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Abstract
A regularized α-system of the nonlinear Schrödinger (NLS) equation with 2σ

nonlinear power in dimension N is studied. We prove short time existence
and uniqueness of solution in the case 1 � σ < 4

N−2 . And in the case
1 � σ < 3 (when N = 1) or in the case 1 � σ < 4

N
(when N > 1) we

show global in time existence of solutions. When α → 0+, the solutions of
this regularized system will converge to the solutions of the classical NLS in
the appropriate range when the latter exists. Consequently, we propose this
regularized system as a numerical regularization to shed light on the profile of
the blow-up solutions of the original NLS equation in the range 2

N
� σ < 4

N
,

and in particular for the classical critical case N = 2, σ = 1. Following
the modulation theory, we derive the reduced system of ordinary differential
equations for the Schrödinger–Helmholtz (SH) system. We observe that the
reduced equations for this SH system are more complicated than the equations
of some other perturbation regularizations of the classical NLS equation. The
detailed analysis of the reduced system on how the regularization prevents
singularity formation will be presented in a forthcoming paper.
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1. Introduction

The nonlinear Schrödinger (NLS) equation:

ivt + �v + |v|2σ v = 0, x ∈ R
N, t ∈ R,

v(0) = v0,
(1)

where v is a complex-valued function in R
N ×R, arises in various physical contexts describing

wave propagation in nonlinear media (see, e.g., [30, 45, 46, 52]). For example, when σ = 1,
equation (1) describes propagation of a laser beam in a nonlinear optical medium whose index
of refraction is proportional to the wave intensity. Also, the NLS equation successfully models
other wave phenomena such as water waves at the free surface of an ideal fluid as well as plasma
waves. In all cases, it is interesting to note that equation (1) describes wave propagation in
nonhomogeneous linear media with self-induced potential given by |v|2σ .

As mentioned above, the σ = 1 case is particularly interesting for laser beam propagation
in optical Kerr media. Depending on the dimensionality of the space in which the beam is
propagating, the wave dynamics can be either ‘simple’ or ‘intricate’. In one space dimension,
the NLS equation is known to be integrable and possesses soliton solutions that preserve
their structure upon collision [1]. The picture in two dimensional (2D) space is totally
different. The 2D NLS equation is not integrable, hence no exact soliton solutions are known.
Instead, the 2D NLS equation admits the waveguide solution (also known as Townes soliton)
v(x, y, t) = R(r) exp(it) with r =

√
x2 + y2, where R > 0 satisfies the nonlinear boundary

value problem

d2R

dr2
+

1

r

dR

dr
− R + R3 = 0,

dR

dr
(0) = 0, lim

r→+∞ R(r) = 0. (2)

Most importantly, the L2 norm (or power in optics) of the Townes soliton defines a critical
value for blow up for the 2D critical NLS, that is, if initially the beam’s power is larger than
that of the Townes soliton, ||v0||2L2 > ||R||2

L2 , then the beam undergoes a finite time blow up. If
on the other hand, ||v0||2L2 < ||R||2

L2 then the wave will diffract and the solution exists globally
in time. Various mechanisms to arrest the collapse have been suggested, by modifying the
NLS equation, such as nonparaxiality [15] or the addition of higher order dispersion [16]. As
a result, an important issue that arises in the mathematical study of the NLS is the question
of local and global existence of solutions, their uniqueness as well as the profile of blow-up
solutions. Knowing answers to such questions may have some consequences on possible
physical observations of phenomenon governed by the NLS and in validating its derivation. In
the works of Ginibre and Velo [23] and Weinstein [48], it is proved that equation (1) has a unique
global solution when 0 < σ < 2

N
, and that it has a unique global solution for ‘small’ initial

data for the critical case σ = 2
N

. The proof of global existence uses the fact that the energy

N (v) = ∫
RN |v(x, t)|2 dx and the Hamiltonian H(v) = ∫

RN

(
|∇v(x, t)|2 − |v(x,t)|2σ+2

σ+1

)
dx are

conserved quantities of the dynamics of (1). In the case of σ � 2
N

, Glassey [24] proved that
there exist solutions that develop singularities in finite time. In the critical case σ = 2

N
, Merle

and coworkers got some remarkable results with numerical computation (see [18, 36, 37] and
references therein). Specifically in [18], Fibich and Merle studied self-focusing in bounded
domain using a combination of rigorous, asymptotic and numerical results. In [37], Merle
and Raphael obtained a sharp lower bound on the blow-up rate for the L2 norm for critical
NLS in R

N .
Instead of the potential |v|2σ , some physicists consider a self-gravitational potential (see,

e.g., [41, 43]) and come to a new system: Schrödinger–Newton (SN) (Schrödinger–Poisson)
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equation:

ivt + �v + ψv = 0, x ∈ R
N, t ∈ R,

−α2�ψ = |v|2,
v(0) = v0,

(3)

where α > 0 is a real constant. System (3) is a Hamiltonian system with the corresponding

Hamiltonian H(v) = ∫
RN

(
|∇v(x, t)|2 − ψ(x,t)|v(x,t)|2

2

)
dx and (3) can be obtained formally

by the variational principle i ∂v
∂t

= δH(v)

δv∗ , where v∗ denotes the complex conjugate of v. This
coupled system of equations consists of the Schrödinger equation for a wave function v moving
in a potential ψ , where ψ is obtained by solving the Poisson equation with source ρ = |v|2.
Observe that when the dimension N = 3 in this case, the Green function of the Laplace operator

is 1
|x| , which results in the Hartree potential ψ(x) =

(
1
|x|

)
∗|v|2. Hayashi and Ozawa [26] have

studied this NLS system with Hartree potential. They showed existence, uniqueness and some
smoothing effects. Castella [9] also studied in N = 3 a system of infinitely many coupled
Schrödinger equations with Hartree potential, which includes Hayashi’s system as a particular
case. In [10], this convolution potential was generalized to any dimension N with a potential
of the form ψ(x) = W ∗ (|v|2) for some function kernel W in Lp space for some p such that
p � 1, p > 4

