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We show here the global, in time, regularity of the three dimensional viscous
Camassa–Holm (Navier–Stokes-alpha) (NS-a) equations. We also provide esti-
mates, in terms of the physical parameters of the equations, for the Hausdorff
and fractal dimensions of their global attractor. In analogy with the Kolmogorov
theory of turbulence, we define a small spatial scale, aE, as the scale at which the
balance occurs in the mean rates of nonlinear transport of energy and viscous
dissipation of energy. Furthermore, we show that the number of degrees of
freedom in the long-time behavior of the solutions to these equations is bounded
from above by (L/aE)3, where L is a typical large spatial scale (e.g., the size of the
domain). This estimate suggests that the Landau–Lifshitz classical theory of
turbulence is suitable for interpreting the solutions of the NS-a equations.
Hence, one may consider these equations as a closure model for the Reynolds
averaged Navier–Stokes equations (NSE). We study this approach, further, in
other related papers. Finally, we discuss the relation of the NS-a model to the
NSE by proving a convergence theorem, that as the length scale a1 tends to



zero a subsequence of solutions of the NS-a equations converges to a weak
solution of the three dimensional NSE.

KEY WORDS: Navier–Stokes-a model; Camassa–Holm equations; Lagrangian
averaged Navier–Stokes equations; second grad fluid; attractors.

1. INTRODUCTION

Proving global regularity for the 3D Navier–Stokes equations (NSE) is one
of the most challenging outstanding problems in nonlinear analysis. The
main difficulty in establishing this result lies in controlling certain norms of
vorticity. More specifically, the vorticity stretching term in the 3D vorticity
equation forms the main obstacle to achieving this control.

In this paper we consider a similar partial differential equation, the
so-called viscous Camassa–Holm, or Navier–Stokes-alpha (NS-a) equations.
The inviscid NS-a equations (Euler-a) were introduced in [25] as a natural
mathematical generalization of the integrable inviscid 1D Camassa–Holm
equation discovered in [3] through a variational formulation. Our studies
in [5]–[7] indicated that there is a connection between the solutions of the
NS-a and turbulence. Specifically, the explicit steady analytical solution of
the NS-a equations were found to compare successfully with empirical and
numerical experimental data for mean velocity and Reynolds stresses for
turbulent flows in pipes and channels. These comparisons led us to identify
the NS-a equations with the Reynolds averaged Navier–Stokes equations.
These comparisons also led us to suggest the NS-a equations could be used
as a closure model for the mean effects of subgrid excitations. Numerical
tests that tend to justify this intuition were reported in [8].

An alternative more ‘‘physical’’ derivation for the inviscid NS-a equa-
tions (Euler-a), was introduced in [26] and [27] (see also [6]). This alter-
native derivation was based on substituting in Hamilton’s principle the
decomposition of the Lagrangian fluid-parcel trajectory into its mean and
fluctuating components. This was followed by truncating a Taylor series
approximation and averaging at constant Lagrangian coordinate, before
taking variations. A variant of this approach was also elaborated consid-
erably in [32]. See also [33] for the geometry and analysis of the Euler-a
equations. For more information and a brief guide to the previous litera-
ture specifically about the NS-a model, see paper [20]. The latter paper
also discusses connections to standard concepts and scaling laws in tur-
bulence modeling, including the relationship of the NS-a model to large
eddy simulation (LES) models. Results interpreting the NS-a model as an
extension of scale similarity LES models of turbulence are reported in [17].
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It is worth mentioning that another approach connecting the Lagrangian
and Eulerian formulations for the Navier–Stokes equations was recently
presented in [11]. This exact connection between the Lagrangian and
Eulerian formulations adds perspective to the relationship between the
Navier–Stokes equations and the Navier–Stokes-a model.

Equations similar to the NS-a equation, but with different dissipative
terms, were considered previously in the theory of second grade fluids [18]
and were treated recently in the mathematical literature [9, 10]. Second
grade fluid models are derived from continuum mechanical principles of
objectivity and material frame indifference, after which thermodynamic
principles such as the Clausius–Duhem relation and stability of stationary
equilibrium states are imposed that restrict the allowed values of the
parameters in these models. In contrast, as mentioned earlier, the NS-a
equation is derived by applying asymptotic expansions, Lagrangian means,
and an assumption of isotropy of fluctuations in Hamilton’s principle for
an ideal incompressible fluid. Their different derivations also provide the
different interpretations of the parameter a1, namely, as a flow regime
quantity for the NS-a equation, and as a fixed material property for the
second grade fluid.

The aim of this paper is to establish the global regularity of solutions
of the NS-a, subject to periodic boundary conditions. We also provide
estimates of the fractal and Hausdorff dimensions of their global attractors.
In particular, we identify the dimension of the attractor with the number of
degrees of freedom governing the permanent regime of these equations and
find a remarkable compatibility between these estimates and the number of
degrees of freedom in turbulence a la Landau and Lifshitz [30]. This leads
us to regard the NS-a equations as a suitable closure model for turbulence,
thought of as an averaged theory rather than an individual realization,
cf. [5]–[7], [26] and [27]. Finally, we relate the solutions of the viscous
Camassa–Holm (NS-a) equations to those of the 3D NSE as the length
scale a1 tends to zero. Specifically, we prove that a subsequence of solutions
to the NS-a model converges as a1 Q 0 to a weak solution of the 3D NSE.

