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Abstract

In this paper we will survey our results on the Camassa—Holm equations and their relation to turbulence as discussed in S.
Chen, C. Foias, D.D. Holm, E. Olson, E.S. Titi, S. Wynne, The Camassa—Holm equations as a closure model for turbulent
channel and pipe flow, Phys. Rev. Lett 81 (1998) 5338. S. Chen, C. Foias, D.D. Holm, E. Olson, E.S. Titi, S. Wynne, A
connection between the Camassa—Holm equations and turbulent flows in channels and pipes, Phys. Fluids, in press. In particular
we will provide a more detailed mathematical treatment of those equations for pipe flows which yield accurate predictions of
turbulent flow profiles for very large Reynolds numbers. There are many facts connecting the Camassa—Holm equations to
turbulent fluid flows. The dimension of the attractor agrees with the heuristic argument based on the Kolmogorov statistical
theory of turbulence. The statistical properties of the energy spectrum agree in numerical simulation with the Kolmogorov
power law. Furthermore, comparison of mean flow profiles for turbulent flow in channels and pipes given by experimental and
numerical data show acceptable agreement with the profile of the corresponding solution of the Camassa—Holm equations.
©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Camassa—Holm equations are well suited to modeling the statistical properties of turbulent fluid flows.
We first recall the method of averaged Lagrangians and the derivation of the Camassa—Holm equations. We then
summarize the results on existence, uniqueness, and regularity of solutions to the viscous Camassa—Holm equations
and compare these results with the known results for the Navier—Stokes equations. Next, we present the estimate
of the attractor and a graph of the energy spectrum that shows the Camassa—Holm equations in a periodic box are
consistent with the Kolmogorov theory of isotropic and homogeneous turbulence. In particular, the dimension of the
attractor is bounded bif /¢4)® where is a macro-scale anfg is the Kolmogorov dissipation length and the energy
spectrum decays with the well known Kolmogorov 5/3 power law. Finally we use the Camassa—Holm equations to
model turbulent flows in channels and pipes.
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In our previous papers [5,6] the Camassa—Holm equations were also used to model turbulent flows in channels
and pipes. Here we present a theory witbonstant throughout the width of the channel that has not been discussed
before. This theory has the advantage of simplicity and builds intuition on how the method of averaged Lagrangians
works in the case of channel and pipe flows. However, this approximate theory applies well only for low to moderate
Reynolds numbers. At high Reynolds numbers the mean velocity profiles for this theory show a non-physical bump
near the boundaries just outside the viscous regime.

The difficulties with the simplified theory seem to be resolved when we alldw vary near the boundaries.
However, only for pipe flows do the experimentally produced data have Reynolds numbers high enough to exhibit
the full need for such a theory. In our previous papers [5,6] for ease of presentation this theory was derived for the
geometry of the channel. Then analogous results for the more complicated geometry of the pipe were stated. In this
paper we give the calculation specifically for the geometry of the pipe fully illuminating the mathematics behind
the theory presented already. Moreover, for completeness we discuss also other theoretical aspects of work on the
viscous Camassa—Holm equations.

2. The viscous Camassa—Holm equations

A detailed derivation of the Camassa—Holm equations appears in [6]. Basically, we decompose turbulent La-
grangian trajectories into mean and fluctuating parts, make a first order approximation, and then average in the
Lagrangian picture. To obtain a PDE we use the Euler—Pa@reauations

(3 + V) 0 (2.1)
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for the averaged Lagrangian as in [13] and then at the end add a viscous term. In such a way we obtain the
dissipative Camassa—Holm equations

a :

5v+(u-V)v+vjVuj=vAv—Vn, divu =0 (2.2)
where

v=u—(V-(o))u—03;(oi0;)dju) (2.3)

is the momentum per unit of mass. Hewes the Eulerian velocity field corresponding to the averaged Larangian
trajectory;r is a modified pressure, aads a random vector which denotes the fluctuating displacement of the actual
Lagrangian trajectory from the averaged one. The angular brackets denote averages with respect to the underlying
probability distribution of the random fluctuations in the Lagrangian trajectories. Note that our choice of the viscous
term s of the form—vAv and not—vAu. The latter case is the case of the second grade non-Newtonian fluid [9,10].