N
. In the SN (Schrödinger–Poisson) system, W is the Green function of the

Laplace operator for any dimension N .
Inspired by the α-models of turbulence (see, e.g., [8, 11, 12, 21, 27, 28] and references

therein), we introduce a generalization of (3), the Schrödinger–Helmholtz (SH) (Schrödinger–
Bessel) regularization of the classical NLS:

ivt + �v + u|v|σ−1v = 0, x ∈ R
N, t ∈ R,

u − α2�u = |v|σ+1,

v(0) = v0,

(4)

where α > 0 and σ � 1. System (4) is a Hamiltonian system with the corresponding

Hamiltonian H(v) = ∫
RN

(
|∇v(x, t)|2 − u(x,t)|v(x,t)|σ+1

σ+1

)
dx and can be obtained formally by

the variational principle i ∂v
∂t

= δH(v)

δv∗ , where again v∗ denotes the complex conjugate of v. In
this system, we can regard the wave function v as moving in a potential u|v|σ−1, where u is
obtained by solving the Helmholtz elliptic problem u−α2�u = |v|σ+1 whose Green function
is the Bessel potential. Observe that the energy N (v) = ∫

RN |v(x, t)|2 dx and the Hamiltonian

H(v) = ∫
RN

(
|∇v(x, t)|2 − u(x,t)|v(x,t)|σ+1

σ+1

)
dx are conserved in this system. When σ = 1, we

have the Hartree potential u as in the SN with the only difference that the Poisson equation is
modified as a Helmholtz equation. So we consider this system as a modification of SN. For
α > 0, we can solve the second equation by u = B ∗(|v|σ+1) where B is the Bessel potential of
order 2. A more important fact is that when α = 0, one recovers the classical NLS, therefore
we regard the system (4) as a regularization of the classical NLS. In this paper we focus our
analytical study on the case α > 0 and observe that it is not difficult to show that the solutions
of the regularized system converge, as α → 0+, to the solution of the classical NLS when
the latter exists. Motivated by this observation we will investigate, in a subsequent work, the
behaviour when α → 0+. In particular, we will investigate numerically the dynamics in the
critical case σ = 2

N
when letting the positive parameter α approach zero.

In this paper, we will study the question of local and global existence of a unique solution
for system (4). Specifically, we will prove the short time existence of the unique solution, when
1 � σ < 4

N−2 (we define once and for all 4
N−2 = ∞ when N � 2). Moreover, we will show
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the global existence of unique solution when 1 � σ < 4
N

(N > 1) and 1 � σ < 3 (N = 1).
The proof will follow the ideas of [23] and [48] and use the important fact of the conservation
of the corresponding energy and the Hamiltonian of (4). Kato [29] extended Ginibre and
Velo’s work [23] to more generalized nonlinear term. However, that result applies to local
composition operator only. Our system involves a nonlocal nonlinear operator. Therefore,
our result does not follow from, and generalizes, the work of Kato. In particular, we prove
short time existence of unique solution when 1 � σ < 4

N−2 , and global existence of unique
solution when 1 � σ < 4

N
for N > 1 and 1 � σ < 3 for N = 1. Comparing with the results

of the classical NLS (1) (σ < 2
N−2 for local existence and σ < 2

N
for global existence), one

expects these ‘better’ results for (3) and (4) since the nonlinear terms in (3) and (4) are milder
than that of the classical NLS (1). The parameter α plays an important role in our proofs.
The Bessel potential, which is the Green function of the Helmholtz operator, regularizes the
potential in the system. Instead of applying the fact that the Bessel potential merely lies in
certain Lp space and applying Young’s inequality for convolution as in [10] and getting global
results for only σ < 2

N
as in classical NLS, we apply the elliptic regularization property of

the Helmholtz equation through the Calderón–Zygmund singular integral regularization of the
convolution with the Bessel potential ([22, 25, 31, 50, 51] and references therein), which gives
us better results.

In the last section, we use modulation theory to study the reduced system of (4), and
compare the results with some other modification (regularization ) of the Schrödinger systems
with perturbations ([15–17]). Indeed, we can rewrite the equation in (4) as

ivt + �v + |v|2σ v + α2(�u)v = 0. (5)

When α is a small real parameter, we can regard the last term as a perturbation of the classical
NLS. The purpose of modulation theory is to explain the role of the regularization in preventing
the formation of a singularity near the critical values of the initial data which blow up in the
classical critical case. In general, by reducing the time–space variable system into a system with
only time variable, it is easier to perform numerical simulations and investigate the dynamics
near singularity. However, we observe here that the first leading order reduced system of (4),
in the classical critical case σ = 2

N
(for any α > 0), is more complicated when compared

with some other perturbed regularizations of the classical NLS equation [14, 19, 20, 33, 35],
where the latter bear a very simple generic form and yield focusing–defocusing oscillation,
which explains the prevention of singularity for those perturbations. The perturbed term in the
SH system is represented in a complicated integral form, which we do not analyse here for its
asymptotic behaviour near singularity formation. The detailed study of this integral is out of
the scope of this paper and we will present further study of modulation theory and the reduced
system in a forthcoming paper.

In section 2, we will introduce some essential notation and definitions, and some
preliminary results that will be used throughout the paper. Following the work of Ginibre
and Velo [23], we prove in section 3 local (in time) existence and uniqueness of solution for
system (4) using the contraction mapping principle. In section 4, we will extend the local
solution to global existence, for 1 � σ < 4

N
(N > 1) and 1 � σ < 3(N = 1), after

establishing the required a priori estimates for the H 1 norm of the solution, which remains
finite for every finite interval of time. Note that the existence of an uniqueness result also
applies to system (3) since the singular part of the Bessel potential behaves in a similar way as
the Newton potential and the Calderón–Zygmund singular theory for elliptic regularity applies
equally.
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2. Notation and preliminaries

In this section we introduce some preliminary results and the basic notation and definitions
that will be used throughout this paper.

We denote by ‖ · ‖p the norm in the space Lp = Lp(RN) (1 � p � ∞), except for p = 2
where the subscript 2 will be omitted. We will denote by 〈·, ·〉 the scalar product in L2. The
conjugate pair p, p′ satisfies the relation 1

p
+ 1

p′ = 1. For any real number l, we denote by

Hl = Hl(RN), the usual Sobolev space. Of special interest is the H 1 Sobolev space with the
norm defined by

‖v‖2
H 1 =

∫
RN

(1 + |ξ |2)|v̂(ξ)|2 dξ, (6)

or equivalently

‖v‖2
H 1 = ‖v‖2 + ‖∇v‖2. (7)

We denote by ‖u‖Wk,p = (�|α|�k

∫
RN |Dαu|p dx)1/p, 1 � p < ∞, for u belonging to the

Sobolev space Wk,p(RN). For any interval I of the real line R, and for any Banach space B,
we denote by C(I, B) (respectively, Cb(I, B)) the space of continuous (respectively, bounded
continuous) functions from I into B.

