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The two-dimensional Navier–Stokes-a model is considered on the torus and on
the sphere. Upper and lower bounds for the dimension of the global attractors
are given. The dependence of the dimension of the global attractors on a is
studied. Special attention is given for the limiting cases when a Q 0, that is,
when the Navier–Stokes-a model tends to the Navier–Stokes equations, and to
the case when a Q ..
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INTRODUCTION

The Euler equations of motion for ideal (inviscid) incompressible fluids can
be derived from Hamilton variational principle subject to the incompressi-
bility constraint div u=0, where u is the velocity field. In this framework
the pressure term in the Euler equations is the Lagrange multiplier corre-
sponding to this constraint (see, for instance, [1] and the references
therein). The Hamiltonian in this case involves the kinetic energy repre-
sented by the square of the L2-norm of the velocity field > |u(x, t)|2 dx. In
their studies of one-dimensional models of water waves Camassa and Holm
[4] derived a new model based on Hamilton variational principle in which
the Hamiltonian involves the one-dimensional H1 Sobolev norm > (|u(x, t)|2+
a2 |ux(x, t)|2) dx, where a is length scale. Recently, Holm, Marsden, and



Ratiu [24] combined the above mentioned approaches and derived the
following set of equations in Rn, n \ 2, based on Hamilton variational
principle and subject to the incompressibility constraint div u=0:

“tv − u × rot v+Np=0,

div u=0, (1)

v=u − a2 Du.

Here the Hamiltonian involves > (|u(x, t)|2+a2 |Nu(x, t)|2) dx, the square of
H1(Rn) Sobolev norm, n \ 2. By adding the viscous/damping term − n Du
to the left hand side of the first equation in (1) one obtains the equations
of motion for second-grade visco-elastic non-Newtonian fluids (see, for
instance, [10], [11], [18], and [36]). In [19] (see also [6–8]) it is pro-
posed to add the viscous term − n Du and a forcing term f, in an ad hoc
fashion, to the left and right hand sides of the first equation in (1), respec-
tively. As a result one obtains the so-called viscous Camassa–Holm equa-
tions (they are also known as the Navier–Stokes-a model (NS-a) or the
Lagrangian averaged Navier–Stokes-a model (LANS-a)):

“tv − n Du − u × rot v+Np=f,

div u=0, (2)

v=u − a2 Du.

Under certain physical hypothesis the inviscid model (1) can be
derived as an averaged equation, based on Lagrangian averaging, using
rigorous mathematical tools and physical arguments (see, for instance, [7],
[23], [25], and [32–34]). In [12], however, another approach connecting
Lagrangian and Eulerian formulations for the Navier–Stokes equations
(NSE) was introduced. This exact connection between Lagrangian and
Eulerian formulations gives another perspective for looking at the relation
between the Navier–Stokes equations (NSE) and the Navier–Stokes-a
model (NS-a). Due to the lack of rigorous physical derivation of the system
(2) the corresponding boundary conditions required for flows confined in
domains with boundaries are still not available (see, however [32] and
[33] for an attempt in this direction). Therefore the system (2) is con-
sidered in [19] subject to periodic boundary conditions and the global
regularity of the three-dimensional system is established. Furthermore,
upper estimates for the dimension of its global attractor were provided.
Based on these interesting upper bounds the authors of [19] proposed a
connection between this model (NS-a) and Reynolds averaged Navier–
Stokes equations. Indeed, the system (2) was tested successfully against
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empirical data in [6–8] as a closure model for the Reynolds equations in
infinite channels and pipes and for a wide range of Reynolds numbers.

In this paper we consider the two-dimensional version of (2) and study
the dependence of the dimension of its global attractors on the parameter a.
There are two limiting cases which are of special interest. The first is when
a Q 0+. In this case one can easily show that the solutions of (2) converge
uniformly, on finite intervals of time, to the corresponding solutions of the
Navier–Stokes equations (see [19] for such results concerning weak solu-
tions in the three-dimensional case). Because of this fact one can easily
show that the global attractors ANS − a of the NS-a converge to a subset of
the global attractor ANS of the NSE as a Q 0+ (see, for instance, [3], [21]
for general results on upper semi-continuity of attractors depending on a
parameter). We also find here that the upper bounds for the dimension of
the global attractors, ANS − a of the NS-a also converge to the correspond-
ing upper bounds for the global attractors, ANS, of NSE. Using a family of
Kolmogorov flows as base flows we can deduce also lower bounds on the
dimension of the global attractors. Here again our results indicate that the
lower bounds for the dimension of ANS − a converge to the associated lower
bounds of the dimension of ANS, as a Q 0+. In particular, in case one
accepts the point of view that the dimension of a global attractor for the
NSE is associated with the number of degrees of freedom in turbulent
flows, then in our case these sharp bounds on the dimension of the global
attractor give a rigorous justification for the NS-a model analogue of the
Kraichnan approach to the 2-D turbulence (see, for example, [16] and
[37]).