It is interesting to note that the main difference between this approach and the approach used in deriving the
Reynolds equations is the order in which the steps are performed. To derive the Reynolds equations one first
obtains the Euler equations as the critical points of the Lagrangian, one then adds the viscous term to obtain the
Navier—Stokes equations, and finally one takes ensemble averages. Whereas in our approach, we first average over
the Lagrangian fluctuation to get an approximate averaged Lagrangian, we then obtain a PDE as the critical points
for the averaged Lagrangian, and finally we add a viscous term.
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Table 1

Comparison of rigorous mathematical results for the 3d Camassa—Holm equation with the Navier—Stokes equations

Question VCHE 2DNS 3DNS

a. Existence of global weak solutions Yes Yes Yes

b. Unigueness of global weak solutions Yes Yes Unknown
c. Existence of local weak solutions Yes Yes Yes

d. Existence of global strong solutions Yes Yes Unknown
e. Existence of global attractor Yes Yes Unknown
f. Physical upper bound for dip(.A) Yes Yes Unknown
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Fig. 1. The energy spectrum of the Camassa—Holm equation in a 3d-box compared with the Kolmogorov 5/3 power law.

3. Space periodic flows

Existence, uniqueness, and regularity of solutions to the Camassa—Holm equations in the period case are studied
in [12]. The rigorous mathematical results are comparable among the 3d viscous Camassa—Holm equations (VCHE),
the 2d Navier—Stokes (2DNS), and the 3d Navier—Stokes (3DNS). Table 1 summarizes what is known so far. Note
that the mathematical theory of the 3d VCHE does not have the pitfalls of the 3DNS equations.

In the case of the Camassa—Holm equations the estimate fg dijagrees with the Landau-Lifschitz heuristic
argument for number of degrees of freedom for fully developed turbulent flows. In particular [12] the fractal
dimension statisfies

N2 /o3
dimf(A)fco(a> (E) 3.1

wheref is a macro-scaldy is the analogue of the Kolmogorov’s classical dissipation length. The symmetries of the
periodic box imply the Lagrangian fluctuations hgeg = 0 and(c;0;) = C(zgl"j. Thuse is a length independent

of position related to the statistics of the Lagrangian fluctuations. Scaling arguments for channels and pipes indicate
thata is proportional to?. Therefore, the first factor is constant and we obtain exactly the classical estimate.

Recentnumerical experiments [4] carried outfoe 1/32 show thatthe energy spectrum of the 3d Camassa—Holm
equations is remarkably similar to the accepted theoretical picture for the Navier—Stokes equations. This agreement
is demonstrated in Fig. 1.

Itis encouraging how well Kolmogorov theory of 3d turbulence agrees with the statistical properties of the viscous
Camassa—Holm equations. This is particularly interesting, in light of the fact that the mathematically rigorous results
for the viscous Camassa—Holm equations compare more easily with the 2DNS equations. Recall that the 2DNS
equations are consistent with the Kraichnan statistical theory of turbulence rather than the 3d Kolmogorov theory.
Note that the estimates of din@4) for the 3d VCHE is consistent with the Kolmogorov theory of 3d turbulence in



52 S. Chen et al./Physica D 133 (1999) 49-65

-------- flow

Fig. 2. Choice of coordinates for the infinite channel.

the same way as the dimension of the attractor for the 2DNS equations are consistent with the Kraichnan theory of
turbulence [7,11].

4. The channel geometry
We consider fluid flowing between two parallel plates shown in Fig. 2 separated by a distadce of 2
4.1. The viscous Camassa—Holm in the channel

The time independent version of Eq. (2.2) is given by

(u-Vyv+v;Vu; =vVv — Vr, divu =0 (4.2)
where again
v=u—(V-(0)u—09;({o;0;)d;u) (4.2)

is the momentum per unit of mass. Sinceepresents a mean velocity, solutions to this equation correspond to
statistically stationary flows in thedirection. The even symmetry of the mean velocity about the mid-plane of the
channel and the translation invariance in thdirection implies that;, which points in thex direction, depends
only onz and is even symmetric. Similarly, the ensemble averages of the fluctuatimmy depend on. Thus we
write

u=(U().00, o’ =(3), and B(z)= (o3)
and substitute into Eq. (4.1). Noting that
V.-(o)=p, 3 ({oi0))dju) = (@?U’Y, and v=(V(2),0,0)

we obtain the time-independent viscous Camassa—Holm equations for the channel

W =9,  0=dm, and —VU =a.x (4.3)
where
V=U-— ,B/U _ (Ole/)/ (4_4)

subject to the boundary conditions

U(xd) =0 and vU'(£d) = F1o
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wherery is the boundary shear stress. We also requirelthiatsymmetric across the channel. Integrating the third
equation in Eq. (4.3) gives