In this paper C and Cα will denote constants which might depend on various parameters
of the problem. They might vary in value from one time to another, but they are independent
of the solution. When it is relevant we will comment on the asymptotic behaviour of these
constants as they depend on the corresponding parameters.

First, we recall some classical Gagliardo–Nirenberg and Sobolev inequalities (see,
e.g., [6]).

Proposition 1.

(1) For any N � 1, we have

‖v‖q � C‖v‖1− q−2
2q

N‖v‖
q−2
2q

N

H 1 for every v ∈ H 1, 0 <
q − 2

2q
N � 1, (8)

‖v‖q � C‖v‖W 2,p for every v ∈ W 2,p, q � p, 2p > N, (9)

‖v‖q � C‖v‖W 2,p for every v ∈ W 2,p,
1

q
� 1

p
− 2

N
� 0, q < ∞. (10)

In particular,

‖v‖q � C‖v‖W 2,2 = C‖v‖H 2 for every v ∈ H 2, 2 � q � ∞, N � 3. (11)

(2) For N = 2,

‖v‖q � C‖v‖H 1 for every v ∈ H 1, 2 � q < ∞. (12)

(3) For N = 1,

‖v‖q � C‖v‖H 1 for every v ∈ H 1, 2 � q � ∞. (13)

With these inequalities at hand, we can process the nonlinear term. Let us rewrite the
nonlinear term

f (v) = u|v|σ−1v = B(|v|σ+1)|v|σ−1v, (14)

where B = (I − α2�)−1, the inverse of the Helmholtz operator. Then f is a locally Lipschitz
mapping from H 1 into Lr ′

, for some r ∈ (2, 2N
N−2 ], where 1

r
+ 1

r ′ = 1.
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Proposition 2. Let N � 1 and 1 � σ < 4
N−2 . For every v1, v2 ∈ H 1 ⊂ Lr , where r depends

on the given σ and belongs to the range r ∈ [2, 2N
N−2 ) (we consider 2N

N−2 as ∞ when N � 2), we

have ‖f (v1) − f (v2)‖r ′ � k‖v1 − v2‖r , where k = Cα,σ (‖v1‖H 1 + ‖v2‖H 1)2σ and 1
r

+ 1
r ′ = 1,

for some constant Cα,σ .

Before we prove this proposition, we will state the following lemmas:

Lemma 3. Let N � 1, for any 0 < σ < 4
N−2 , there exists r ∈ [2, 2N

N−2 ), which depends on σ ,
such that for every v1, v2, v ∈ H 1 ⊂ Lr , we have

‖B(|v|σ |v1 − v2|)|v|σ‖r ′ � Cα ‖v‖2σ
H 1‖v1 − v2‖r . (15)

Proof. First, denote

I1 = ‖B(|v|σ |v1 − v2|)|v|σ‖r ′ .

By Hölder’s inequality, we have

I1 � ‖B(|v|σ |v1 − v2|)‖r ′β1‖|v|σ‖r ′γ1 , (16)

where β1, γ1 are a conjugate pair, i.e. 1
β1

+ 1
γ1

= 1, β1, γ1 > 1.
Now, for the elliptic equation

φ(x) − α2�φ(x) = ψ(x), x ∈ R
N, (17)

we have the regularity property [39, 44, 50, 51]

‖φ‖W 2,p � Cα‖ψ‖p for any 1 < p < ∞, (18)

where Cα depends on N, p and α, and Cα ∼ 1
α2 as α → 0+. Moreover, for α fixed, Cα ∼ p

as p → ∞.
Let p > 1 to be determined later, by (9) or (10), we have

‖B(|v|σ |v1 − v2|)‖r ′β1 � C‖B(|v|σ |v1 − v2|)‖W 2,p

provided 1
r ′β1

� 1
p

− 2
N

if 1
p

− 2
N

� 0, or r ′β1 � p if 1
p

− 2
N

< 0.
Applying the elliptic regularity property (18) and Hölder’s inequality to the above term,

we get

‖B(|v|σ |v1 − v2|)‖r ′β1 � Cα‖|v|σ‖v1 − v2|‖p,

� Cα‖v‖σ
pθ ′σ‖v1 − v2‖pθ ,

where 1
θ

+ 1
θ ′ = 1, θ, θ ′ > 1.

Therefore, we obtain

I1 � Cα‖v‖σ
pθσ‖v‖σ

r ′γ1σ
‖v1 − v2‖pθ ′ . (19)

Now, by requiring pθ ′ = r, pθσ = r ′γ1σ = r , we have

θ ′ = r

p
,

p = r

σ + 1
∈ (1, r) ⇒ 0 < σ < r − 1,

β1 = r − 1

(r − 1) − σ
> 1 ⇒ σ < r − 1,

r ′β1 � p ⇒ σ � r − 2

2
or

1

r ′β1
� 1

p
− 2

N
⇒ σ � N + 2

2N
r − 1.

So for given 0 < σ < 4
N−2 , we can always find an r ∈ [2, 2N

N−2 ) satisfying all the conditions
above, then we have

I1 � Cα‖v‖2σ
H 1‖v1 − v2‖r . �
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Lemma 4. Let N � 1, for 1 � σ < 4
N−2 , there exists r ∈ [2, 2N

N−2 ), which depends on σ , such
that for every v1, v2, v ∈ H 1 ⊂ Lr , we have

‖B(|v|σ+1)|v|σ−1(v1 − v2)‖r ′ � Cα‖v‖2σ
H 1‖v1 − v2‖r . (20)

Proof. Denote

I2 = ‖B(|v|σ+1)|v|σ−1(v1 − v2)‖r ′ .