2. FUNCTIONAL SETTING AND PRELIMINARIES

We consider the following viscous version of the three dimensional
Camassa–Holm equations in the periodic box W=[0, L]3:

“

“t
(a2

0u−a
2
1 Du)− n D(a

2
0u−a

2
1 Du)−u×(N×(a

2
0u−a

2
1 Du))+

1
r0

Np=f
(1a)
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N · u=0 (1b)

u(x, 0)=u in(x) (1c)

where p
r0
= p
r0
+a2

0 |u|
2−a2

1(u ·Du) is the modified pressure, while p is the
pressure, n > 0 is the constant viscosity and r0 > 0 is a constant density.
The function f is a given body forcing a0 > 0 and a1 \ 0 are scale param-
eters. Notice a0 is dimensionless while a1 has units of length. Also observe
that at the limit a0=1, a1=0 we obtain the three dimensional Navier–
Stokes equations with periodic boundary conditions.

For simplicity we will assume the forcing term to be time independent,
i.e., f(x, t) — f(x).

From (1) one can easily see, after integration by parts, that

d
dt

F
W

(a2
0u−a

2
1 Du) dx=F

W

f dx

On the other hand, because of the spatial periodicity of the solution,
we have >W Du dx=0. As a result, we have d

dt >W a2
0u dx=>W f dx; that is,

the mean of the solution is invariant provided the mean of the forcing term
is zero. In this paper we will consider forcing terms and initial values with
spatial means that are zero; i.e., we will assume >W u in dx=> f dx=0 and
hence >W u dx=0.

Next, let us introduce some notation and background.

(i) Let X be a linear subspace of integrable functions defined on the
domain W, we denote

Ẋ :=3j ¥X : F
W

j(x) dx=04

(ii) We denote V={j: j is a vector valued trigonometric poly-
nomial defined on W, such that N ·j=0 and >W j(x) dx=0},
and let H and V be the closures of V in L2(W)3 and in H1(W)3

respectively; observe that H+, the orthogonal complement of H
in L2(W)3 is {Np: p ¥H1(W)} (cf. [13] or [35]).

(iii) We denote Ps: L̇2(W)3
QH the L2 orthogonal projection, usually

referred as Helmholtz–Leray projector, and by A=−PsD the
Stokes operator with domain D(A)=(H2(W))3 5 V. Notice that
in the case of periodic boundary condition A=−D|D(A) is a self-
adjoint positive operator with compact inverse. Hence the space
H has an orthonormal basis {wj}

.

j=1 of eigenfunctions of A, i.e.,
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Awj=ljwj, with 0 < l1 [ l2 [ · · · [ lj Q.; in fact these eigen-
values have the form |k|2 4p2

L2 with k ¥ Z30{0}.

(iv) We denote ( · , · ) the L2-inner product and by | · | the correspond-
ing L2-norm. By virtue of Poincaré inequality one can show that
there is a constant c > 0, such that

C |Aw| [ ||w||H2 [ c−1 |Aw| for every w ¥ D(A)

and that

c |A1/2w| [ ||w||H1 [ c−1 |A1/2w| for every w ¥ V

Moreover, one can show that V=D(A1/2), (cf. [13] and [35]).
We denote (( · , · ))=(A1/2 · , A1/2 · ) and || · ||=|A1/2 · | the inner
product and norm on V, respectively. Notice that, based on the
above, the inner product (( · , · )), restricted to V, is equivalent to
the H1 inner product

[u, v]=a2
0(u, v)+a

2
1((u, v)) for u, v ¥ V (2)

provided a1 > 0.
Hereafter c will denote a generic scale invariant positive

constant which is independent of the physical parameters in the
equation.

(v) Following the notation for the Navier–Stokes equations we
denote B(u, v)=Ps[(u ·N) v], and we set B(v) u=B(u, v) for
every u, v ¥ V. That is, for ever fixed v ¥ V, B(v) is a linear
operator acting on u. Notice that

(B(u, v), w)=−(B(u, w), v) for every u, v, w ¥ V (3)

We also denote B̃(u, v)=−Ps(u×(N×v)) for every u, v ¥ V.
Using the identity

(b ·N) a+C
3

j=1
aj Nbj=−b×(N×a)+N(a · b)

one can easily show that

(B̃(u, v), w)=(B(u, v), w)−(B(w, v), u)

=(B(v) u−B*(v) u, w) (4)
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for every u, v, w ¥ V, where B*(v) denotes the adjoint operator of
the linear operator B(v) defined above. As a result we have

B̃(u, v)=(B(v)−B*(v)) u for every u, v ¥ V (5)

In the next lemma, we show that the bilinear operator B̃ can be
extended continuously to a larger class of functions.

Lemma 1.

(i) The operator A can be extended continuously to be defined on
V=D(A1/2) with values in VŒ=D(A−1/2) such that

OAu, vPVŒ=(A1/2u, A1/2v)=F
W

(Nu : Nv) dx

for every u, v ¥ V.