7= f(x,y) —+—/ VU’ dz

and sod, 7w does not depend an It follows thatvV” = g is constant.
Now we write the equation in terms of non-dimensional quantities. First, we recall that the mean Reynolds number
R and the skin friction Reynolds numbgg are defined by

Usd

Ud
R=— and Rp=
1%

whereu? = 1o, and

d

1 v
M—Zd_d <) 4z

is the mean flux across the channel [17]. Then define

U d
@ where n = RoZ + . (4.5)
Us d

o) =

With this rescaling, the boundary conditions are
#(0) = ¢(2Ro) =0, ¢'(0)=1 and ¢'(2Ro) = —1.

Integratingv V" = m gives

R§ d [ ,do RodB\ n\?
Ban (o)~ (175 ) o=-n-3n (1) “o

where fp is a constant of integration and = —dzn'é/(Gu*v). Our basic ansatz is that in the viscous Camassa—

Holm equations is the same as the mean veldgiiy the Reynolds equations. Recall that the Reynolds equations are
obtained by averaging the Navier—Stokes equations [14]. In particular, we write the solution of the Navier—Stokes
equations asU + u, v, w) whereU is the mean velocity in the direction andx, v, andw are the fluctuating
Eulerian velocity components in the y, andz directions, respectively, and then take ensemble averages of the
Navier—Stokes equations to obtain

—vU" 40, (uw) =, P, 9, (wv)=—3,P, and d (w?) = —9.P
where again-d, P = po is constant. Integrating the first equation gives
—vU’ + (uw) = zpo + p1.
The boundary conditions
(uw)|;=+¢ =0 and vU'|;—+q = F10
imply

—(uw) = —? — WU’ (2)
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Table 2

Values forC, fo, f1, andé determined from direct numerical simulation for Reynolds numiRgrs- 180 and 395

Ro Pmax Ce's fO fl &
180 18 —-26.15 18 -1.6 13
395 20 —-27.31 20 -2.1 28

or by Eq. (4.5) in terms of the rescaled variables

(uw)

U
=1-——¢'(. (4.7)
70 Ro
Consequently, we can solve for the Reynolds shear stréss) /7o in terms of our nondimensionalized mean
velocity profileg.

4.2. Globally isotropic homogeneous Lagrangian fluctuations

Kolmogorov theory applies to the case of homogeneous isotropic turbulence. In this case, homogeneity implies
does not depend on position and isotropy impfies 0. For the periodic box discussed in Section 3 it is obvious, in
the absence of physical boundaries, that the fluctuations should be homogeneous and isotropic. In fully developed
turbulent channel and pipe flows, there is good reason to suppose the same for most of the flow region, with the
possible exception of the boundary layer. To start, it is reasonable to see what insight can be obtained for the channel
by takinga constant angg = 0 throughout the entire channel width. In this case Eq. (4.6) becomes

R2 0 \2
d_ga2¢//_¢=_fo_3fl<l_R_0> (4-8)
which has a symmetric solution aboput= R given by
U n\°, S
= hle(1- — 1- — s 4,
¢ = C cos (5( Ro>)+3fl( Ro> +6§2+fo (4.9)

where we have sét = d/a for notational convenience ar@is an undetermined constant. We now compare this
solution with the numerical simulations of Kim, Moin and Moser [15] and also [16]. The Reynolds nutgl&r
given by the simulation. We determiidg fp and f1 from the equations

¢(0) =0, ¢’ (0 =1 and ¢(Ro) = Pmax

wheregmax is the experimentally determined average centerline velocity of the flowt asdreated as a shape
parameter used to fit the data. In particular, for comparison with the numerical simulation we use the values from
Table 2. Note that the constafitmust be small to balance the exponentially large behavior of (€65h- 1/ Ro))

with & > 1 near the wall wherg/Ro « 1.