By Hölder’s inequality, we have

I2 � ‖B(|v|σ+1)‖r ′θ1‖|v|σ−1‖r ′β1‖v1 − v2‖r ′γ1 ,

= ‖B(|v|σ+1)‖r ′θ1‖v‖σ−1
(σ−1)r ′β1

‖v1 − v2‖r ′γ1 , (21)

where 1
θ1

+ 1
β1

+ 1
γ1

= 1.
Letting p > 1 to be determined later, by (9) or (10), we have

‖B(|v|σ+1)‖r ′θ1 � C‖B(|v|σ+1)‖W 2,p

provided 1
r ′θ1

� 1
p

− 2
N

if 1
p

− 2
N

� 0, or r ′θ1 � p if 1
p

− 2
N

< 0.
Applying the elliptic regularity property (18) and Hölder’s inequality to the above term,

we get

‖B(|v|σ+1)‖r ′θ1 � Cα‖|v|σ+1‖p,

= Cα‖v‖σ+1
(σ+1)p.

Then we obtain

I2 � Cα‖v‖σ+1
(σ+1)p‖v‖σ−1

(σ−1)r ′β1
‖v1 − v2‖r ′γ1 . (22)

Now, by requiring (σ +1)p = (σ −1)r ′β1 = r ′γ1 = r (choose β1 = ∞ when σ = 1), we have

θ1 = r − 1

r − 1 − σ
> 1 ⇒ σ < r − 1,

β1 = r − 1

σ − 1
> 1 ⇒ σ < r,

γ1 = r − 1 > 1,

p = r

σ + 1
> 1 ⇒ σ < r − 1

σ � N + 2

2N
r − 1 or σ � r − 2

2
.

So for 1 � σ < 4
N−2 , we can always find an r ∈ [2, 2N

N−2 ) satisfying all the conditions
above, then

I2 � Cα‖v‖2σ
H 1‖v1 − v2‖r . �

Now, we are ready to prove proposition 2.

Proof. Recall that f (v) = B(|v|σ+1)|v|σ−1v, by triangle inequality, we have

‖f (v1) − f (v2)‖r ′ = ‖B(|v1|σ+1)|v1|σ−1v1) − B(|v2|σ+1)|v2|σ−1v2‖r ′

� ‖(B(|v1|σ+1 − B(|v2|σ+1)|v2|σ−1v2‖r ′

+ ‖B(|v1|σ+1)(|v1|σ−1v1 − |v2|σ−1v2)‖r ′ .
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Denote

I1 = ‖(B(|v1|σ+1 − B(|v2|σ+1)|v2|σ−1v2‖r ′ ,

I2 = ‖B(|v1|σ+1)(|v1|σ−1v1 − |v2|σ−1v2)‖r ′ .

Let us consider I1 first.
Since

||v1|σ+1 − |v2|σ+1| � Cσ (|v1| + |v2|)σ |v1 − v2|,
where Cσ is some constant depending on σ , applying the comparison principle to the elliptic
equation (17), we have the following monotonicity property for the operator B = (I −α2�)−1:

|B(φ)| � B(|φ|) for complex-valued function φ. (23)

where | · | denotes the absolute value (modulus) of a complex value.
Now by linearity of the operator B, we have

|B(|v1|σ+1) − B(|v2|σ+1)| = |B(|v1|σ+1 − |v2|σ+1)|,
� B(||v1|σ+1 − |v2|σ+1|),
� CσB((|v1| + |v2|)σ |v1 − v2|).

Plugging this result into I1 and applying lemma 3, we get

I1 � Cσ‖B((|v1| + |v2|)σ |v1 − v2|)|v2|σ−1v2‖r ′ ,

� Cσ‖B((|v1| + |v2|)σ |v1 − v2|)(|v1| + |v2|)σ‖r ′ ,

� Cα,σ (‖v1‖H 1 + ‖v2‖H 1)2σ‖v1 − v2‖r .

Now we consider I2.
Since

||v1|σ−1v1 − |v2|σ−1v2| � Cσ (|v1| + |v2|)σ−1|v1 − v2|,
plugging the above result into I2 and applying the comparison principle (23), we get

I2 � Cσ‖B(|v1|σ+1)(|v1| + |v2|)σ−1|v1 − v2|‖r ′ ,

� Cσ‖B((|v1| + |v2|)σ+1)(|v1| + |v2|)σ−1|v1 − v2|‖r ′ .

By lemma 4, we have

I2 � Cα,σ (‖v1‖H 1 + ‖v2‖H 1)2σ‖v1 − v2‖r . �
Next, we will give some elementary properties of the free evolution (linear Schrödinger

equation) formally defined by the group of operators

U(t) = exp(it�), (24)

where t ∈ R. In the following, we will state some well-known results about the operator U(t)

without proving them (see, e.g., [23, 45]).

Lemma 5. For any r � 2, and for any t �= 0, U(t) is a bounded linear operator from Lr ′
to

Lr , and the map t → U(t) is strongly continuous. Moreover, for all t ∈ R \ {0}, one has

‖U(t)v‖r � (4π |t |) N
r
− N

2 ‖v‖r ′ (25)

for all v ∈ Lr ′
.

Corollary 6. Let I be an interval of R, and let v ∈ C(I, Lr ′
). Then for all t ∈ R the map

τ → U(t − τ)v(τ ) is continuous from I \ {t} into Lr .
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3. Short time existence and uniqueness

In this section we will prove a local existence and uniqueness theorem of solutions to system
(4) by a fixed point technique.

The integral equation

v(t) = U(t − t0)v0 + i
∫ t

t0

U(t − τ)f (v(τ )) dτ (26)

may be considered as the integral version of the initial value problem for equation (4).
Defining the subspace Y (I) ⊂ C(I, X) and Yb(I ) ⊂ Cb(I, X) by

Y (I) = {v : v ∈ C(I, X) and v(t) = U(t − s)v(s) for all s and t ∈ I },
Yb(I ) = Y (I) ∩ Cb(I, X).

Here for special interest we choose the Banach space X = Lr(RN), for some r > 2, which is
specified in the proof of lemmas 3 and 4, and X̄ = Lr ′

(RN).
If v ∈ Cb(I, X), we shall denote its norm by |v|I , and for v ∈ Cb(I, H

1), we denote its
norm by |v|H 1,I . The ball of radius R in Cb(I, X) will be denoted by B(I, R).

Let t1, t2 ∈ R and let v(t) be a family of complex-valued functions defined on R
N ,

depending on a parameter t ∈ R. We formally define the operators

[G(t1, t2)v](t) = i
∫ t2

t1

U(t − τ)f (v(τ )) dτ, (27)

where f is the nonlinear term defined in (14). The first lemma below gives a meaning to the
expression defined by (27) and contains some of its properties.

