

db Ž1.u j , f s ¨ j P cos f , A.6Ž . Ž . Ž . Ž .f f by1r2df
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where

2n 2 y20n y2q15n 1yn j 2Ž .Ž .y1 Ž1. 2 3R R ¨ s y2je q e q O e ,Ž .ž /f 15 1ynŽ .

A.7Ž .

2 2v 2j 4y 2yn j 2Ž .Ž .4 vy1 Ž1. 2 3R I ¨ s y e q e q O e . A.8Ž . Ž .ž /f 3 1yn 3 1ynŽ . Ž .

Stresses

t b j , f s s j P cos f , A.9Ž . Ž . Ž . Ž .r r r r by1r2

where

Ey1 R s s yj 1yj 2 e q O e 2 , A.10Ž . Ž . Ž .Ž .r r

2v 2 1yj 2Ž .y1 2E I s s y e q O e . A.11Ž . Ž . Ž .r r 1yn

db Ž1.t j , f s s j P cos f , A.12Ž . Ž . Ž . Ž .rf rf by1r2df

where

2 2 2 23q15n q2n y5 1yn j 1yjŽ . Ž .y1 Ž1. 2 3E R s s e q O e ,Ž .ž /rf 210 1ynŽ .

A.13Ž .

2v 2 1yj 2 2v 2 7qn j 1yj 2Ž .Ž . Ž .y1 Ž1. 2 3E I s s e y e q O e .Ž .ž /rf 2 21yn 3 1ynŽ .

A.14Ž .

db Ž1. Ž2.t j , f s s j P cos f q s j cot f P cos f ,Ž . Ž . Ž . Ž . Ž .ff ff by1r2 ff by1r2df

A.15Ž .
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where

2 2 2j 18q5n y3n y10 1yn jŽ .y1 Ž1. 2E R s s e q O e , A.16Ž . Ž .ž /ff 25 1ynŽ .
2 22 2v n y3 2qn jŽ .4v jy1 Ž1. 2E I s s q e q O e , A.17Ž . Ž .ž /ff 2 21yn 3 1ynŽ .

2q20n y2n 2 y15 2qn 1yn j 22j Ž . Ž .y1 Ž2. 2 3E R s s e q e q O e ,Ž .ž /ff 21qn 15 1ynŽ .

A.18Ž .
2 22 2v j y6q 2yn jŽ .4vy1 Ž2. 2 3E I s s e q e q O e . A.19Ž . Ž .ž /ff 2 23 1yn 3 1ynŽ . Ž .

db Ž1. Ž2.t j , f s s j P cos f q s j cot f P cos f ,Ž . Ž . Ž . Ž . Ž .uu uu by1r2 uu by1r2df

A.20Ž .

where

2 3 2 2j y10q3n q15n q12n y5n 1yn jŽ .y1 Ž1.E R s s 2q eŽ .uu 25 1ynŽ .

q O e 2 , A.21Ž . Ž .
2 22 2nv 3q2n q3 2qn jŽ .4nv jy1 Ž1. 2E I s s y e q O e , A.22Ž . Ž .Ž .uu 2 21yn 3 1ynŽ .

A.23Ž .
and

Ey1s Ž2. s y Ey1s Ž2. . A.24Ž .uu ff

< < Ž Ž . .Note: When b is large in accordance with A.1 as e ª0 , and when f
is bounded away from 0 and p ,

1r2i yi bfP cos f ; e , A.25Ž . Ž .by1r2 ž /2pb sin f

d
P cos f ; y ibP cos f , A.26Ž . Ž . Ž .by1r2 by1r2df

� b b 4which displays the exponential variation of u , t with f.
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Appendix B. The edge-normalized shell eigenfunction

The shell eigenfunction given in Appendix A is not most appropriately
normalized for problems that directly, or indirectly, involve the prescription
of boundary data at an edge EE of a spherical cap. In such cases, it isa

Ž .convenient to divide the eigenfunction of Appendix A by P cos a , soby1r2
� b b 4that u , t is not exponentially large, or small, on the edge EE . This makesa

� b b 4no essential difference to the formulae for those components of u , t
Ž . Ž . Ž .that involve P cos f , but those that involve drdf P cos f nowby1r2 by1r2

Ž . X Ž . Ž .effectively acquire the multiplier y sin a P cos a rP cos a . Thisby1r2 by1r2
< <may be replaced by its asymptotic expansion as b ª` in the right-hand

half-plane, namely,

y sin a PX cosa 2Ž . Ž . 1 i cosec aby1r2 y2; y ib y cota y q O b , B.1Ž .Ž .2 8bP cosaŽ .by1r2

Ž .where b is given by A.1 . This multiplier may then be incorporated into the
relevant field components to give the following.