In Fig. 3 we graph our resulting functiah as well as the Reynolds shear stregaw)/to along with the data
from the direct numerical simulation.

As might be expected there are some difficulties in the agreement of our solution with the direct numerical simu-
lations near the walls of the channel. This is probably due to the fact that the fluctuations are neither homogeneous
nor isotropic in this region. However, our solution shows the correct qualitative behavior away from the boundaries.
In particular, our solution has an inflection point ngat 10 and another one farther from the wall whose position
is Reynolds number dependent.
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Fig. 3. Comparison of the constapbf the Camassa—Holm equation and the Reynolds shear sttess /7o with direct numerical simulation
for turbulent flow in the infinite channel. The solid lines represent our solution while the dashed line represents the numerical simulation of Kim,
Moin and Moser [15,16].

We would now like to use this theory to make predictions of the turbulent flow profile as a function of Reynolds
number. First note that by writing Eq. (4.9) as

_ cosh&(1 — n/Ro)) 7\
¢ = —C cosh(é) {1— s } ~3f {1_ (1_ R_0> }

(4.10)

one realizes the boundary conditi¢ii0) = 0. For the boundary conditiopf (0) = 1 we differentiate to get

v S fame (s )] %1 ),
Ro Ro Ro Ro

Thereforep’(0) = 1 becomes

—CE&sinh(&) — 6f1 = Ro. (4.12)
Recall the flux Reynolds numbé& is defined by
Jd Ro tanh
r=Y4_ / ¢ dn = —CRo cosh&) (1 _mn 5) — 2Rofi. (4.12)
v 0
Settingd = —61/Ro and eliminatingC from Egs. (4.11) and (4.12) gives
O R2 £ tanhé
RE=|R-22)(—=—— OR2. 4.13
0 ( 3 ><l—§—1tanhs)jL 0 (4.13)
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Upon settingg = §Rp and takings > 1, this simplifies to order @ /¢) into the basic relation

1-6 R 0 Ro
_— . 4.14
1) Ro 3 ( )
In terms of the parametefsandé, Eq. (4.7) implies the Reynolds shear stress,

1 sinhE(1 —n/Ro))
70 Ro sinh(§)

Thus,—(uw) > 0for 0 < n < Rp, as seen empirically. In the lower half of the channel, the solution (4.10) may be
expressed to order@®@e¢) as

_1-0 . _n
$(n) = ——@1 e5">+9n(1 2R0)’ (4.15)

for 0 < n < Rp. In this notation, we have = d/& = ¢, /5 for the lengthscale in Eq. (4.8). The velocity profiie
in Eq. (4.10) has its maximum at the center of the channelRg. At this pointgmax = ¢ (Rp) is given to leading
order by

(uw)

:(1—9){1—

B = 1-06 n 6 Ro

max — 8 2 .
Recall that the drag coefficient for the channel is defined®by 2R3/ R? = 2u?/U2. From Egs. (4.14) and (4.16)
we have

2 1-6 /|2

Since O< 6 < 1, relations (4.17) imply the inequalitie$3> ¢maxv/D/2 > 1, and we may write

1-¢6 /2 /|2
T =cC B, and GRO = 3(1— C) B, (418)

by introducing the constant € (0, 1) defined in terms of the velocity profile flatness or centerline velocity ratio
Pmax/$ as

3—c¢ D .
> = ¢Eax = gmax| 5 With O<c<1 (4.19)
whereg = RglfOR‘)qb(n) dn. Comparison with the experimental data of Wei and Willmarth [19] showsctigain
the range [0.728, 0.77]. This is consistent with the empirical correlatigmgf/¢ = 1.27R~%%116found by Dean
[8]. EqQ. (4.18)(b) and the basic relation (4.14) then imply

(4.16)

_ &\ _ ot
0= <1+ m) =0E¢™). (4.20)
Substituting this into Eq. (4.18)(a) gives
Ro = ¢8R <1+ 3(1_C)> — SR+ 0. (4.21)
C

Thus, to leading ordes, = ¢"1Ro/R = ¢~1/D/2 and the velocity profile Eq. (4.15) is given by

_ R (1 eronsen) (g
¢(n)_Ro{c(1 eRor )+3(1 c)RO(l 2R0>}. (4.22)