The other interesting limit is when a Q .. In this case it can easily be
shown, using energy estimates, that the dynamics is trivial and that all
solutions tend exponentially to a unique steady state (which tends to zero
as a Q .). Therefore in order to get a non-trivial dynamics it is necessary
to re-scale the forcing term with (a/L)2, that is, to replace f by (a/L)2 f,
and let a Q . to arrive to the following system:

“tv − n Du − u × rot v+Np=f,

div u=0, (3)

v=−L2 Du,

where L > 0 is the size of the periodic domain. Here again one can easily
establish the global regularity of the NS-. system (3) and the existence of
the global attractor ANS − .. Denoting by G=||f||L2 L2n−2 the dimensionless
Grashof number we prove that in the case of the system (3) there exists a
universal constant C > 0 such that dimH ANS − . [ dimF ANS − . [ CG2/3.
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We observe that the corresponding upper bound for the dimension of the
global attractor, ANS, of the classical NSE is dimH ANS [ dimF ANS [

CG2/3(log(1+G))1/3 (see, for instance, [14], [15], and [37]). Hence, there
is an improvement of a logarithmic term. Following the usual method of
linearizing (3) around the corresponding Kolmogorov flow [3], [31], [35],
[39], [40] we find a lower bound for the dimension of the global attractor
ANS − . − Kol. Indeed, we show that for this special flow there exists a universal
constant c > 0 such that

cG2/5 [ dim ANS − . − Kol,

while the corresponding lower bound for the global attractor of the NSE
ANS − Kol based on the Kolmogorov flow is

cG2/3 [ dim ANS − Kol,

Therefore there is a discrepancy between our upper and lower bounds for
the global attractor ANS − . of the system (3), while these estimates are
sharp (up to a logarithmic term) in the NSE case. We believe that our
lower bound estimate using the Kolmogorov flow approach is sharp and
there is no room for improvement by using the Kolmogorov flows as base
solutions. Therefore this poses the question about how sharp are our esti-
mates, both from above and below, for the system (3), a subject of future
research.

1. SPACE PERIODIC NAVIER–STOKES-a MODEL

We shall be dealing with the following two-dimensional Navier–Stokes-a
model (also known as viscous Camassa–Holm equations) [19]:

“t(u − a2 Du) − nD(u − a2 Du) − u × rot(u − a2 Du)=−Np+f,

div u=0, (4)

u(0)=u0,

where u is the velocity vector field, p is the modified pressure, and n > 0 is
the viscosity coefficient. The spatial variable x belongs to the two-dimen-
sional torus T=[0, 2pL]2 and a2=c2L2 is a parameter (L2 is singled out
here so that c is dimensionless).

Next, since div u=0, we have

Du=−rot rot u+N div u=−rot rot u.
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The operator rot has the conventional meaning and in two dimensions
maps vectors to scalars and scalars to vectors:

rot u=“1u2 − “2u1; rot k=“2k · e1 − “1k · e2. (5)

It will be convenient in what follows to identify scalars and normal vectors
(that is, vectors parallel to e3). We also set n=e3.

We assume that >T u0(x) dx=>T f(x) dx=0. Then it can easily be
shown that >T u(t, x) dx=0 for all t > 0. This shows that there exists a
stream function k:

u=−rot k=n × Nk. (6)

The unique choice of k is fixed by the condition >T k dx=0.
The passage for incompressible equations of hydrodynamics in two

dimensions from a vector system to a single scalar equation is classical and
well known. This is especially convenient for the analysis of the attractor
dimension (see [17], [27], where the Lieb–Thirring inequality has been
avoided). We substitute (6) into the first equation in (4) and apply the
operator rot.

Using the formula

rot rot k=−Dk · n=−Dk (7)

we have for u=−rot k=n × Nk and v=n × Nj

rot u=Dk, rot Du=D2k, rot(u × rot v)=−J(k, Dj) (8)

and we obtain

“t(Dk − a2 D2k) − nD(Dk − a2 D2k)+J(k, Dk − a2 D2k)=rot f — F. (9)

Setting j=Dk − a2 D2k and taking into account the condition >T k dx=0
we have k=(D − a2 D2)−1 j and finally obtain

“tj − n Dj+J((D − a2D2)−1 j, j)=F,

j(0)=rot(u0 − a2 Du0).
(10)

The bilinear operator J (the Jacobian) here is defined as follows

J(a, b)=n × Na · Nb=“1a “2b − “2a “1b
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and has the following well-known properties:

F
T

J(a, b) dx=0, F
T

J(a, b) c dx=F
T

J(b, c) a dx, F
T

J(a, b) b dx=0.
(11)

We define the phase space H=L2 5 {j: > j dx=0} with L2-norm
|| · ||H=|| · ||. It is standard to show (see, for instance, [2], [3], [14], [37])
that for j0 ¥ H and F ¥ H−1 the Eq. (10) has a unique solution
j ¥ C([0, T]; H) 5 L2(0, T; H1) (accordingly, in terms of Eq. (4), u0 ¥ H3,
f ¥ L2). Hence, the semi-group St: H Q H is defined: Stj0=j(t), where
j(t) is the solution of (10).

Since F ¥ H−1 the Eq. (10) holds in H−1. Therefore all our a-priori
estimates below are formal and can be justified rigorously either by using
the usual Galerkin procedure or by generalizations of the inner products
and the identities in (11) (see, for example, [3], [14], [37]).

Multiplying (10) by j and using (11) we obtain

“t ||j||2+2n ||Nj||2=2(rot f, j)=2(f, rot j)

[ 2 ||f|| ||rot j||=2 ||f|| ||Nj|| [ n ||Nj||2+n−1 ||f||2.

Using the Poincaré and Gronwall inequalities and integrating with respect
to t we find

lim sup
t Q .

||j(t)||2 [
||f||2

l1n2 ,

sup
j0 ¥ B

lim sup
t Q .

1
t

F
t

0
||Nj(y)||2 dy [

||f||2

n2

(12)

for bounded subsets B in H. Hence the semi-group St has an absorbing ball
(of radius 2 ||f||2/(l1n2)) in H and a global attractor A=ANS − a … H which
is a compact (A Œ H), strictly invariant (StA=A), and globally attracting
set in the phase space H. (For the theory of global attractors see [3], [14],
[21], [29], [37].)

Along with (10) we consider the variational equation corresponding
to (10):

“tF=n DF−J((D−a2D2)−1 j(t), F)−J((D−a2D2)−1 F, j(t))=: L(t, j0) F,

F(0)=t. (13)
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It is standard to show that this equation has a unique solution denoted by

L(t, j0) t :=F(t).