Displacements

P cos fŽ .by1r2bu j , f s ¨ j , B.2Ž . Ž . Ž .r r ž /P cos aŽ .by1r2

Ž . Ž . Ž .where ¨ j is given by A.4 , A.5 .r

sinf PX cos fŽ .by1r2b Ž2.u j , f s ¨ j , B.3Ž . Ž . Ž .f f ž /sin a P9 cos aŽ .by1r2

where

Ry1 R ¨ Ž2. s y vy1 1qn q2v 2j e 1r2 q cot a jeŽ .Ž .ž /f

y3v 2 2q y 1qn 16n q80n q14q5cot aŽ . Ž .80

q2v 2 24n 2 q80n q86q5cot2 a jŽ .

2 2 2 3 3r2 2q60n 1yn j y40v 1qn 2yn j e q O e , B.4Ž . Ž . Ž . Ž . Ž .
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1y1 Ž2. y1 2 1r2 y2R I ¨ s y v 1qn y2v j e q v 1qn cota eŽ . Ž .Ž .ž /f 2

y3v 2 2q 1qn 16n q80n q14q5cot aŽ . Ž .80

q2v 2 24n 2 q80n q86q5cot2 a jŽ .

2 2 2 3 3r2 2y60n 1yn j y40v 1qn 2yn j e q O e . B.5Ž . Ž . Ž . Ž . Ž .

Stresses

P cos fŽ .by1r2bt j , f s s j , B.6Ž . Ž . Ž .r r r r ž /P cos aŽ .by1r2

Ž . Ž . Ž .where s j is given by A.10 , A.11 .r r

sinfPX cos fŽ .by1r2b Ž2.t j , f s s j , B.7Ž . Ž . Ž .Xrf rf ž /sin aP cos aŽ .by1r2

where

3y1 Ž2. y1 2 1r2E R s s v 1yj eŽ .ž /rf 2

2v 1yjŽ . 2 2q 3 32 n q60n q18q5cot aŽ .2120 1ynŽ .

2 2 2 3r2 2y80v 7qn j y60 1yn j e q O e , B.8Ž . Ž . Ž . Ž .

3 3y1 Ž2. y1 2 1r2 y2 2E I s s v 1yj e y v 1yj cot a eŽ .Ž . Ž .ž /rf 2 4

2v 1yjŽ . 2 2q y3 32n q60n q18q5cot aŽ .2120 1ynŽ .

2 2 2 3r2 2y80v 7qn j q60 1yn j e q O e , B.9Ž . Ž . Ž . Ž .

P cos f cosfPX cos fŽ . Ž .by1r2 by1r2b Ž1. Ž3.t j , f s s j q s j ,Ž . Ž . Ž . Xff ff ffž / ž /P cos a sin aP cos aŽ . Ž .by1r2 by1r2

B.10Ž .
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Ž1.Ž . Ž . Ž .where s j is given by A.16 , A.17 , andff

vy1 cotay1 Ž3. 2 1r2E R s s 1qn q2v j e y jeŽ .ž /ff 1qn 1qn

y3v 2 2q 16n q80n q14q5cot aŽ .80
y12 2 2y2v 1qn 24n q120n q126q5cot a jŽ . Ž .

2 2 3 3r2 2y60 1yn 2qn j q40v 2yn j e q O e , B.11Ž . Ž . Ž . Ž . Ž .

vy1 1y1 Ž3. 2 1r2 y2E I s s 1qn y2v j e y v cot a eŽ .Ž .ž /ff 1qn 2

y3v 2 2q y 16n q80n q14q5cot aŽ .80
y12 2 2y2v 1qn 24n q120n q126q5cot a jŽ . Ž .

2 2 3 3r2 2q60 1yn 2qn j q40v 2yn j e q O e . B.12Ž . Ž . Ž . Ž . Ž .

P cos f cosfPX cos fŽ . Ž .by1r2 by1r2b Ž1. Ž3.t j , f s s j q s j ,Ž . Ž . Ž . Xuu uu uuž / ž /P cos a sin aP cos aŽ . Ž .by1r2 by1r2

B.13Ž .

Ž1. Ž . Ž .where s is given by A.21 , A.22 , anduu

Ey1s Ž3. s y Ey1s Ž3. . B.14Ž .uu ff

Appendix C. An exact three-dimensional membrane state

The exact eigenfunctions obtained in Section 2 are believed complete for the
problem of the unpunctured spherical cap R , loaded around its edge EE .a a

However, if the cap is open at the North pole f s0, so that it has a second
edge which can be loaded, additional expansion states are needed. First
there is the corresponding set of eigenfunctions that increase exponentially
away from the South pole rather than the North; these make up the
boundary layer near the second edge. However, it is evident that these are
still not sufficient in general, since all of these eigenfunctions correspond to
zero resultant axial force at each edge of the cap. With two edges available,
this resultant force need not be zero and so we need one additional
expansion state that has a nonzero value of this resultant. Such a ‘‘mem-



Deformation of an Elastic Spherical Cap 91

brane’’ state, which is evidently nonunique, can be obtained in different
� M M 4ways. We first obtained the state u , t below by guessing its form from

w x Ž w x.the thin shell membrane solution of Reissner and Wan 17 see 7 .
However, it can be more quickly obtained as follows.