S. Chen et al./Physica D 133 (1999) 49-65 57
25 " . —s

°R,=170
20l [R=714
AR =989
V R,=1608
15¢
<
10 ‘

___theoretical ¢(n)
Ro=1 70,714,989,1608

5 __DNSsS HO=1 80 |
e ¢k(n)=2.55ln(n)+5.5,
¢, (n)=n
O 1 1 I
10° 10’ 10° 10°
n
1 .
___theoretical curve
RO=1 70,714,
0.8f 989,1608
__ DNS R0=180
o6 * R=170
x| DRE=714
; A Ro=989
Y0.4' VR0=1608 |

0.2r

Fig. 4. The mean velocity profiles and the Reynolds stress{uw) /7o for the constant version of the Camassa—Holm equations compared
with the experimental data of Wei and Willmarth [19] for the channel.

Thus, foré = d/a > 1, the lawy/D/2 = Ro/R and the constant determine the steady velocity profile of the
VCHE ¢ (n) at eachr.

We now introduce one more equation, a drag law. This reduces the number of free parameters so that we can
determine our velocity profil¢ and Reynolds shear stressuw) /g solely in terms of the flux Reynolds number.
The lengthscale is given to leading order by/d = 1/(8Ro) = 2c/(DR). For instance, using the Blasius drag
law, D = AR~1/4 with 1 ~ 0.06 (see Dean [8]), we obtain

1 2 2\ _ )
= % - TCR_3/4 —c (X) R;®". and Ro= SR, (4.23)

After the Blasius drag law is chosen anid determined from the midplane velocity data, no free parameters remain
in the model. In Fig. 4 we compare our model to the data of Wei and Willmarth [19].

Also, in Fig. 5 we plot a family of velocity profileg (n; R) at various values oR going beyond the values in
experimental data in Fig. 4 using the Blasius drag law to determine the extra free parameter. As mentioned earlier the
constan( is very small to balance the exponentially large behavior of ¢osh— n/Rp)) near the wall. However,
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Fig. 5. The upper and lower envelopes of the velocity profile using the Blasius drag law as an input to determine the extra free parameter.

away from the wall this implies that cosh& (1 — n/Rp)) ~ 0. As the point of contact af (; R) with its envelope
is some distance from the wall, we shall make this approximation in finding the envelopes. In this way, the upper
and lower envelopes of this family are found analytically to;b€ power laws up to leading order.

It is interesting to note that Blasius obtains a mean velocity profiles behavinj‘ais the median range of the
flow [17]. We get the same functional dependence for the envelopes of the mean velocity profiles as the Reynolds
number is varied. Hence, there is a fixed range inside the channel in which our profiles are estimated by the 1/7
power law.

4.3. Locally isotropic homogeneous Lagrangian fluctuations

The results forr constant throughout the channel show some agreement with the numerical and empirical data
for moderate skin friction Reynolds numbers 120Ry < 1608. However, for much largeRg Fig. 5 shows that
the assumptio constant through the channel leads to a shoulder or overdeterminatipfoof; around 100.
This leads to the physically more reasonable assumptiorwtitae averaged size of the Lagrangian fluctuations,
depends on the distance to the wall in the boundary layer. In this case we still can assurnastant for most of
the flow region but allow it to vary near the wall whegemay as well not be zero.

We imagine the Lagrangian fluctuations in the turbulent flow coming from a parameterized famiilyrobability
determinations. In this way andj are given by

d d
a?(z) = (02) = / d(;—z)zsz(c) and B(z) = (03) = / d(; —2)dP,(2). (4.24)

This constrains how andg are related. The Cauchy—Schwarz inequality impHés< «2. In addition, we note
that no fluctuation physically leaves the channel. Thus, the supp@tt wiust be contained inHd, d]. Therefore
in Section 4.3 we assumed the turbulence to be isotropic and homogeneous away from the boundaries. Isotropy
implies P, is symmetric about its mean. Homogeneity impligsis a translate #,(¢) = dP(¢ — z) whereP is
some fixed distribution. It is reasonable to further asswmnes unimodal. That is, it has a density with only one
peak.
We now pose the question: in the best case, how close to a boundary could these assumptions hdi? Let
the distance from the wall where they break down. The density of the probability distribution must be supported
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Table 3
Values forC, fo, f1, andé determined from direct numerical simulation for Reynolds numiRgrs- 180 and 395
Ro Pmax Ce's fO fl &
180 18 —29.40 18 -1.8 20
395 20 —23.47 20 -2.1 32
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Fig. 6. Comparison of the constansolutiong of the Camassa—Holm equations and the Reynolds shear stfes$/ o with direct numerical
simulation in the flow region for the infinite channel away from boundaries. The dashed vertical line has been placed at aglistaride
from the wall to indicate where the assumptions of isotropy and homogeneity are likely to break down.