Using the general theorems in [2] , [3] , [37] we can show that the semi-
group St is differentiable on the attractor ANS − a and the differential is the
linear operator

DSt(j0)=L(t, j0): t ¥ H Q F(t) ¥ H,

||St(j0+t) − Stj0 − L(t, j0) t|| [ h(||t||, T) ||t||,

where t ¥ [0, T] and h(r, T) Q 0 as r Q 0. Moreover, the differentials
DStj0 are continuous (even Hölder continuous) with respect to j0 in the
norm || · ||L(H Q H).

We now estimate the fractal dimension of the attractor.

Theorem 1. The fractal dimension of the attractor ANS − a of the
Eq. (10) is finite and satisfies for an absolute constant c5 the estimate

dimF A [ c5G2/3 min(log(1+1/c2), log(1+G))1/3 (14)

where G=||f||/(n2l1) is the Grashof number and l1=1/L2 is the first
eigenvalue of the Laplacian and c=a/L.

Proof. In the proof below we follow the ideas and estimates in [15]
(see also [17] and [27]). We recall the definition of the global Lyapunov
exponents. The numbers q(m) (the sums of the first m global Lyapunov
exponents) are defined for m=1, 2,... as follows:

q(m)=lim
t Q .

1
t

log w̄k(t),

where

w0(t, j)=1,

wm(t, j)=a1(t, j) a2(t, j) · · · am(t, j),

w̄m(t)=sup
j ¥ A

wm(t, j),

the aj(t, j) being the eigenvalues of the self-adjoint positive operator
(LL*)1/2 ordered according to their magnitude in a monotone non-increas-
ing order. The quantities q(m) play a vital role in the estimates of the
dimension of the global attractor and this will be used later (see [13], [14],
[37]).
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Using the trace formula [13], [37] we have for the numbers q(m) the
estimate

q(m) [ lim sup
t Q .

sup
j0 ¥ A

sup
i=1,..., m

ti ¥ H

1
t

F
t

0
Tr[L(y, j0) p Qm(y)] dy, (15)

where the operator L is defined in (10) and Qm(y) is the orthogonal
projection in H onto Span{F1(y),..., Fm(y)} and Fi is the solution of (13)
with F(0)=ti. Since Fi(y) ¥ H1 for y > 0, we denote by hi=hi(y) ¥ H 5 H1,
i=1,..., m an orthonormal (in H) basis of Span{F1(y),..., Fm(y)} and set
vi=vi(y)=n × N(D − a2D2)−1 hi. Then using the definition of L in (13), the
properties of the Jacobian (11), and the orthonormality of the hj we obtain

Tr[L(y, j0) p Qm(y)]= C
m

j=1
(L(t, j0) hj, hj)

=−n C
m

j=1
||Nhj ||2 − C

m

j=1
F

T
J((D−a2D2)−1 hj, j(t)) hj dx

=−n C
m

j=1
||Nhj ||2 −F

T
C
m

j=1
hjvj ·Nj dx

[ −n C
m

j=1
||Nhj ||2+F

T

1 C
m

j=1
h2

j
21/2 1 C

m

j=1
|vj |221/2

|Nj| dx

[ −n C
m

j=1
||Nhj ||2+||r||1/2

.
1 C

m

j=1
||hj ||221/2

||Nj||

=−n C
m

j=1
||Nhj ||2+||r||1/2

. m1/2 ||Nj||,

where

r(x)= C
m

j=1
|vj(x)|2.

We now use the estimate for r from Lemma 1 below (see (17)), the lower
bound for the eigenvalues of the Laplacian

C
m

j=1
||Nhj ||2 \ C

m

j=1
lj \ c1l1 C

m

j=1
j \

c1

2
l1m2,
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and the estimate (12). We obtain

q(m) [ g(m)=−
c1

2
l1nm2+`2 c(c) m1/2 ||f||

n
.

It is well known that the following estimate holds for the Hausdorff
dimension of A (see, for instance, [3], [13], [14], [37]):

dimH A [ dg,

where dg is the positive root of the equation g(d)=0. It was shown in [9]
that the same upper estimate also holds for the fractal dimension:

dimF A [ dg.

Therefore

dimF A [ (2 `2 c(c)/c1)2/3 G2/3=(8 `2/(`2 − 1)2)2/3 c(c)2/3 G2/3

=16.33c(c)2/3 G2/3. (16)

We observe that in view of (18) this estimate can be written (as c Q 0) in
the form

dimF A [ 16.33c1/3
2 (log(1/c))1/3 G2/3.

Finally, since the right hand side of the estimate (12) is independent of a we
can use the estimate for r from the classical theory [14], [15], [37]

||r||. [ c3
11+log 1l−1

1 C
m

j=1
||Nhj ||222 ,

which is also independent of a. We then immediately infer the classical
estimate

dimF A [ c4(log(1+G))1/3 G2/3.

Combining these two estimates for dimF A we obtain (14) and complete
the proof of the theorem. i

Lemma 1. Suppose that the family {hj}
m
j=1 is orthonormal in

H: > hihj dx=dij. For vj=n × N(D − a2D2)−1 hj we define the function r:

r(x)= C
m

j=1
|vj(x)|2= C

m

j=1
|N(D − a2D2)−1 hj(x)|2.
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Then r satisfies the estimate

||r||. [ 2c(c)2, (17)

where c(c) is given in (19) and for an absolute constant c2 (and c1=
(`2 − 1)2/4)

c(c)2 [
1

2pc1

5log 11+c1c2

c1c2
2−

c1c2

(1+c1c2)2
6 for all c > 0,

c(c)2 [ c2 log(1/c) as c Q 0.