Lemma 7. For any interval I ⊂ R (possibly unbounded), the maps (t1, t2, v) → G(t1, t2)v

are continuous from I × I × C(I, X) to Yb(R). Moreover, for any t1, t2 ∈ I (t1 < t2), for
any compact sub-interval J such that [t1, t2] ⊂ J ⊂ I , and for any t ∈ [t1, t2], for any
v1, v2 ∈ C(I, X) the G operator satisfies the estimates

‖G(t1, t2)v1(t) − G(t1, t2)v2(t)‖r � k′‖v1 − v2‖J |t2 − t1| N
r
− N

2 +1,

where k′ = k(4π)
N
r
− N

2 , k = Cα(‖v1‖H 1 + ‖v2‖H 1), which is derived in the proof of
proposition 2.

Proof. For any v ∈ C(I, X) the function τ → f (v(τ)) belongs to C(I, X̄) as a consequence
of proposition 2. Therefore, by lemma 3, for any t ∈ R \ {t} the function

τ → U(t − τ)f (v(τ )) (28)

is continuous from I to X. To check the integrability of function (28) it will be enough to
show the integrability of its norm. More generally one is interested in the integrability of

‖U(t − τ)[f (v1(τ )) − f (v2(τ ))]‖r , (29)

for any v1, v2 ∈ C(I, H 1) ⊂ C(I, X).
This is a direct consequence of proposition 2 and lemma 3: for t ∈ R, for every compact

sub-interval J ⊂ I and τ ∈ J , we have

‖U(t − τ)[f (v1(τ )) − f (v2(τ ))]‖r ′ � (4π |t − τ |) N
r
− N

2 k‖v1 − v2‖J .

Finally, we come to the conclusion that

‖G(t1, t2)v1(t) − G(t1, t2)v2(t)‖ � k′‖v1 − v2‖J |t2 − t1| N
r
− N

2 +1. �
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Now, in order to study equation (26) one needs the operators

[F(t0)v](t) = [G(t0, t)v](t). (30)

The existence and properties of F follow immediately from lemma 5.
For every v ∈ C(I, H 1) ⊂ C(I, X),

[A(t0, v0)v](t) = [F(t0)v](t) + U(t − t0)v0 (31)

is a continuous map from C(I, H 1) ⊂ C(I, X) into C(I, X).
With this notation equation (26) may be rewritten as

A(t0, v0)v = v. (32)

The following lemma gives some elementary properties of the solutions of equation (26). In
particular, it expresses the consistency of the change of the initial time t0.

Lemma 8. Let I and J be two intervals of R, J ⊂ I , let t0 ∈ J , let v0 ∈ H 1 be such that the
function t → U(t − t0)v0 belongs to Y (I), and let v ∈ C(J, X) be a solution of equation (32).

(i) The function

φ(v) : s → U(· − s)v(s) = [φ(v)](s) (33)

belongs to C(J, Y (I )) and satisfies for all s, s ′ ∈ J the equality

[φ(v)](s) − [φ(v)](s ′) = G(s ′, s)v. (34)

Furthermore, if for some s ∈ J, [φ(v)](s) ∈ Yb(I ), then φ(v) ∈ C(J, Yb(I )). If in
addition J is bounded, then φ(v) ∈ Cb(J, Yb(I )).

(ii) For any s ∈ J , u satisfies the equation

A(s, v(s))v = v. (35)

Proof. Applying the operator U(t − s) to equation [A(t0, v0)v](s) = v(s) and using the fact
that U(t −s)[G(t1, t2)v](s) = [G(t1, t2)v](t) (for the proof of this identity, we refer to Ginibre
and Velo [23]) yields

[φ(v)](s) = U(· − t0)v0 + G(t0, s)v. (36)

From which (34) follows immediately. The continuity properties of the left-hand side of (36)
are then a consequence of the assumptions made on v0 and of lemma 7. Finally, putting s ′ = t

in (34) and taking the values of both members at t one obtains equation (35) at time t . �

We are now ready to discuss the problem of the existence and uniqueness of solutions of
equation (32).

Theorem 9. For any ρ > 0, there exists a T0(ρ) > 0, depending only on ρ, such that for any
t0 ∈ R and for any v0 ∈ H 1, for which ‖v0‖H 1 � ρ, equation (32) has a unique solution on
C(I, X), where I = [t0 − T0(ρ), t0 + T0(ρ)] and X = Lr .

Proof. Let ρ be a fixed positive number, let t0 and T0 ∈ R, T0 > 0, and let I = [t0 −T0, t0 +T0].
Then for every v1, v2 ∈ H 1 and ‖v1 − v2‖H 1 � 2ρ, lemma 5 and (30) yield the inequality

|F(t0)v1 − F(t0)v2|I � 2k′|t − t0| N
r
− N

2 +1|v1 − v2|I . (37)

In particular, if we take T = T0(ρ) with T0(ρ) defined by

4k′|T0(ρ) − t0| N
r
− N

2 +1 = 1 (38)
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in equality (37) it gives

|F(t0)v1 − F(t0)v2|I � 1
2 |v1 − v2|I . (39)

Now let v0 ∈ X be such that U(· − t0)v0 ∈ B(I, ρ). Definition (31) and estimate (39) imply

|A(t0, v0)v|I � 2ρ, (40)

and

|A(t0, v0)v1 − A(t0, v0)v2|I � 1
2 |v1 − v2|I , (41)

for all v, v1, v2 ∈ B(I, 2ρ), from which it follows that A(t0, v0) is a contraction from
the ball B(I, 2ρ) into itself. The result is now a consequence of the contraction mapping
theorem. �

4. Global in time existence of solutions

In this section we will study global existence of solutions to system (4) under the condition of
σ � 1. We will show below that we have global in time solutions when 1 � σ < 4

N
(N > 1)

and 1 � σ < 3 (N = 1). Comparing this with the results of the classical NLS (σ < 2
N

),
we ‘gain’ global regularity for a larger range of values of σ . In the case of N = 1, we have
1 � σ < 3, which is a smaller range, as one expects 4

N
, but we still gain a larger range compared

with the classical case σ < 2. As we stated in the introduction, system (4) will recover the
classical NLS as the parameter α → 0+; in a subsequent paper, we will study numerically the
blow-up profile of the classical NLS by focusing on system (4) with 2

N
� σ < 4

N
when N � 3

especially in dimension N = 2. To be more specific, we will compute SH system (4) and try
to find the blow up profile by forcing the parameter α to approach zero.