Ž .In 2.3 , taking hs1 gives

F s rP cos f s z ,Ž .1
C.1Ž .

C s 0.

This choice of potentials generates a trivial rigid body displacement in the
z-direction. However, consider instead the field generated by

F s r Q cos f ,Ž .1
C.2Ž .

C s 0,

Ž w xwhere Q is the companion Legendre function to P see 18, Chap. 8 given1 1

by

1Q cos f s cos f ln cot f y1. C.3Ž . Ž .Ž .1 2

Ž . Ž .Since rQ cos f is a harmonic function, C.2 will also generate an elastic1
Ž .field via 2.1 . This elastic field is, after a simple normalization, given by

1y1 MR u s cos f ln cot f y1, C.4Ž .Ž .r 2

1y1 MR u s ysin f ln cot f ycot f , C.5Ž .Ž .f 2

Ey1t M s 0, C.6Ž .r r

Ey1t M s 0, C.7Ž .rf

y1 y1y1 M 2E t s 1qn 1qje cosec f , C.8Ž . Ž . Ž .ff

y1 y1y1 M 2E t s y 1qn 1qje cosec f . C.9Ž . Ž . Ž .uu

As usual, R is the midsurface radius of the cap, and the dimensionless radial
Ž .coordinate j is defined by A.2 .

The above state is an exact three-dimensional state, regular except along
Ž .the polar axes f s0, p , and trivially satisfying the boundary conditions

t st s0 on the surfaces r s a, b. It is easily verified that it has ther r rf
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resultant axial tension

2p R by a EŽ .
. C.10Ž .1qn

Surprisingly, the exact form of this state seems to be new to the literature.
In particular, it does not appear in the book on three-dimensional elasticity

w xproblems by Lur’e 19 . In the present article, the membrane state is used in
section 3 to derive conditions for rapid decay.

Appendix D. The complete spinning shell solution

The problem of a complete spherical shell, rotating with angular speed V
w xabout the z-axis, was solved by the method described in 9 and then

expanded in powers of e . The results follow.

Displacements

Eu 1r 2s y n q 2qn cos 2f y nj sin f eŽ .2 3 2rV R

1 y12 3 2 2q 1yn 2n y13n y5n q18 q3n 1qn 2qn jŽ . Ž . Ž . Ž .6

2 2 2 3y 3q2n n q9n y16 cos 2f q3n 1qn 4qn j cos 2f e q O e .Ž . Ž . Ž . Ž . Ž .

D.1Ž .

Eu 1 1f s 1qn sin 2f y 3qn j sin 2f eŽ . Ž .2 3 2 2rV R

1 y1 2 2q 1yn y 3q2n 5yn q3n 1yn j sin 2f eŽ . Ž . Ž . Ž .6

q O e 3 . D.2Ž . Ž .

Stresses

t 1 y1r r 2 2 3s 1yn 3q 3q2n cos 2f 1yj e q O e . D.3Ž . Ž . Ž . Ž .Ž .2 2 2rV R

t 1 y1rf 2 2 2 2 3s y 1yn 2n y3n y9 1yj sin 2fe q O e . D.4Ž . Ž . Ž . Ž .Ž .2 2 2rV R
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t y1ff 2 2 2s 1yn 3yn y2 3q2n cos f jeŽ . Ž .2 2rV R

1 y12 2 2q 1yn n 2qn y3 3q2n j q3 2yn 3q2n cos fŽ . Ž . Ž . Ž . Ž .3

2 2 2 3q3 2qn 3q2n j cos f e q O e . D.5Ž . Ž . Ž . Ž .

t y1uu 2 2 2s sin f y 1yn 2qn q n q3n q1 cos 2f jeŽ . Ž .2 2rV R

1 y12 2 2 2q 1yn 3y2n y3 n y2n y4 jŽ . Ž .6

2 2 2q 11y4n 3q2n cos 2f q3 5n q8n q2 j cos 2f eŽ . Ž . Ž .

q O e 3 . D.6Ž . Ž .

Note

This expansion, which is new to the literature, is more useful than the exact
solution to this classical problem when the spherical shell is thin, or
moderately thick. In particular, we see that the exterior equatorial diameter
of the shell expands by

2 3 2 3rV R 30q16n y2n y4n 2 32y2ne y e qO e , D.7Ž . Ž .2E 3 1ynŽ .

while the exterior polar diameter contracts by

2 3 2 3rV R 66q18n y10n q6n 2 32 1qn y e qO e . D.8Ž . Ž . Ž .2E 3 1ynŽ .
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