(18)

Proof. For h=hj ¥ H … L2 we have v=vj ¥ H3 and hence by the
Sobolev embedding theorem

||v||.=||N(D − a2D2)−1 h||. [ c(c) ||h||

for some dimensionless constant c(c) to be evaluated later. Next, suppose
that t1,..., tm ¥ R and ;m

j=1 t2
j =1. Then using the orthonormality of the hj

and the above inequality we obtain

: C
m

j=1
tjvj(x) : [ c(c) >C

m

j=1
tjhj

>=c(c) 1F 1 C
m

j=1
tjhj(x)2

2

dx2
1/2

=c(c) 1 C
m

i, j=1
tjtidij

21/2

=c(c) 1 C
m

j=1
t2

j
21/2

=c(c).

Using the representation vj(x)=v1
j (x) · e1+v2

j (x) · e2 we find that

1 C
m

j=1
tjv

1
j (x)2

2

+1 C
m

j=1
tjv

2
j (x)2

2

[ c(c)2.

First, we set tj=v1
j (x)/(;m

j=1 (v1
j (x))2)1/2 and later we set tj=v2

j (x)/
(;m

j=1 (v2
j (x))2)1/2. We obtain

r(x)= C
m

j=1
|vj(x)|2= C

m

j=1
(v1

j (x))2+ C
m

j=1
(v2

j (x))2 [ 2c(c)2,

which proves (17).
We now set L=1 so that T=[0, 2p]2 and a=c. Since c(c) is dimen-

sionless, this involves no loss of generality. To find the constant c(c) we use
the Fourier series

h(x)= C
k ¥ Z

2
0

ake ikx, Z2
0=Z2 0{0}, ||h||2=4p2 C

k ¥ Z
2
0

|ak |2.
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The eigenvalues of the Laplacian are known explicitly, hence,

(D − a2D2)−1 h(x)= − C
k ¥ Z

2
0

ak

k2+c2k4 e ikx,

|N(D − a2D2)−1 h(x)| [ C
k ¥ Z

2
0

|ak | |k|
k2+c2k4

[ 1 C
k ¥ Z

2
0

k2

(k2+c2k4)2
21/2 1 C

k ¥ Z
2
0

|ak |221/2

=c(c) ||h||,

where

c(c)2=
1

2p
C

k ¥ Z
2
0

1
k2(1+c2k2)2 . (19)

We now order the eigenvalues of − D according to magnitude and mul-
tiplicity:

1=l1 [ l2 [ · · · ,

where

{lp, p=1,...}={k2=k2
1+k2

2, k=(k1, k2) ¥ Z2
0}.

Then

c(c)2=
1

2p
C

k ¥ Z
2
0

1
k2(1+c2k2)2=

1
2p

C
.

p=1

1
lp(1+c2lp)2 .

It is well known that in two dimensions

lp \ c1l1 p=c1 p, (l1=1)

for an absolute constant c1. For instance, we can take c1=(`2 − 1)2/4
(see [20], where it is shown that lp \ k(p)/4, k(p)=(`1+p − 1)2

and, consequently, since the function k(p)/p is increasing, k(p) \

k(1) p=c1 p). Therefore

2pc(c)2 [ C
.

p=1

1
c1 p(1+c2c1 p)2=

1
c1(1+c2c1)2+ C

.

p=2

1
c1 p(1+c2c1 p)2

[
1

c1(1+c2c1)2+F
.

1

dx
c1x(1+c2c1x)2=

1
c1

5log 11+c1c2

c1c2
2−

c1c2

(1+c1c2)2
6,

which proves (18) and the lemma. i
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Remark 1. Inequalities for the L.-norm of the function r defined by
an orthonormal family {hj} appeared for the first time in [30]. Foias (see
[37] and the first edition of this book) then proposed a simple direct proof
that we followed in our proof above.

3. NAVIER–STOKES-a MODEL ON THE
TWO-DIMENSIONAL SPHERE

Let S2 be the unit sphere with spherical coordinates l, 0 [ l [ 2p (the
longitude) and f, −p/2 [ f [ p/2 (the latitude). We assume below for
simplicity that the radius R=1, but as in the periodic case all our results
and estimates mentioned below are written in such a form that they hold
for any R > 0. We also assume that the sphere rotates around the axis
through the poles f= ± p/2 with constant angular velocity w. By analogy
with (4) we write the equations of the Navier–Stokes-a model on the rotat-
ing sphere as follows:

“t(u − c2 Du) − nD(u − c2 Du) − u × rot(u − c2 Du)+nl × u=−Np+f,

div u=0, (20)

u(0)=u0,

where c=a/R. Here u is the tangent velocity vector, p is the modified
pressure, f is the forcing term, l=2w sin f is the Coriolis parameter, n is a
unit outward normal vector. We observe that for a=0 we obtain the clas-
sical Navier–Stokes equations on the two-dimensional rotating sphere [5],
[26], [27].

The operators div and N=grad have the conventional meaning: for a
scalar k and a vector u

Nk=
1

cos f
“lk · el+“fk · ef, div u=

1
cos f

(“lul+“f(cos fuf))

Next, Du is the vector Laplacian of u (the Laplace–de Rham operator)

Du=Nu − rot rot u=N div u − n × N div(n × u).

Here for a vector u and a scalar k

rot u=−n · div (n × u), rot k=−n × Nk,

respectively. In addition, as in the planar case

rot rot k=−n · div Nk=−n · Dk,
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where D is the scalar Laplacian and in spherical coordinates

Dk=div grad k=
1

cos f
“f(cos f “fk)+

1
cos2f

“
2
lk.