completely inside the channel. Assuming a density with only one peak, a uniform distribution has the smallest
support for a given variance; therefore it is the one which could be translated closest to a boundary. Since

az—i/hgzdg—}hz for |zl <d—h
), T3 °4=

one finds that = +/3«. In terms of wall units, this distance is= Ro(d — h)/d.

Thus, for the part of the flow region away from the boundatgkes on the same form as in Eq. (4.9). However,
as this solution does not extend all the way to the wall, the boundary conditi@n= 0 and¢’(0) = 1 cannot
be used to determine free parameters. This gives us additional flexibility in matching the mean flow away from the
boundaries.

In Table 3 we choose these parameters so as to obtain a good fit of our profiles and Reynolds shear stresses with
the direct numerical simulations away from the viscous sublayer, all the way up to the center of the channel. In Fig.
6 we graph our resulting functiop as well as the Reynolds shear stregaw) /g along with the data from the
direct numerical simulation. Note that the estimate actually serves fine a little hglow

The mathematical treatment of the theory of locally isotropic homogeneous Lagrangian fluctuations for high
Reynolds numbers appears in our paper [6] along with graphs comparing this theory to the experimental data of Wei
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Fig. 7. Statistical compatibility of andg arising from a uniform probability distribution in the near wall region¢gogiven by direct numerical
simulations [15,16]. The lower constraint is given by the Cauchy—Schwarz inequality and the upper constraint by Eq. (4.26).

and Willmarth [19] and Zagarola [20]. In Section 5 we will present this theory for high Reynolds number turbulent
flows in pipes.

Before concluding this section let us remark the assumption (4.24), that the statistics of the Lagrangian fluctuations
arise from a family of probability distributions, leads to conditionsxaandg in the boundary region. In particular,
we have Cauchy—Schwarz inequality and the fact that the suppBrrofist lie in the channel. The Cauchy—Schwarz
inequality implies? < «2. In [6] the condition that the support @f, must lie in [-d, d] was given without the
further assumption that the underlying probability distributions be unimodal. This leads to the condition that

a?(z) <d?— 2%~ 2:(z) for |z <d. (4.25)

In this paper, however, we assume that the underlying probability distributions are unimodal. This leads to a more
stringent condition than Eq. (4.25) on the relationship betweandg. In fact, we shall show here that it is possible

to satisfy the even stronger condition in which the underlying probability distributions are taken to be uniform on
their support. Thus, we have that

@?(2) < PP() + 2d+z+PR)? for —d=<z<0O. (4.26)

Integrating Eq. (4.6) we obtain

R2 Ro Rod s
a9/ + / (1 - 7"%) ¢ = Rofo <1 - Ri()) + Rofr (1 - Rl()) : (4.27)
n

From this we solve fow provided tha, fo, f1 and¢ are known. We take from the direct numerical simulations
of Kim, Moin, and Moser [15,16]. The values fgp and f1 have already been determined in Table 3 by matching
¢ in the homogeneous isotropic region away from the boundaries. Finally, to ghteéntake

= Bo(L—n/n1)? for n<m
0 for nn <n<Ro

(see Section 14 of [6] for an empirical justification), and cho@sendn1 > no so thate and 8 satisfy the
compatibility condition (4.26) and the Cauchy—Schwarz inequality. The result is shown in Fig. 7. Note that Eq.
(4.25) was checked in [6] for higher Reynolds numbers by using the empirical formula from Panton [A8ifar

the wall.
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Fig. 8. Choice of coordinates for the pipe.