(ii) Similarly, the operator A2 can be extended continuously to be
defined on D(A) with valves in D(A)Œ, the dual space of the
Hilbert space D(A), such that

OA2u, vPD(A)Œ=(Au, Av), for every u, v ¥ D(A)

(iii) The operator B̃ can be extended continuously from V×V with
valves in VŒ, and in particular it satisfies

|OB̃(u, v), wPVŒ | [ c |u|1/2 ||u||1/2 ||v|| ||w||

|OB̃(u, v), wPVŒ | [ c ||u|| ||v|| |w|1/2 ||w||1/2

for every u, v, w ¥ V. Moreover,

OB̃(u, v), wPVŒ=−OB̃(w, v), uPVŒ, for every u, v, w ¥ V

and in particular,

OB̃(u, v), uPVŒ — 0 for every u, v ¥ V

(iv) Furthermore, we have

|OB̃(u, v), wPD(A)Œ | [ c |u| ||v|| ||w||1/2 |Aw|1/2

6 Foias, Holm, and Titi



for every u ¥H, v ¥ V and w ¥ D(A), and by symmetry we have

|(B̃(u, v), w)| [ c ||u||1/2 |Au|1/2 ||v|| |w|

for every u ¥ D(A), v ¥ V and w ¥H.

(v) Also,

|OB̃(u, v), wPD(A)Œ | [ c(|u|1/2 ||u||1/2 |v| |Aw|+|v| ||u|| ||w||1/2 |Aw|1/2)

for every u ¥ V, v ¥H, w ¥ D(A).

(vi) In addition,

|OB̃(u, v), wPVŒ | [ c(||u||1/2 ||Au||1/2 |v| ||w||+|Au| |v| |w|1/2 ||w||1/2)

for every u ¥ D(A), v ¥H, w ¥ V.

Proof. The proof of (i) can be found in [13] or in [35]. The proof of
(ii) is a straight forward extension of that of (i).

To prove (iii), let us first consider the case when u, v, w ¥V. Then we
have

|OB̃(u, v), wPVŒ |=:F
W

u×(N×v) ·w dx :

[ c ||u||L3 ||Nv||L2 ||w||L6

Recall the following Sobolev inequalities in R3

||j||L4 [ c ||j||1/4
L2 ||j||3/4

H1 (6a)

||j||L3 [ c ||j||1/2
L2 ||j||1/2

H1 and (6b)

||j||L6 [ ||j||H1, for every j ¥H1(W) (6c)

Then by the above inequalities we have:

|OB̃(u, v), wPVŒ | [ c |u|1/2 ||u||1/2 ||v|| ||w||

Moreover, it is clear that for u, v, w ¥V

OB̃(u, v), wPVŒ=−OB̃(w, v), uPVŒ

SinceV is dense in V we conclude the proof of (iii).
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Let us now prove (iv). Again we consider first the case where
u, v, w ¥V

|OB̃(u, v), wPD(A)Œ |=:F
W

[u×(N×v)] ·w dx :

[ c ||u||L2 ||Nv||L2 ||w||L.

Recall Agmon’s inequality in R3:

||j||L. [ c ||j||
1/2
H1 ||j||1/2

H2 (7)

The above gives

|OB̃(u, v), wPD(A)Œ | [ c |u| ||v|| ||w||1/2 ||Aw||1/2

To prove (v) we again take u, v, w ¥V and we use (4) to find

|OB̃(u, v), wPD(A)Œ | [ :F
W

((u ·N) v) ·w dx :+:F
W

((w ·N) u) · v dx :

[ :F
W

((u ·N) w · v) dx :+||v||L2 ||Nu||L2 ||w||L.

[ c ||u||L3 ||Nw||L6 |v|+c |v| ||u|| ||w||L.

By (6b–c) and (7) inequalities we finish our proof.
The proof of (vi) is similar to (v). From (4) we have

|OB̃(u, v), wPVŒ | [ :F
W

((u ·N) v) w dx :+:F
W

((w ·N) u) · v dx :

[ :F
W

((u ·N) w) · v dx :+c ||w||L3 ||Nu||L6 |v|

[ c(||u||L. ||w|| |v|+||w||L3 ||Nu||L6 |v|)

By (6a) and (7) inequalities we finish our proof. i

We apply Ps to (1) and use the above notation to obtain the equivalent
system of equations

d
dt
(a2

0u+a
2
1Au)+nA(a

2
0+a

2
1A) u+B̃(u, a

2
0+a

2
1Au)=Psf (8a)

u(0)=u in (8b)
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Alternatively, if we denote

v=a2
0u+a

2
1Au (9)

the system (8) can be written as

dv
dt
+nAv+B(v) u−B*(v) u=Psf (10a)

u(0)=u in (10b)

We will assume that Psf=f, otherwise we add the gradient part of f to
the modified pressure and rename Psf by f.