Using the condition div u=0 we introduce the stream function
k: u=n × Nk. Substituting this in the first equation in (20) and applying
the operator rot (to vectors) we obtain, similarly to the planar case, the
scalar vorticity equation

“t(Dk − c2 D2k) − nD(Dk − c2 D2k)+J(k, Dk − c2 D2k+l)=rot f — F,
(21)

or setting j=Dk − c2 D2k we write this equation in the form

“tj − n Dj+J((D − c2D2)−1 j, j+l)=F,

j(0)=rot(u0 − c2 Du0), (22)

where for the Jacobian operator we have

J(a, b)=(n × Na) · Nb=div (a rot b)=
1

cos f
(“la “fb − “fa “lb),

and, in addition to (11) we have

F
S2

J((D − c2D2)−1 j, l) j dS=F
S2

J(k, l)(Dk − c2D2k) dS=0. (23)

To obtain an upper bound for the dimension of the attractor we
proceed exactly as in Section 1 preserving the notation used there. In view
of (23) the estimate (12) holds for the solutions j of (22).

As in Lemma 2 we have for the function r

r(s)= C
m

j=1
|vj(s)|2= C

m

j=1
|N(D − c2D2)−1 hj(s)|2

the estimate

||r||. [ 2cS2(c)2, (24)

where cS2(c) is the dimensionless constant in the embedding inequality

||N(D − c2D2)−1 h||. [ cS2(c) ||h||. (25)
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Lemma 2. The constant cS2(c) satisfies the following explicit estimate:

cS2(c) [ 1 1
4p

C
.

n=1

2n+1
n(n+1)(1+c2n(n+1))2

21/2

. (26)

Proof. We recall the structure of the spectrum of the Laplacian on
the unit sphere (see, for instance, [22], [38]):

− DYmn=n(n+1) Ymn,

where Ymn=Ymn(l, f), n=1, 2,..., m=−n,..., n are the orthonormal
spherical harmonics and the eigenvalue n(n+1) has multiplicity 2n+1.

We also recall the following important identity [26]. At each point
s ¥ S2

C
n

m=−n
|NYmn(s)|2=

1
4p

(2n+1) n(n+1).

Using the Fourier series in spherical harmonics we write

h(s)= C
.

n=1
C
n

m=−n
hmnYmn(s), ||h||2= C

.

n=1
C
n

m=−n
|hmn |2

and obtain:

|N(D − c2D2)−1 h(s)|

=: C
.

n=1
C
n

m=−n

hmn

n(n+1)+c2(n(n+1))2 NYmn(s) :

=: C
.

n=1

1
n(n+1)+c2(n(n+1))2 C

n

m=−n
hmnNYmn(s) :

[ C
.

n=1

1
n(n+1)+c2(n(n+1))2

1 C
n

m=−n
|hmn |221/2 1 C

n

m=−n
|NYmn(s)|221/2

=
1

`4p
C
.

n=1

(n(n+1)(2n+1))1/2

n(n+1)+c2(n(n+1))2
1 C

n

m=−n
|hmn |221/2

[
1

`4p
1 C

.

n=1

(n(n+1)(2n+1))
(n(n+1)+c2(n(n+1)2))2

21/2

||h||

=
1

`4p
1 C

.

n=1

(2n+1)
n(n+1)(1+c2n(n+1))2

21/2

||h||,
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which proves (26). Also, as in Lemma 1 we have cS2(c)2 [ c5 log(1/c) as
c Q 0. i

Before we write the estimate for the global Lyapunov exponents we
need another elementary inequality, which we prove for the sake of
completeness. Denoting by lj the eigenvalues of the Laplacian on the unit
sphere counting multiplicities we have

{lj j=1,...}={2, 2, 2, 6, 6, 6, 6, 6,..., k(k+1),..., k(k+1)
z

2k+1 times

,...}. (27)

In other words, lj=[j1/2]([j1/2]+1).
The following inequality holds:

C
m

j=1
lj \

l1

4
m2. (28)

Since on the unit sphere l1=2, (28) is equivalent to the inequality
;m

j=1 lj \ m2/2. We represent m in the form

m=n2+p, 0 [ p [ 2n

so that n2 [ m < (n+1)2 for some n. Then, in view of (27),

C
m

j=1
lj= C

n − 1

k=1
k(k+1)(2k+1)+(p+1) n(n+1)

=
n2(n2 − 1)

2
+(p+1) n(n+1) \

(n2+p)2

2
=

m2

2

for 0 [ p [ 2n.
In exactly the same way as in the planar case we obtain for the sphere

the following explicit estimate for the sums of the first m global Lyapunov
exponents q(m):

q(m) [ g(m)=−
l1n

4
m2+`2 cS2(c) m1/2 ||f||

n
.

Hence, we obtain for the dimension of the attractorA=ANS − a of the Eq. (20)
the following estimate in terms of the Grashof number G=||f||/(l1n2)
(where l1=2/R2):

dimF A [ (4 `2 cS2(c))2/3 G2/3 [ 2 1 1
p

C
.

n=1

2n+1
n(n+1)(1+c2n(n+1))2

21/3

G2/3,

where c=a/R.
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In conclusion, we observe that as in the planar case the estimate for
the classical Navier–Stokes equations in [27] holds for the Eq. (20) uni-
formly with respect to c:

dimF A [ 4(3p)−1/3 G2/3(log G)1/3.

We finally obtain

dimF A [ G2/3 · min(32cS2(c)2, 64/(3p) log G)1/3.

4. LOWER BOUNDS FOR THE SPACE PERIODIC
NAVIER–STOKES-a MODEL

We now return to the Eq. (4) and obtain in this section lower bounds
for the dimension of the attractor A=ANS − a constructed in Section 1.
This is in order to check how sharp are our upper bounds. Since a global
attractor is a maximal strictly invariant compact set, it follows that the
attractor contains the unstable manifolds of stationary points, that is,
the invariant manifolds along which the solutions tend exponentially to the
stationary point as t Q − . [3].