5. The pipe geometry

In this section we shall develop our method of averaged Lagrangians and Camassa—Holm equations for turbulent
fluid through a pipe. We consider a cylindrical pipe shown in Fig. 8 oriented along thés of radiusd with
y = rcosf andz = rsind. Note: we usel for the radius rather than for the diameter of the pipe so as to be
consistent with our earlier work where we uséfbr the channel half height. Also, the Reynolds numbers reported
by Zagarola [20] are based on pipe diameter and therefore twice what we use here.

5.1. The Camassa—Holm equations in the pipe
As before we solve the time independent viscous Camassa—Holm equations (4.1). On average the fluid is flowing

only in thex direction. LetU be the mean velocity of the fluid in that direction. The symmetry conditions are that
U and the averages of the fluctuatianslepend only om. Therefore we have

0 0 190 10 A% 0
_Uz——n, O:———n, and —v-——(r— S (5.1)
ar or r 060 ror ar ax
where
1 0 1 d 5 U
— 77— -2 N T el 2
v=U {<r+8r)<0r>}U (r+8r>{(ar)3r} (6:2)

Hereo, denotes the component efpointing in the radial direction. The second equation in Eg. (5.1) shows that
m is independent of. The left side of the last equation of the last equation in Eqg. (5.1) only dependshence
integrating it with respect to gives

Differentiate with respect te and use the first equation in Eq. (5.1) to obtain

o d [v o A% , U
———=—x—{—-——r— +h(r)=V—
or or | r or or or

which is only a function of-. Thus
a (19 A%
2 {__ (_)} o (5.3)
ar | r or ar
Solving for the momentum per unit magsunder the assumption that it is bounded at the origin yields
2
voia (%) +he 54

wherek; andk; are constants of integration.
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5.2. Locally isotropic homogeneous fluctuations

As in Section 4.3 for the channel we suppose the distribution of the Lagrangian fluctuatmbe isotropic and
homogeneous away from the wall of the pipe. In this region we may suppose that

B=(o)=0 and o?= (02

is independent af. Therefore Eq. (5.2) simplifies to

219 104
V=U-a"~-—\r—|».
ror ar

We now express Eq. (5.4) in terms of non-dimensional coordiatesdn (Eq. (4.8)) for the pipe geometry.

R§ 7\ ' n '\ 0¢ _ 7\
s—z(l—R—J %{(1‘R—o)%}‘¢-‘f°‘2fl<l‘k—o)

where fo = ko2/uy, f1 = k1/(2uy), andé = d/a. Solving this equation gives

2
n n S
o) =Cloy (g (1—R—0))+2f1 <1—R—O> +8$—2+f0 (5.5)
where
© 1 r2\"
Io(¢) = gom (Z)

in the modified Bessel function of the first function of the first kind (see, for example [1]). Note that the second
term in (5.5) is the classical Hagen—Poiseuille flow for laminar flow in a pipe.

5.3. Prediction of flows in pipes
As before, we make the ansatz tbain the VCHE corresponds to the average velocity in the Reynolds equations.

We shall work in terms of the nondimensional mean velocity profildsis accepted, based on experimental data,
that¢ is concave with maximum occurring at the center of the pipe. Hence

(1 - Rl()) #(Ro) = ¢(n) < ¢(Ro). (5.6)
Since the flux Reynolds number
d 2 d Ro
R:Lﬁvz_/ rU(r)dr:Z/ 1= L) g0 i, (5.7)
v d? Jo 0 Ro
integrating the inequality (5.6) yields that
$(Ro) R
< — < ¢(Ro).
3 SRS ¢ (Ro)
We also make the empirical observation that
R R
— Kl — for R 1 5.8
72 <1< 0> (5.8)
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An in [6] we assume thap has the following scaling property: fat (or Rp) large enough, there exists a range
[41. g2] for ¢ in which

(@) = ¢(q2R0) — #(qRo) (5.9)

is a function ofg only and independent aRg. We choosey; and g, so that the assumptions of isotropy and
homogeneity hold homogeneity hold in this range; however, we make no assumptions about the size of the range.
Note that the classical defect law of 1zakson, Millikan and von Mises [17] (pp. 186—-188) is the particular case of
Eq. (5.9) where; = 1 and the range is assumed to be wide. Therefore

(@) = Cllo(E(L—q)) — Io(E(L — g2)} + 2f1{(L — ¢)? — (1 — ¢2)?}.