Definition 2 (Regular Solution). Let f ¥H, and let T > 0. A function
u ¥ C([0, T); V) 5 L2([0, T); D(A)) with du

dt ¥ L2([0, T); H) is said to be a
regular solution to (8) in the interval [0, T) if it satisfies

7 d
dt
(a2

0u+a
2
1Au), w8

D(A)Œ
+nOA(a2

0u+a
2
1Au), wPD(A)Œ

+OB̃(u, a2
0u+a

2
1Au), wPD(A)Œ=(f, w) (11)

for every w ¥ D(A) and for almost every t ¥ [0, T). Moreover, u(0)=u in

in V. Here, the equation (11) is understood in the following sense: For
every t0, t ¥ [0, T) we have

(a2
0u(t)+a

2
1Au(t), w)−(a

2
0u(t0)+a

2
1Au(t0), w)+n F

t

t0
(a2

0u(s)+a
2
1Au(s), w) ds

+F
t

t0
OB̃(u(s), a2

0u(s)+a
2
1Au(s)), wPD(A)Œ ds=F

t

t0
(f, w) ds (12)

3. GLOBAL EXISTENCE AND UNIQUENESS

In this section we prove global existence and uniqueness of regular
solutions to Eq. (8), provided a1 > 0. In fact, from now on we will always
assume that a1 > 0.

Theorem 3 (Global existence and uniqueness). Let f ¥H and u in ¥ V.
Then for any T > 0, Eq. (8) has a unique regular solution u on [0, T).
Moreover, this solution satisfies:
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(i) u ¥ L.loc((0, T]; H
3(W)).

(ii) There are constants Rk, for k=0, 1, 2, 3, which depend only on n,
a0, a1 and f, but not on u in, such that

lim sup
t Q.

(a2
0 |A

k
2u|2+a2

1 |A
k+1

2 u|2)=R2
k

for k=0, 1, 2, 3. In particular, we have

R2
0=

1
nl1
min 3 |A

−1/2f|2

na2
0

,
|A−1/2f|2

na2
1

4 [min 3 |f|
2

n2l2
1a

2
0

,
|f|2

n2l3
1a

2
0

4

(13)

that is:

R2
0 [

G2n2

l1/2
1

min 3 1
a2

0

,
1
a2

1l1

4=G2n2

cl1/2
1

where G= |f|

n
2
l

3/4
1

is the Grashoff number, and c−1=min{ 1
a

2
0
, 1
a

2
1l1
}.

Furthermore,

lim sup
T Q.

n

T
F

t+T

t
(a2

0 ||u(s)||
2+a2

1 |Au(s)|
2) ds [ nl1R

2
0 [

G2nl1/2
1

c

(14)

for all t \ 0.

Proof. We use the Galerkin procedure to prove global existence and
to establish the necessary a priori estimates.

Let {wj}
.

j=1 be an orthonormal basis of H consisting of eigenfunctions
of the operator A. Denote Hm=span{w1,..., wm} and let Pm be the
L2-orthogonal projection from H onto Hm. The Galerkin procedure for
Eq. (8) is the ordinary differential system

d
dt
(a2

0um+a
2
1Aum)+nA(a

2
0um+a

2
1Aum)+PmB̃(um, a

2
0um+a

2
1Aum)=Pmf

(15a)

um(0)=Pmu in (15b)

Since the nonlinear term is quadratic in um, then by the classical theory of
ordinary differential equations, the system (15) has a unique solution for a
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short interval of time (−ym, Tm). Our goal is to show that the solutions of
(15) remains finite for all positive times which implies that Tm=..

H1-Estimates

We take the inner product of (15) with um and use (4) to obtain

1
2
d
dt
(a2

0 |um |2+a
2
1 ||um ||2)+n(a

2
0 ||um ||2+a

2
1 |Aum |2)=(Pmf, um)

Notice that

|(Pmf, um)| [ ˛
|A−1f| |Aum |
|A−1/2f| ||um ||

and by Young’s inequality we have

|(Pmf, um)| [ ˛
|A−1f|2

2na2
1

+
n

2
a2

1 |Aum |2

|A−1/2f|2

2na2
0

+
n

2
a2

0 ||um ||2

Denoting by K1=min{
|A−1/2f|2

na2
0
, |A−1f|2

na2
1
}, from the above inequalities we get:

d
dt
(a2

0 |um |2+a
2
1 ||um ||2)+n(a

2
0 ||um ||2+a

2
1 |Aum |2) [K1 (16)

By Poincaré’s inequality we obtain

d
dt
(a2

0 |um |2+a
2
1 ||um ||2)+nl1(a

2
0 |um |2+a

2
1 ||um ||2) [K1

and then by Gronwall’s inequality we reach

a2
0 |um(t)|2+a

2
1 ||um(t)||2 [ e−nl1t(a2

0 |um(0)|2+a
2
1 ||um(0)||2)+

K1

nl1
(1−e−nl1t)

That is

a2
0 |um(t)|2+a

2
1 ||um(t)||2 [ k1 :=a

2
0 |u

in|2+a2
1 ||u

in||2+
K1

nl1
(17)
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H2-Estimates

Integrating (16) over the interval (t, t+y)

n F
t+y

t
(a2

0 ||um(s)||2+a
2
1 |Aum(s)|2) ds [ yK1+(a

2
0 |um(t)|2+a

2
1 ||um(t)||2)

[ yK1+k1=: k̄2(y) (18)

Now, take the inner product of (15) with Aum to obtain

1
2
d
dt
(a2

0 ||um ||2+a
2
1 |Aum |2)+n(a

2
0 |Aum |2+a

2
1 |A

3/2um |2)

+(B̃(um, a
2
0um+a

2
1Aum), Aum)=(Pmf, Aum)