Theorem 10. Let v0 ∈ H 1(RN). If 1 � σ < 4
N

when N > 1 and 1 � σ < 3 when N = 1,
then there exists a unique solution v ∈ C((−∞, ∞); H 1(RN)) of the initial value problem
(4), in the sense of the equivalent integral equation.

Furthermore, as long as v(x, t) remains in H 1(RN), the energy

N (v) =
∫

RN

|v(x, t)|2 dx (42)

and Hamiltonian

H(v) =
∫

RN

(
|∇v(x, t)|2 − u(x, t)|v(x, t)|σ+1

σ + 1

)
dx (43)

remain constant in time.

In the short time existence theorem in section 3, we have shown that the length T0, of the
interval of existence [t0, t0 + T0], can be taken to depend only on ‖v(t0)‖H 1 . It follows that if
v(x, t) is a maximally defined solution on [t0, Tmax), then either

Tmax = +∞
or

lim
t→T −

max

‖v(t)‖H 1 = +∞.

The heart of the global existence proof lies in the use of the invariants (42) and (43), which
enable us to obtain an a priori bound of the following type:

‖v(x, t)‖H 1 � C(N , H). (44)
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Proof. We proceed as follows:
From (43) we have

‖∇v(x, t)‖2 � H +
1

σ + 1

∫
RN

u|v|σ+1 dx. (45)

Observe that ∣∣∣∣
∫

RN

u|v|σ+1 dx

∣∣∣∣ � ‖u‖p‖|v|σ+1‖p′ ,

= ‖u‖p‖v‖σ+1
p′(σ+1), (46)

where
1

p
+

1

p′ = 1, 1 � p, p′ � ∞.

Case 1. N = 1: taking p = ∞, p′ = 1 in the above inequality, by (13), we get∣∣∣∣
∫

RN

u|v|σ+1 dx

∣∣∣∣ � ‖u‖∞‖v‖σ+1
σ+1,

� C‖u‖H 1‖v‖σ+1
σ+1. (47)

On the other hand,∣∣∣∣
∫

RN

u|v|σ+1 dx

∣∣∣∣ =
∣∣∣∣
∫

RN

u(u − α2�u) dx

∣∣∣∣ ,
=

∣∣∣∣
∫

RN

u2 + α2|∇u|2 dx

∣∣∣∣ ,
� C ′

α‖u‖2
H 1 , (48)

where C ′
α = min{1, α2}.

From (47) and (48), we get

‖u‖H 1 � C

C ′
α

‖v‖σ+1
σ+1.

Then ∣∣∣∣
∫

RN

u|v|σ+1 dx

∣∣∣∣ � max{1, α2}‖u‖2
H 1 ,

� Cα‖v‖2(σ+1)
σ+1 , (49)

where Cα = C max{1, α2}/ min{1, α2} ∼ 1
α2 when α is very small.

When σ = 1, the term on the right-hand side is bounded due to conservation of energy N .
Now we consider σ > 1, by (8), taking q = σ + 1, we obtain

‖v‖σ+1 � C‖v‖
(σ+1)−2
2(σ+1)

H 1 ‖v‖1− (σ+1)−2
2(σ+1) , (50)

where 0 < (σ+1)−2
2(σ+1)

< 1 is always satisfied.
Plugging the above inequality into (49), we obtain∣∣∣∣

∫
RN

u|v|σ+1 dx

∣∣∣∣ � Cα‖v‖σ+3‖v‖σ−1
H 1 .

Then (45) yields

‖v‖2
H 1 = ‖∇v‖2 + ‖v‖2 � H0 + N0 + Cα‖v0‖σ+3‖v‖σ−1

H 1 . (51)
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For (51), ‖v‖H 1 is uniformly bounded when σ −1 < 2, i.e. σ < 3. So we have global existence
for 1 � σ < 3 in the case N = 1.

Case 2. N = 2: taking 2 � p < ∞ in (46) and applying (12), we get∣∣∣∣
∫

RN

u|v|σ+1 dx

∣∣∣∣ � ‖u‖p‖v‖σ+1
p′(σ+1), (52)

� C‖u‖H 1‖v‖σ+1
p′(σ+1). (53)

Now apply the same calculation as in (48) and (49), since

min{1, α2}‖u‖H 1 �
∫

RN

u2 + α2|∇u|2 dx =
∣∣∣∣
∫

RN

uvσ+1 dx

∣∣∣∣ � max{1, α2}‖u‖2
H 1 . (54)

Then we have ∣∣∣∣
∫

RN

uvσ+1 dx

∣∣∣∣ = ‖u‖2
H 1(α), (55)

� C‖u‖H 1‖v‖σ+1
p′(σ+1), (56)

� C

√
1

min{1, α2}‖u‖H 1(α)‖v‖σ+1
p′(σ+1), (57)

i.e. ∣∣∣∣
∫

RN

uvσ+1 dx

∣∣∣∣ � Cα‖v‖2(σ+1)

p′(σ+1), (58)

where Cα = Cmax{1, α2}/min{1, α2} ∼ 1
α2 for α � 1.

By (8), taking q = p′(σ + 1), we obtain∣∣∣∣
∫

RN

uvσ+1 dx

∣∣∣∣ � Cα‖v‖
p′(σ+1)−2
2p′(σ+1)

·2·2(σ+1)

H 1 ‖v‖(1− p′(σ+1)−2
2p′(σ+1)

·2)2(σ+1)
, (59)

= Cα‖v‖(1− p′(σ+1)−2
2p′(σ+1)

·2)2(σ+1)‖v‖2(
p′(σ+1)−2

p′ )

H 1 . (60)

Then (45) yields

‖v‖2
H 1 = ‖∇v‖2 + ‖v‖2 � H0 + N0 + Cα‖v0‖(1− p′(σ+1)−2

2p′(σ+1)
·2)2(σ+1)‖v‖2(

p′(σ+1)−2
p′ )

H 1 . (61)

Requiring 2(
p′(σ+1)−2

p′ ) < 2, we get σ < 2
p′ . Since 1 < p′ � 2, for any σ < 2, we can always

find p, p′ such that the relation σ < 2
p′ holds, which implies that the H 1-norm of the solution

is bounded uniformly independent of t by Young’s inequality, so we have global existence in
the case of N = 2 and σ < 2 = 4

N
.