Now differentiate to obtain

f'@) = —C&lp(E(L—q) — 4211 —q) (5.10)
(@) = —CEI{¢EA - q) +4f1 (5.11)
f(q) =—C&1§' 1 - q)) (5.12)
(@) = C&E"EA - q)) (5.13)
all of which must also be independent®j. It follows that
i I{"E1—
et

is independent oRg. Suppose that varies asRg varies for largeRg. Then, multiplying by 1— ¢ and setting
¢ = £(1 — g) we would obtain that the quantity

I//// d ,
’?)T((;)) = C&{log(lo”(f))}
is independent of in some interval {1, ¢2). However, this would imply that on this interva{’(¢) = c¢? for
some constantsandy, which is clearly impossible. It follows thgtmust be independent &p. Therefore from
Eq. (5.12) we have that is independent oRg and from Eg. (5.11) thaf; is independent oRg. Hence the only
constant that could depend &3 is fo.
Letng be the closest distance to the wall that the statistics of the Lagrangian fluctuations may be assumed isotropic
and homogeneous. Thus, the velocity profile found in Eq. (5.5) holds ifothe interval fg, Ro]. From Eq. (5.7)
we obtain that

o n > ( no) 15(6(1 — no/Ro)) ( 1o )4
R=2 1-— — d 2RoC|1—— ) ~——— " +R 1-—
/0 ( Ro ¢ () dn + 2Rg Ro : + Rof1 Ry

J1 no\?
+ Ro 8?+fo 1—R—0 (5.15)

from which we can solve for the Reynolds number dependenc iprovided the integral can be reasonably
approximated. We approximageon the interval [0no] by the piecewise linear function

n 0 <for n<n,
¢ (o) + (n — no)¢’(no) for n. <n <no

wheren, is chosen so as to make the function continuous. Thatis; (¢ (no) — no¢’ (10))/(1 — @' (n0)).

¢(n) ~ { (5.16)
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Fig. 9. Prediction of pipe flows. The solid line represents the experimental data from Zagarola [20], the dashed line represents our theoretical
profile ¢, the dash-dotted line represents the von Karman log law, and the dotted line represents the Barenblatt—Chorin—Prostokishin power law
[2,3].

Table 4
Givené = 30, C&f = —67.81, andfy = —4.184 fixed, we predict values ¢f(50) and fp for higher Reynolds numbers
R Ro no #(n0) Jo
154750 6604 892 16.50 27.94
1549050 54721 7488 21.35 32.80
17629500 525858 71494 26.56 38.00

In predicting velocity profiles, there are six free paramet€rsfo, f1, &, no, andRg. The flux Reynolds number
R is given by the experiments. As in the case of channel flow, the paraRgtedetermined by assuming a drag
law and using the reIatioR%/R2 = D/8. SinceC, f1, and¢ are independent of Reynolds number, we fix these
parameters using low Reynolds number experimental data from Zagarola [20]. This is accomplished by choosing
two data points in the logarithmic region, and data at the pipe centerRg. This produces a linear system of
equations that may be solved f6rand f1. Then,¢ is set, and the two data points chosen as far apart as possible,
so thaty in Eq. (5.5) best fits the experimental data. We use the first data @aint (1)) to setgo = n1/Ro.

For higher Reynolds numbers, we ggt= goRo. The parametefy is determined using Eq. (5.15) f&and the
approximation (5.16) fop on the interval [Qno]. More specifically, we use Eq. (5.5) with= 7o to obtain fy in
terms ofp (o). Using the the cubic term is proportional tpHy and is neglected. We solve the remaining quadratic
equation forp (170), taking the minimal root which is the one consistent with Eq. (5.8). This in turn giyes

In Fig. 9 we show this predictive capability fgr. Each plot graphs the von Karman log-law, the Barenblatt—
Chorin—Prostokishin power law [2,3], the Zagarola experimental data [20], and the theoreticapdonéour
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different Reynolds numbers. The first post includes the velocity profile for a lower Reynolds number and is used
for matching and for setting parametefs f1, &, andqgo. In particular, we obtaif = 30, C&f = —67.81, f1 =

—4.184 andgp = 0.01353 using such a procedure. The remaining three plots are predicted velocity profiles for
higher Reynolds numbers. Table 4 summarizes the valueg faosed for predicting these flows.
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