Notice that

|(Pmf, Aum)| [ ˛
|A−1/2f| |A3/2um |

|f| |Aum |
[ ˛

|A−1/2f|2

na2
1

+
n

4
a2

1 |A
3/2um |2

|f|2

na2
0

+
n

4
a2

0 |Aum |2

We denote K2=min{
|A−1/2f|2

na
2
1
, |f|2

na
2
0
}. Then we have

1
2
d
dt
(a2

0 ||um ||2+a
2
1 |Aum |2)+

3n
4
(a2

0 |Aum |2+a
2
1 |A

3/4um |2)

+(B̃(um, a
2
0um+a

2
1Aum), Aum) [K2

We use part (iii) of Lemma 1 to obtain

1
2
d
dt
(a2

0 ||um ||2+a
2
1 |Aum |2)+

3
4
n(a2

0 |Aum |2+a
2
1 |A

3/2um |2)

[ c ||um ||(a
2
0 ||um ||+a

2
1 |A

3/2um |) |Aum |1/2 |A3/2um |1/2+K2

[ c ||um ||(a
2
0l

−1
1 +a

2
1) |A

3/2um |3/2 |Aum |1/2+K2

By Young’s inequality we have

1
2
d
dt
(a2

0 ||um ||2+a
2
1 |Aum |2)+

n

2
(a2

0 |Aum |2+a
2
1 |A

3/2um |2)

[ c ||um ||4 (a
2
0l

−1
1 +a

2
1)

4 (na2
1)

−3 |Aum |2+K2 (19)

12 Foias, Holm, and Titi



We integrate the above equation over (s, t) and use (17) and (18) to obtain:

a2
0 ||um(t)||2+a

2
1 |Aum(t)|2 [ a

2
0 ||um(s)||2+a

2
1 |Aum(s)|2+2(t−s) K2

+
2ck12
(na2

1)
4 a4

1

(a2
0l

−1
1 +a

2
1)

4 [(t−s) K1+k1]

Now, we integrate with respect to s over (0, t) and use (18) to get

t(a2
0 ||um(t)||2+a

2
1 |Aum(t)|2)

[
1
n
(tK1+k1)+t2K2+

2ck2
1

(na2
1)

4 a4
1

(a2
0l

−1
1 +a

2
1)

4 5t2K1

2
+tk1
6 (20)

for all t \ 0.
For t \ 1

nl1
we integrate with respect to s over the interval (t− 1

nl1
, t)

1
nl1

(a2
0 ||um(t)||2+a

2
1 |Aum(t)|2)

[
1
n
1 1
nl1

K1+k1
2+1 1

nl1

22 K2

+
2ck2

1

(na2
1)

4 a4
1

(a2
0l

−1
1 +a

2
1)

4 51 1
nl1

22 K1

2
+
k1

nl1

6 (21)

From (20) and (21) we conclude:

a2
0 ||um(t)||2+a

2
1 |Aum(t)|2 [ k2(t) (22)

for all t > 0, where k2(t) enjoys the following properties:

(i) k2(t) is finite for all t > 0.

(ii) k2(t) is independent of m.

(iii) If u in ¥ V, but u in ¨ D(A), then k2(t) depends on n, f, a0 and a1.
Moreover, in this case limt Q 0+ k2(t)=..

(iv) lim supt Q. k2(t)=R2
2 <..

Returning to (19) and integrating over the interval (t, t+y), for t > 0
and y \ 0 and using (22) we get

F
t+y

t
(a2

0 |Aum(s)|2+a
2
1 |A

3/2um(s)|2) ds [ k̄3(t, y) (23)
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where k̄3(t, y) as a function of t satisfies properties (i)–(iii) as k2(t) above.
Also, there exists T1 large enough, depends on (a

2
0 |u

in|2+a2
1 ||u

in||2), but
independent of m, such that

1
t
F

t

0
(a2

0 |Aum(s)|2+a
2
1 |A

3/2um(s)|2) ds [ 2R
2
2 for all t > T1

H3-Estimate (via the vorticity)

Let us denote vm=a0um+a1Aum and qm=N×vm. The Galerkin system
(15) is equivalent to

dvm

dt
+nAvm−Pm(um×qm)=Pmf

Let us take Curl of the above equation, keeping in mind that we have
periodic boundary conditions, to obtain

dqm

dt
+nAqm−N×(Pm(um×qm))=N×Pmf

Notice that N · qm=0 and that Pmqm=qm. Let us take the inner product of
the above equation with qm

1
2
d
dt
|qm |2+n ||qm ||2−(N×(Pm(um×qm)), qm)=(N×Pmf, qm)

We use the identity

F
W

(N×f) ·k dx=F
W

f · (N×k) dx (24)

to reach

1
2
d
dt
|qm |2+n ||qm ||2−(Pm(um×qm), N×qm)=(Pmf, N×qm)

Notice that Pm(N×qm)=N×qm, therefore

1
2
d
dt
|qm |2+n ||qm ||2=(um×qm, N×qm)+(f, N×qm)

14 Foias, Holm, and Titi



and upon applying (24)

1
2
d
dt
|qm |2+n ||qm ||2=(N×(um×qm), qm)+(f, N×qm)