Case 3. N � 3: taking p, p′ > 1 in (46), by (10) and (18), we obtain

‖u‖p � C‖u‖W 2,m ,

= C‖B(|v|σ+1)‖W 2,m ,

� Cα‖|v|σ+1‖m,

= Cα‖v‖σ+1
(σ+1)m,

where
1

p
= 1

m
− 2

N
> 0 ⇒ m <

N

2
. (62)
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Plugging into (46) and requiring m = p′, i.e. m = 2N
N+2 , we get∣∣∣∣

∫
RN

u|v|σ+1 dx

∣∣∣∣ � Cα‖v‖2(σ+1)

m(σ+1).

By (8), taking q = m(σ + 1), we obtain

‖v‖m(σ+1) � C‖v‖1− m(σ+1)−2
2m(σ+1)

N‖v‖
m(σ+1)−2
2m(σ+1)

N

H 1 ,

with

0 <
m(σ + 1) − 2

2m(σ + 1)
N < 1 ⇒ σ <

4

N − 2
. (63)

Then (45) yields

‖v‖2
H 1 = ‖∇v(t)‖2 + ‖v‖2 � H0 + N0 + Cα‖v0‖2(σ+1)−(σN−2)‖v‖σN−2

H 1 . (64)

For (64), ‖v‖H 1 is bounded when σN − 2 < 2, i.e. σ < 4
N

. Therefore, the H 1 norm of
the solution v is bounded uniformly independent of time t , so we can conclude that we have
global solution for any 1 � σ < 4

N
. �

5. Modulation theory

As one can see from the proof of global existence of system (4), the uniform bound of H 1-norm
of the solution depends on a constant Cα ∼ 1

α2 when α is very small, in other words, in the
limit α → 0+, this upper bound will grow to infinity. One expects this result since as α goes
to zero, we will recover the classical NLS and we will ‘lose’ these improvements on the range
of the exponent of σ . In fact, when the parameter α goes to zero, one can regard system (4) as
a perturbation of the classical NLS, since we can rewrite system (4) as

ivt + �v + |v|2σ v + α2�uv = 0. (65)

where u = (I − α2�)−1(|v|σ+1).
There have been many works on perturbed NLS in the critical case σ = 2

N
(see,

e.g., [13, 16, 17], and references therein). In this section, we will apply modulation theory
(see, e.g., [20, 33, 35] for references about modulation theory) to the classical critical case
σ = 1, N = 2. In this case the classical NLS blows up for certain initial data, and modulation
theory tries to explain the role of the regularization in preventing the formation of a singularity
near the critical values of the initial data which blow up in the classical case. The intuition
of modulation theory is that the energy near a singularity is equal to the power of the Townes
soliton and the profiles of the solutions are asymptotic to some rescaled profiles of the Townes
soliton. With modulation theory, one can reduce the perturbed system (65) into a simpler
system of ordinary differential equations that do not depend on the spatial variables, and they
are supposed to be easier to analyse both analytically and numerically.

First we review some main results on modulation theory for the unperturbed critical NLS
following [20]. As stated in [20], most of the results presented in this section have not been
made rigorous at present.

In the case of self-focusing the amount of power which goes into the singularity is equal
to the critical power Nc = ‖R‖2

2, where R is the Townes soliton (2), the beam separates into
two components as it propagates,

v = vs + vback, (66)

where vs is the high intensity inner core of the beam which self-focuses towards its centre axis
and vback is the low intensity outer part which propagates forward following the usual linear
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propagation mode. Close enough to the singularity, vs has only small excess power above the
critical one and approaches the radially symmetric asymptotic profile:

vs(x, t) = 1

L(t)
V (τ, ξ) exp

(
i

(
τ +

Lt

L

r2

4

))
, argV (τ, 0) = 0, (67)

where L(t) is a yet to be determined function that is used to rescale and the independent
variables, ξ = (ξ1, ξ2), x = (x1, x2) with

ξ = x

L
,

dτ

dt
= 1

L2
.

Then the reduced system for unperturbed critical NLS is

Ltt = − β

L3
, βt = −e− π√

β

L2
, (68)

where L(t) is the scaling factor and β is proportional to the excess of the power near a
singularity: β = M(N − Nc) for constant M = 1

4

∫ ∞
0 R(ρ)2ρ3 dρ ≈ 0.55.

For a general perturbed critical NLS of the form

ivt + �v + |v|2v + εF (v, vt , ∇v, · · ·) = 0, |ε| � 1, (69)

where F is an even function in x, the modulation theory is valid when the following three
conditions hold. Observe that in our system (65) ε is the parameter α2.

Condition 1. The focusing part of the solution is close to the asymptotic profile

vs(t, x) ∼ 1

L(t)
V (τ, ξ) exp

[
iτ(t) + i

Lt

L

r2

4

]
, (70)

where

ξ = x

L
, r2 = x2

1 + x2
2 ,

dτ

dt
= 1

L(t)2

and V = R + O(β, ε), β = −L3Ltt and R is the Townes soliton given in (2).

Condition 2. The power is close to critical∣∣∣∣ 1

2π

∫
|vs(t, x1, x2)|2 dx1 dx2 − Nc

∣∣∣∣ � 1, (71)

or, equivalently,

|β(t)| � 1, (72)

where Nc = 1
2π

∫
R2 R(x1, x2)

2 dx1 dx2 = ‖R‖2
2 is the threshold energy of blow-up.

Condition 3. The perturbation εF is small in comparison with the other terms, i.e.

|εF | � |�v|, |εF | � |v|3. (73)

The following proposition is given in [20].

Proposition 11. If conditions 1–3 hold, self-focusing in the perturbed critical NLS (69) is
given to leading order by the reduced system

βt +
e− π√

β

L2
= ε

2M
(f1)t − 2ε

M
f2, Ltt = − β

L3
. (74)
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The auxiliary functions f1, f2 are given by

f1(t) = 2L(t)Re

[
1

2π

∫
R2

F(ψR) exp(−iS)[R(ρ) + ρ∇R(ρ)] dx1 dx2

]
, (75)

f2(t) = Im

[
1

2π

∫
R2

ψ∗
RF(ψR) dx1 dx2

]
, (76)

where ψR = 1
L
R(ρ) exp(iS), R is the Townes soliton given in (2), ρ = r

L
, S = τ(t) + Lt

L
r2

4 ,
dτ
dt

= 1
L2 , M = 1

4

∫ ∞
0 R(ρ)2ρ3 dρ ≈ 0.55.