The family of stationary solutions that our analysis is based on is the
well-known family of Kolmogorov flows [3], [31], [35], [39], [40].

We set L=1 (so that a=c) and consider the following family of
forces (see [31]) depending on the integer parameter s:

f=fs=˛f1=
1

`2p
n2ls2 sin sx2,

f2=0,

(29)

where l=l(s) is a parameter to be chosen later. Then

||f||=n2ls2, G=ls2 (30)

and

rot fs=Fs=−
1

`2 p
n2ls3 cos sx2. (31)

Corresponding to (31) is the stationary solution

j=js=−
1

`2 p
nls cos sx2. (32)
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of the equation

“tj − n Dj+J((D − c2D2)−1 j, j)=Fs. (33)

In fact, since js depends only on x2, it follows that (D − c2D2)−1 js also
depends only on x2 and therefore J((D − c2D2)−1 js, js) — 0; the equality
− n Djs=Fs is verified directly. We linearize (33) about the stationary
solution js and consider the eigenvalue problem

Ljs
=J((D − c2D2)−1 js, j)+J((D − c2D2)−1 j, js) − n Dj=−sj. (34)

We look for unstable eigenmodes j with Re s > 0.
We use the orthonormal basis of trigonometric functions, which are

the eigenfunctions of the Laplacian,

3 1

`2 p
sin kx,

1

`2 p
cos kx4 , kx=k1x1+k2x2,

k ¥ Z2
+={k ¥ Z2

0, k1 \ 0, k2 \ 0} 2 {k ¥ Z2
0, k1 \ 1, k2 \ 1}

and represent j as a Fourier series

j=
1

`2 p
C

k ¥ Z
2
+

ak cos kx+bk sin kx.

Substituting this into (34) and using the equality J(a, b)=−J(b, a) we
obtain

ls

`2p
C

k ¥ Z
2
+

1 1
s2+c2s4 −

1
k2+c2k4

2 J(cos sx2, ak cos kx+bk sin kx)

+ C
k ¥ Z

2
+

(k2+ŝ)(ak cos kx+bk sin kx)=0, (35)

where ŝ=s/n. Next, we have the following two similar formulas

J(cos sx2, cos(k1x1+k2x2))

=−k1s sin sx2 sin(k1x1+k2x2)

=
k1s
2

(cos(k1x1+(k2+s) x2) − cos(k1x1+(k2 − s) x2),

J(cos sx2, sin(k1x1+k2x2))

=k1s sin sx2 cos(k1x1+k2x2)

=
k1s
2

(sin(k1x1+(k2+s) x2) − sin(k1x1+(k2 − s) x2).

(36)
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We substitute formulas (36) into (35) and take the scalar product of the
result with (`2 p)−1 cos(k −

1x1+k −

2x2). We obtain the following equation
for the coefficients akŒ1, kŒ2

, which we write omitting the prime (the equation
for bkŒ1, kŒ2

is exactly the same):

−
lk1s2

2 `2 p
1k2

1+(k2+s)2+c2(k2
1+(k2+s)2)2 − (s2+c2s4)

(s2+c2s4)(k2
1+(k2+s)2+c2(k2

1+(k2+s)2)2)
2 ak1k2+s

+
lk1s2

2 `2 p
1k2

1+(k2 − s)2+c2(k2
1+(k2 − s)2)2 − (s2+c2s4)

(s2+c2s4)(k2
1+(k2 − s)2+c2(k2

1+(k2 − s)2)2)
2 ak1k2 − s

+(k2
1+k2

2+ŝ) ak1k2
=0. (37)

We set here

ak1k2
1 k2+c2k4 − s2 − c2s4

(1+c2s2)(k2+c2k4)
2=: ck1k2

.

Setting here as in [31]

k1=t, k2=sn+r, and ctsn+r=en,

t=1, 2,..., r ¥ Z, rmin < r < rmax,

where the numbers rmin, rmax satisfy rmax − rmin < s and will be specified
below (see Fig. 1), and introducing

Pc(a, b)=a2+b2+c2(a2+b2)2 (38)

we obtain for each t and r the following recurrence relation:

dnen+en − 1 − en+1=0, n=0, ± 1, ± 2,..., (39)

where

dn=
2 `2 p(1+c2s2) Pc(t, sn+r)(t2+(sn+r)2+ŝ)

(Pc(t, sn+r) − Pc(s, 0)) lt
. (40)

We note that for c=0 the recurrence relation (39), (40) agrees exactly with
the recurrence relation from [31].

We look for non-trivial decaying solutions {en} of (39), (40). Each non-
trivial decaying solution with Re ŝ > 0 produces an unstable eigenfunction
j of the eigenvalue problem (34).
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Fig. 1. The region A(d).

Theorem 2. Given an integer s > 0 let a pair of integers t, r satisfying
the conditions

t2+r2 < s2/3, t2+(−s+r)2 > s2, t2+(s+r)2 > s2, t \ ds,
(41)

rmin < r < rmax, rmin=−
s
6

, rmax=
s
6

, 0 < d < 1/`3

be fixed (see Fig. 1). For any l > 0 there exists a unique real eigenvalue
ŝ=ŝ(l), which increases monotonically as l Q . and satisfies the inequality

c1(c, t, r, s) l [ ŝ(l) [ c2(c, t, r, s) l. (42)

The unique l0=l0(s) solving the equation

ŝ(l0)=0

satisfies the inequality

2ps(1+c2s2) d2 < l0 <
20 `5 p

9 `2
d−2s(1+c2s2) for c \ 0,

2p d2s < l0 <
20p

3 `6
d−2s for c=0.