For every divergence-free function f, and for every k we have the
identity

N×(f×k)=−(f ·N) k+(k ·N) f

As a result, we have

1
2
d
dt
|qm |2+n ||qm ||2=−((um ·N) qm, qm)+(qm ·Num, qm)+(f, N×qm)

Thanks to the identity (3) we have ((um ·N) qm, qm)=0. Now, we estimate
the right hand side of the above to get:

1
2
d
dt
|qm |2+n ||qm ||2 [ c ||qm ||L4 ||um ||+|f| ||qm ||

We use the Sobolev inequality (6a) and Young’s inequality to find

1
2
d
dt
|qm |2+n ||qm ||2 [ c ||qm ||3/4 |qm |1/4 ||um ||+

1
n
|f|2+

n

4
||qm ||2

and we use Young’s inequality again to obtain

1
2
d
dt
|qm |2+

n

2
||qm ||2 [

c
n3 |qm |2 ||um ||4+

1
n
|f|2

Let us denote zm(t)=n2l1/2
1 +|qm(t)|2, then

dzm

dt
[ zm(t) 1

c ||um(t)||4

n3 +
|f|2

n3l1/2
1

2

We use (17) to obtain

zm(t) [ zm(s) e >
t
0 ((ck2

1/n3a4
1)+(|f|2/n3l1/2

1 )) dy

for every 0 [ s [ t. From the definition of zm we observe

zm(s) [ c(a
2
0 |Aum(s)|2+a

2
1 |A

3/2um(s)|2+n2l1/2
1 )

The Three Dimensional Viscous Camassa–Holm Equations 15



Now, we integrate with respect to s over (t
2 , t) and use (23) to get

zm(t) [ 5
2
t
k̄3
1 t
2
,
t
2
2+n2l1/2

1
6 e >t

0 ((ck2
1/n3a4

1)+(|f|3/n3l1/2
1 )) dy=: k3(t) (25)

Here again k3(t) enjoys the properties (i)–(iii) of k2(t), mentioned above. i

Remark 1. Notice that by establishing the estimate (25) for |qm | one
indeed is providing an upper bound for the H3-norm of um. Similar esti-
mates for the H3-norm of um can be also obtained by considering first the
Galerkin system (15)

dvm

dt
+nAvm+PmB̃(um, vm)=Pmf

taking the inner product with Avm, and then following a sequence of
inequalities and estimates to achieve an upper bound for ||vm ||.

Let us now summarize our estimates. For any T > 0 we have

(i) From (17):

||um ||
2
L.([0, T]; V) [

k1

a2
1

or ||vm ||
2
L.([0, T]; VŒ) [ k1

(ii) From (18) we have

||um ||
2
L2([0, T]; D(A)) [

k̄2(T)
na2

1

or ||vm ||
2
L2([0, T], H)

k̄2(T)
n

(iii) From (22)

||um ||
2
L.([y, T]; D(A)) [

k̃2(y)
a2

1

or ||vm ||
2
L.([y, T]; H) [ k̃2(y)

for any y ¥ (0, T], where k̃2(y)Q. as yQ 0+.

Next, we establish uniform estimates, in m, for dum
dt and

dvm
dt .

Recall (15)

d
dt
vm(t)=−PmB̃(um, vm)− nAvm+Pmf
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From the above estimates and part (v) of Lemma 1 we have

||Avm ||
2
L2([0, T], D(A)Œ) [

ck̄2(T)
n

and

||PmB̃(um, vm)||D(A)Œ [ c |um |1/2 ||um ||1/2 |vm |+
c
l1/4

1

|vm | ||um ||

Consequently

||PmB̃(um, vm)||
2
L2([0, T], D(A)Œ) [

ck1k̄2(T)
nl1/2

1 a
2
1

Therefore

>dvm

dt
>2

L2([0, T]; D(A)Œ)
[ k̃(T)

and in particular

>dum

dt
>2

L2([0, T], H)
[
k̃(T)
a2

1

where k̃(T) is a constant which depends on n, l1, f, a0, a1 and T.
By Aubin’s Compactness Theorem (see, e.g., [13] or [31]) we

conclude that there is a subsequence umŒ(t) such that

umŒ Q u(t) weakly in L2([0, T], D(A))

umŒ Q u(t) strongly in L2([0, T], V), and

umŒ Q u in C([0, T], H)

or equivalently

vmŒ Q v weakly in L2([0, T], H)

vmŒ Q v strongly in L2([0, T], VŒ), and

vmŒ Q v in C([0, T], D(A)Œ)

where v is given in (9).
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Let us relabel umŒ and vmŒ by um and vm respectively. Let w ¥ D(A), then
from (15) we have

(vm(t), w)+n F
t

t0
(vm(s), Aw) ds+F

t

t0
(B̃(um(s), vm(s), Pmw) ds

=(vm(t0), w)+(f, Pmw)(t−t0)

for all t0, t ¥ [0, T]. Since vm Q v weakly in L2([0, T]; H) then vm(s)Q v(s)
weakly in H, for every s ¥ [0, T]0E, where |E|=0. In particular, there is a
subsequence of vm, which we will also denote vm, such that vm(s)Q v(s)
strongly in VŒ and D(A)Œ for every s ¨ E.

Now, it is clear that

lim
m Q.