Furthermore, if F is a conservative perturbation, i.e.

Im
∫

R2
v∗F(v) dx1 dx2 = 0, (77)

then f2=0.

In general, at the onset of self-focusing only condition 3 holds. Therefore, if the power is
above critical Nc the solution will initially self-focus as in the unperturbed critical NLS. As a
result, near the time of blow-up in the absence of the perturbation, conditions 1 and 2 will also
be satisfied.

As studied in [20], various conservative perturbations of critical NLS, for instance, self-
focusing in fibre arrays (see [2–5, 32, 49] and references therein) and small dispersive fifth-
power nonlinear perturbation to the classical NLS [35], have a generic form

f1 ∼ − C

L2
, C = constant, (78)

which results in a canonical focusing–defocusing oscillation.
Now, let us calculate the reduced equations of the SH system.
Apply the above results to system (4) or (65). Assuming first that system (65) satisfies all

three conditions above we will carry out the calculations below. Numerical computations will
be presented in a further paper. Observe that our perturbation term is a nonlocal operator

F(v) = (�u)v, (79)

where u satisfies the equation u − α2�u = |v|2.
Since

ψR(x) = 1

L
R

(
x

L

)
exp(iS), (80)

we have

F(ψR)(x) = (�uR)ψR(x), (81)

where uR satisfies

uR(x) − α2�uR(x) = |ψR(x)|2 =
∣∣∣∣ 1

L
R

(
x

L

)
exp(iS)

∣∣∣∣
2

= 1

L2

∣∣∣∣R
(

x

L

)∣∣∣∣
2

. (82)

Written in a more general form

(I − α2�)u(x) = g

(
x

L

)
, x ∈ R

N (83)

then u(x) = (B α
L

∗ g)( x
L
), where B α

L
is the modified Bessel potential:

B α
L
(x) =

(
1

2α2

) N
2

∫ ∞

0

e−se
− |x|2

4s(α/L)2

sN/2
ds. (84)
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Returning to equation (82), now we have g(·) = 1
L2 R(·)2, so we can write the solution

uR(x) as

uR(x) =
(

B α
L

∗ 1

L2
R2

)(
x

L

)
= 1

L2

(
B α

L
∗ R2

)(
x

L

)
, (85)

= 1

L2

1

2α2

∫
R2


∫ ∞

0

e−se
− |x/L−y|2

4s(α/L)2

s
ds


 R2(y) dy1 dy2, (86)

where y = (y1, y2).
Plugging the above into (81) and using (82), we get

F(ψR)(x) = (�uR(x))ψR(x) = 1

α2
(uR(x) − |ψR(x)|2)ψR(x), (87)

= 1

α2

(
uR(x) − 1

L2
R2

(
x

L

))(
1

L
R

(
x

L

)
eiS

)
. (88)

Now we can calculate the term f1

f1 = L

π
Re

∫
R2

F(ψR(x)) exp(−iS)(R(ρ) + ρRρ) dx1 dx2,

= L

π

∫
R2

1

α2

(
uR(x) − 1

L2
R2(ρ)

)(
1

L
R(ρ)

)
(R(ρ) + ρRρ) dx1 dx2,

= 1

πα2

∫
R2

uR(x)R(ρ)(R(ρ) + ρRρ) dx1 dx2 − 1

πα2

1

L2

∫
R2

R3(ρ)(R(ρ) + ρRρ) dx1 dx2,

= I1 − I2.

It is easy to see that the second integral I2 is a constant that does not depend on L. Indeed,

applying the change of variables: ξ1 = x1
L

, ξ2 = x2
L

, since ρ = r
L

=
√

x2
1 +x2

2

L
=

√
ξ 2

1 + ξ 2
2 ,

we get

I2 = 1

πα2

∫
R2

R3(ρ)(R(ρ) + ρRρ(ρ)) dξ1dξ2 = c0,

where c0 is a constant that does not depend on L.
Next, let us look at the first integral I1, plugging the result of (86) into I1, we get

I1 = 1

πα2

∫
R2

uR(x)R(ρ)(R(ρ) + ρRρ) dx1 dx2, (89)

= 1

πα2

∫
R2

1

L2

1

2α2

∫
R2


∫ ∞

0

e−se
− |x/L−y|2

4s(α/L)2

s
ds


 R2(y) dy1 dy2R(ρ)(R(ρ)

+ ρRρ) dx1 dx2, (90)

= 1

2π

1

α4

1

L2

∫
R2

∫
R2

∫ ∞

0

e−se
− |x/L−y|2

4s(α/L)2

s
dsR2(y) dy1 dy2R(ρ)(R(ρ) + ρRρ) dx1 dx2. (91)

Applying the change of variables: ξ = (ξ1, ξ2) = ( x1
L

, x2
L

), we will then have the following
integral:

I1 = 1

2π

1

α4

∫
R2

∫
R2

∫ ∞

0

e−se
− |ξ−y|2

4s(α/L)2

s
dsR2(y) dy1 dy2R(ρ)(R(ρ) + ρRρ) dξ1 dξ2. (92)
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Therefore, f1 can be written as

f1 = 1

2π

1

α4

∫
R2

∫
R2

∫ ∞

0

e−se
− |ξ−y|2

4s(α/L)2

s
dsR2(y) dy1 dy2R(ρ)(R(ρ) + ρRρ) dξ1 dξ2 + c0. (93)

Hence we have the reduced system

βt +
e− π√

β

L2
= α2

2M
(f1)t ,

Ltt = − β

L3
, (94)

where f1 is given in the form of (93). It is worth stressing that the right-hand side
of equation (94) is different from that of (68), which indicates the rate of regularization
parameter α.

Now one needs to study the ODE (94) with f1 given in (93). The explicit form of the
function f1 is much more complicated when compared with the generic form of (78). The idea
is to show that for small L this additional term on the right-hand side of the first equation of
(94) will prevent the singularity formation, i.e. prevent L from tending to zero as time evolves.
However, we do not provide here a detailed analysis of systems (93) and (94), since it is out
of the scope of this paper. More detailed study on modulation theory and reduced system will
be reported in a forthcoming paper.
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