(43)
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Proof. We first observe that the following inequalities hold for any
(t, r) satisfying (41):

s2 [ t2+(−s+r)2=dist((0, s), (t,r))2 [ dist((0, s), C)2=(5/3) s2

s2 [ t2+(s+r)2=dist((0, −s), (t,r))2 [ dist((0, −s), B)2=(5/3) s2
(44)

see Fig. 1, where B=(`11 s/6, s/6) and C=(`11 s/6, −s/6). Next, in
view of (41) for any real ŝ satisfying ŝ > − t2 − r2 we have in the recurrence
relation (39), (40)

dn > 0 for n ] 0 and lim
|n| Q .

dn=.. (45)

The main tool in the analysis of (39) are continued fractions and a variant
of Pincherle’s theorem (see [28], [31], [35], [39]) saying that under con-
dition (45) the recurrence relation (39) has a decaying solution {en} with
lim|n| Q . en=0 if and only if

− d0=
1

d−1+
1

d−2+ · · ·

+
1

d1+
1

d2+ · · ·

. (46)

Singling out the dependence on ŝ we denote left-hand side of this equation
by f(ŝ) and the right-hand side by g(ŝ)

f(ŝ)= − d0=
2 `2 p(1+c2s2) Pc(t, r)(t2+r2+ŝ)

(Pc(s, 0) − Pc(t, r)) lt
, (47)

g(ŝ)=
1

d−1+
1

d−2+ · · ·

+
1

d1+
1

d2+ · · ·

. (48)

We deduce from (47) that

f(−t2 − r2)=0, and f(ŝ) Q . as ŝ Q .

and from (48) and (40) that

g(ŝ) <
1

d−1
+

1
d1

, g(ŝ) Q 0 as ŝ Q ..

Hence, there exists a ŝ > − t2 − r2 such that

f(ŝ)=g(ŝ). (49)
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From elementary properties of continued fractions we deduce as in [31],
[39] that the ŝ so obtained is unique and increases monotonically with l.

To establish (42) we deduce from (49) and (48) that

1

d−1+
1

d−2

+
1

d1+
1
d2

< f(ŝ) <
1

d−1
+

1
d1

. (50)

Taking into account the conditions t2+(−s+r)2 > s2 and t2+(s+r)2 > s2

we obtain from the right-hand inequality in (50)

(2 `2 p(1+c2s2))2 Pc(t, r)(t2+r2+ŝ)

(Pc(s, 0) − Pc(t, r)) lt

<
(Pc(t, −s+r) − Pc(s, 0)) lt

Pc(t, −s+r)(t2+(−s+r)2+ŝ)
+

(Pc(t, s+r) − Pc(s, 0)) lt
Pc(t, s+r)(t2+(s+r)2+ŝ)

<
lt

s2+ŝ
5(Pc(t, −s+r) − Pc(s, 0))

Pc(t, −s+r)
+

(Pc(t, s+r) − Pc(s, 0))
Pc(t, s+r)

6 <
2lt

s2+ŝ
.

(51)

Hence,

(ŝ+t2+r2)(ŝ+s2)
(lt)2 <

2(Pc(s, 0) − Pc(t, r))

(2 `2 p(1+c2s2))2 Pc(t, r)
(52)

and therefore

ŝ(l) [ c2(c, t, r, s) l as l Q ..

From the left-hand side inequality in (50), where d−1, d1, d−2, d2, f > 0,
we see that

fd1+
f
d2

> 1 and fd−1+
f

d−2
> 1. (53)

Next,

d−1 f=
(ŝ+t2+r2)(ŝ+t2+(−s+r)2)

(lt)2

·
(2 `2 p(1+c2s2))2 Pc(t, r) Pc(t, −s+r)

(Pc(s, 0) − Pc(t, r))(Pc(t, −s+r) − Pc(s, 0))
,

d1 f=
(ŝ+t2+r2)(ŝ+t2+(s+r)2)

(lt)2

·
(2 `2 p(1+c2s2))2 Pc(t, r) Pc(t, s+r)

(Pc(s, 0) − Pc(t, r))(Pc(t, s+r) − Pc(s, 0))

(54)
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and

f
d−2

=
ŝ+t2+r2

ŝ+t2+(−2s+r)2 ·
Pc(t, r)

Pc(s, 0) − Pc(t, r)
·
Pc(t, −2s+r) − Pc(s, 0)

Pc(t, −2s+r)
,

f
d2

=
ŝ+t2+r2

ŝ+t2+(2s+r)2 ·
Pc(t, r)

Pc(s, 0) − Pc(t, r)
·
Pc(t, 2s+r) − Pc(s, 0)

Pc(t, 2s+r)
.

(55)

The first and third factors in (55) are clearly less than one. Therefore, since

f
d−2

,
f
d2

<
Pc(t, r)

Pc(s, 0) − Pc(t, r)
=

t2+r2+c2(t2+r2)2

s2+c2s4 − t2 − r2 − c2(t2+r2)2 <
1
2

, (56)

uniformly with respect to c, provided that t2+r2 < s2/3, we obtain from
(53)

fd−1 > 1
2 , fd1 > 1

2 . (57)

Combining this with the first or second equality in (54) we obtain

ŝ \ c1(c, t, r, s) l,

which proves (42).
The estimate (42) shows that for (t, r) satisfying (41) there exists a

unique ŝ, which increases monotonically with l and, hence ŝ=0 for some
l=l0 : ŝ(l0)=0. To estimate this l0 from below we set ŝ=0 in (52) and
obtain

l0 > 2ps(1+c2s2)(1+r2/t2)1/2 1 Pc(t, r)
Pc(s, 0) − Pc(t, r)

21/2

> 2ps(1+c2s2) 1Pc(t, r)
Pc(s, 0)

21/2

> 2ps(1+c2s2) d2,

where we used the fact that in view of the condition t2+r2 > d2s2, 0 < d < 1
(see (41)), we have Pc(t, r)/Pc(s, 0) > (s2d2+c2s4d4)/(s2+c2s4) > d4.