F
t

t0
(vm(s), Aw) ds=F

t

t0
(v(s), Aw) ds

also that limm Q. |PmAw−Aw|=limm Q. |w−wm |=0. On the other hand

:F t

t0
(B̃(um(s), vm(s)), Pmw)−OB̃(u(s), v(s), w(s)PD(A)Œ ds : [ I (1)

m +I
(2)
m +I

(3)
m

I (1)
m =:F

t

t0
OB̃(um(s), vm(s)), Pmw(s)−w(s)PD(A)Œ ds :

by part (v) of Lemma 1 we have

I (1)
m [

c
l1/4

1

F
t

t0
(||um(s)|| |vm(s)| |PmAw−Aw|) ds

applying Cauchy–Schwarz inequality

I (1)
m [

c
l1/4

1

1FT

0
||um(s)||2 ds2

1/2 1FT

0
||vm(s)||2 ds2

1/2

|PmAw−Aw|

and hence limm Q. I
(1)
m =0.

I (2)
m =:F

t

t0
OB̃(um(s)−um(s), vm(s), wPD(A)Œ ds :
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Again thanks to part (v) of Lemma 1

I (2)
m [

c
l1/4

1

F
t

t0
||um(s)−u(s)|| |vm(s)| |Aw| ds

and by Cauchy–Schwarz

I (2)
m [

c
l1/4

1

1FT

0
||um(s)−u(s)||2 ds2

1/2 1FT

0
|vm(s)|2 ds2

1/2

|Aw|

Since vm bounded in L2([0, T]; H) and um Q u in L2([0, T], V) we
conclude that

lim
m Q.

I (2)
m =0

Finally,

I (3)
m =:F

t

t0
OB̃(u, v−vm), wPVŒ ds :

by virtue of part (v) in Lemma 1, and since vm Q v weakly in L2([0, T]; H),
we obtain

lim
m Q.

I (3)
m =0

As a result of the above we have for every t0, t ¥ [0, T]0E

(v(t), w)+n F
t

t0
(v(s), Aw) ds+F

t

t0
OB̃(u(s), v(s), wPD(A)Œ ds

=(v(t0), w)+(f, w)(t− t0) (26)

for every w ¥ D(A). Notice that since ||vm(t)||L.([0, T], VŒ) [ k1, and since
vm(t)Q v(t) strongly in VŒ for every t ¥ [0, T]0E, we have ||v(t)||L.([0, T], VŒ)

[ k1. Moreover, because D(A) is dense in VŒ, (26) implies that v(t) ¥
C([0, T]; VŒ) or equivalently u(t) ¥ C([0, T], V).

In particular, from (26) we conclude the existence of a regular solution
for the system (8).

Uniqueness of Regular Solutions

Next we will show the continuous dependence of regular solutions
on the initial data and, in particular, we show the uniqueness of regular
solutions.
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Let u and ū be any two solutions of Eq. (8) on the interval [0, T], with
initial values u(0)=u in and ū(0)=ū in respectively. Let us denote v=
(a2

0u+a
2
1Au), v̄=(a2

0 ū+a
2
1Aū), du=u−ū, and by dv=v−v̄. Then from

Eq. (8) we get:

d
dt
v+nAv+B̃(du, v)+B̃(ū, dv)=0

The above equation holds in L2([0, T], D(A)Œ), since du belongs to
L2([0, T], D(A)), the dual space of L2([0, T], D(A)Œ), we use Lemma 1 to
obtain

7 d
dt
v, du8

D(A)Œ
+n(a2

0 ||du||
2+a2

1 |A du|
2)+OB̃(ū, dv), duPD(A)Œ=0

Notice that Odv
dt , duPD(A)Œ=

1
2

d
dt (a

2
0 |du|

2+a2
1 ||du||

2), (see, e.g., [35], Chap. III,
Lemma 1.2). As a result we have:

1
2
d
dt
(a2

0 |du|
2+a2

1 ||du||
2)+n(a2

0 ||du||
2+a2

1 |A du|
2)+OB̃(ū, dv), duPD(A)Œ=0

Now we use part (vi) of Lemma 1 to get

1
2
d
dt
(a2

0 |du|
2+a2

1 ||du||
2)+n(a2

0 ||du||
2+a2

1 |A du|
2)

[ c(||ū||1/2 |Aū|1/2 |dv| ||du||+|Aū| |dv| |du|1/2 ||du||1/2)

and by Young’s inequality we have:

1
2
d
dt
(a2

0 |du|
2+a2

1 ||du||
2)+n(a2

0 ||du||
2+a2

1 |A du|
2)

[
c
n
(||ū|| |Aū| ||du||2+|Aū|2 |du| ||du||)+

n

2
(a2

0 ||du||
2+a2

1 |A du|
2)

[
c

2na2
1l

1/2
1

|Aū|2 (a2
0 |du|

2+a2
1 ||du||

2)+
n

2
(a2

0 ||du||
2+a2

1 |A du|
2)

Hence,

(a2
0 |du(t)|

2+a2
1 ||du(t)||

2) [ (a2
0 |du(0)|

2+a2
1 ||du(0)||

2) exp 1F t

0

c |Aū(s)|2

na2
1l

1/2
1

ds2
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Since ū ¥ L2([0, T], D(A)) we conclude the continuous dependence of the
solutions of (8) on the initial data on any bounded interval [0, T]. In par-
ticular, we conclude the uniqueness of regular solutions.