To get an upper bound for l0 we consider two cases: r \ 0 and r < 0.
If r \ 0, we set ŝ=0 in the expression for d1 f in (54) and use (57):

l0 <
4p(1+c2s2)(t2+r2)1/2 (t2+(s+r)2)1/2

t

×1 Pc(t, r)
Pc(s, 0) − Pc(t, r)

21/2 1 Pc(t, s+r)
Pc(t, s+r) − Pc(s, 0)

21/2

. (58)

772 Ilyin and Titi



By (44) we find that

Pc(t, s+r) < (25/9)(s2+c2s4) for all c \ 0 and P0(t, s+r) < (5/3) s2.

Next, since r \ 0 we have for c \ 0

Pc(t, s+r) − Pc(s, 0) \ (t2+r2)(1+c2s2) \ d2s2(1+c2s2).

Combining all these inequalities and t \ ds and taking into account (56) for
the second factor in (58) we find

l0 <
20 `5 p

9 `2
d−2s(1+c2s2), for c \ 0; l0 <

20 p

3 `6
d−2s for c=0.

(59)

If r < 0, we set ŝ=0 in the expression for d−1 f in (54) and again use
(57) and the estimate

Pc(t, −s+r) − Pc(s, 0) \ (t2+r2)(1+c2s2) \ d2s2(1+c2s2),

which holds for r [ 0 and c \ 0. As a result we obtain the same estimate
(59) and complete the proof of the theorem. i

The region in the (t, r)-plane satisfying (41) is shown in Fig. 1. Denot-
ing by d(s) the number of points of the integer lattice inside the region A(d)
we obviously have

d(s) :=#{(t, r) ¥ D(s)=Z2 5 A(d)} −& a(d) · s2 as s Q ., (60)

where a(d) · s2=|A(d)| is the area of the region A(d).
Next, taking into account the remark after (36) we see by Theorem 2

that for each pair (t, r) ¥ D(s) and the parameter l in (29), (30) chosen as
follows

l=l{c \ 0}=
20 `5 p

9 `2
d−2s(1+c2s2), and l=l{c=0}=

20 p

3 `6
d−2s (61)

there exists a unique real positive eigenvalue ŝ > 0 of multiplicity two.
Hence, the dimension of the unstable manifold near the stationary solution
js is at least 2d(s) and we obtain as a result

dim A \ 2d(s) −& 2a(d) · s2. (62)

It is reasonable to consider three cases.
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The case c=0.

Setting c=0 we recover the results of [31] with improved values of
the constants. In view of (30) and (61) we have

G=
20p

3 `6
d−2s3

and writing the estimate (62) in terms of the Grashof number G we obtain

dim A \ 2a(d) · s2 4 2 13 `6

20p
22/3

a(d) d4/3G2/3,

dim A N 2 13 `6

20p
22/3

( max
0 < d < 1/`3

a(d) d4/3) G2/3=0.006 · G2/3,

where the value of max0 < d < 1/`3 a(d) d4/3=0.012.

The case c ° 1.

Here we can obtain the following lower bound for G ’ (1/c)3. Let
0 < s < 1/c. Then

G [ 2
20 `5 p

9 `2
d−2s3

and arguing as before we obtain

dim A N 2 1 9 `2

40 `5 p
22/3

( max
0 < d < 1/`3

a(d) d4/3) G2/3=0.0032 · G2/3.

In particular, setting s −& 1/c and recalling the estimate (14) we obtain the
following estimate (which we write in terms of c since it holds for any
L > 0):

C1
1
c2 [ dim A [ C2

1
c2
1 log

1
c
21/3

.

The case c=..

We first observe that for any fixed forcing f and c Q . the dynamics
eventually becomes trivial: for c > cf all the solutions are attracted expo-
nentially to the unique stationary solution. Therefore, to get non-trivial
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dynamics we replace the forcing f by c2f in the system (4) and let c Q . to
reach the system

“t(Du) − nD(Du) − u × rot(Du)=Np+L−2f,

div u=0, (63)

u(0)=u0.

Repeating the proof of Theorem 1 we easily obtain the following
estimate for the dimension of the attractor A=ANS − .

dimF A [ (2 `2 c./c1)2/3 G2/3=14.8 · G2/3, (64)

where

c2
.=

1
2p

C
k ¥ Z

2
0

1
k6=0.741.

For the lower bound we have

G=
20 `5 p

9 `2
d−2s5

and we find as before that

dim A N 2 1 9 `2

20 `5 p
22/5 1 max

0 < d < 1/`3

a(d) d4/52 G2/5=0.016 · G2/5.

5. CONCLUSION

We consider here the two-dimensional NS-a model on the torus and
the sphere and we provide estimates to the dimension of its global attrac-
tor.

Our estimates indicate that as a Q 0 we recover the usual NSE esti-
mates, from below and above, for the dimension of the global attractor.

The case when a is comparable with the wave length of the Kolmogorov
forcing term we observe that the dimension of the global attractor grows
like (L/a)2 as a Q 0+.

For a Q . we have trivial dynamics since in this case we have effecti-
vely a milder forcing term. However, if we magnify the forcing term by
c2=(a/L)2 and let a Q ., we get a gap between the upper bound for the
dimension of the global attractor, which is like G2/3, and the lower bound
which is like G2/5. In view of the lower bound for l in (43) (which for a=.

takes the form l0 > const s3) we cannot get anything better than G2/5 using
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the Kolmogorov flows as base flows (29). Hence, to seal the gap between
the upper and lower estimates for a=. we have to consider stationary
flows other than Kolmogorov flows or to improve the upper bound (this is
unless the gap is real); a subject of future research.
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