Remark 2. Following the techniques introduced in [22] (see also
[19] and [29]) we can easily show that if the forcing term, f, in Eq. (8)
belongs to a certain Gevrey class of regularity then the solutions of (8) will
instantaneously belong to a similar Gevrey class of regularity. Specifically,
in this situation the solution will become analytic in space and time. In
particular, one can also provide uniform lower bounds for the radii of
analyticity (in space and in time) for the solutions that lie in the global
attractor (see Section 4 for the existence of a compact finite dimensional
global attractor.) As a result of this Gevrey regularity one can also show
that the Galerkin approximating solutions, introduced earlier, converge
exponentially fast in the wave number m, as mQ. (see, e.g., [15], [23],
and [28]). Furthermore, one can use this Gevrey result to establish
rigorous estimates for the dissipative small scales in Eq. (8) (see, e.g., [16]).

4. ESTIMATING THE DIMENSION OF THE GLOBAL ATTRACTOR

Let S(t) denote the semi-group of the solution operator to Eq. (8), i.e.,
u(t)=S(t) u in. It can be easily shown, from the proof of Theorem 3 and
Rellich’s Lemma (see [1]), that S(t) is a compact semi-group. Let us recall
(see (13)) that the ball B1={u ¥ V : ||u|| [ R0

a1
} is an absorbing ball, in the

space V. Consequently, the Eq. (8) has a nonempty compact global attractor

A=3
s > 0

10
t \ s
S(t) B1
2

(see, e.g., [2], [13], [24] and [36]).
In this section we employ the trace formula (see, e.g., [12], [13], and

[36]) to estimate the Hausdorff and fractal (box counting) dimensions of
the global attractor A in terms of the physical parameters of the Eq. (1).
First, let us recall the Lieb–Thirring inequality

Lemma 4 (The Lieb–Thirring inequality). Let {kj}
N
j=1 be an ortho-

normal set of functions in (H)k=H À · · · ÀHz
k-times

. Then there exists a constant

CLT, which depends on k, but independent of N such that

F
W

1 C
N

j=1
kj(x) ·kj(x)2

5/3

dx [ CLT C
N

j=1
F
W

(Nkj(x): Nkj(x)) dx (27)

The Three Dimensional Viscous Camassa–Holm Equations 21



Next we will present a new technical lemma which we will use in esti-
mating the dimension of the global attractor.

Lemma 5. Let {jj}
N
j=1 … V be an orthonormal set with respect to the

inner product [ · , · ] which is defined in (2), i.e.,

[ji, jj]=a
2
0(ji, jj)+a

2
1((ji, jj))=dij

Let kj(x)=(a0jj(x), a1
“

“x1
jj(x), a1

“

“x2
jj(x), a1

“

“x3
jj(x))T, and j2(x)=

;N
j=1 (jj(x) ·jj(x)) it . Then, there exists a constant CF, which is indepen-

dent of N, such that

||j(x)||2L. [
CF

a2
1

1 C
N

j=1
F
W

(Nkj(x): Nkj(x)) dx2
1/2

(28)

Proof. Let tj ¥ R, j=1,..., N, to be chosen later. By Agmon’s
inequality (7) we have

a2
0
: C

N

j=1
tj(A−1/2jj)(x) :

2

+a2
1
: C

N

j=1
tjjj(x) :

2

[ ca2
0
: C

N

j=1
tjjj
: > C

N

j=1
tjjj
>+ca2

1
> C

N

j=1
tjjj
> : C

N

j=1
tjAjj
:

and by Cauchy–Schwarz

a2
0
: C

N

j=1
tj(A−1/2jj)(x) :

2

+a2
1
: C

N

j=1
tjjj(x) :

2

[ c 1a2
0
: C

N

j=1
tjjj
:2+a2

1
> C

N

j=1
tjjj
>221/2 1a2

0
> C

N

j=1
tjjj
>2+a2

1
: C

N

j=1
tjAjj
:221/2

[ c 5C
N

j=1
tjjj, C

N

j=1
tjjj
61/2 1 C

N

j=1
t2

j
21/2 1a2

0 C
N

j=1
||tj ||2+a

2
1 C

N

j=1
|Ajj |22

1/2

Since [ji, jj]=dij we have

a2
0
: C

N

j=1
tj(A−1/2jj)(x) :

2

+a2
1
: C

N

j=1
tjjj(x) :

2

[ c 1 C
N

j=1
t2

j
2 1a2

0 C
N

j=1
||jj ||2+a

2
1 C

N

j=1
|Ajj |22

1/2

[ c 1 C
N

j=1
t2

j
2 1 C

N

j=1
F
W

(Nkj : Nkj) dx2
1/2
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Let i ¥ {1, 2, 3} be fixed, we choose tj=jji(x), from the above we have

a2
1
1 C

N

j=1
j2

ji(x)2
2

[ c 1 C
N

j=1
j2

ji(x)2 1 C
N

j=1
F
W

(Nkj(x) : Nkj(x)) dx2
1/2

Now we sum over i, i=1, 2, 3, to reach

a2
1j

2(x) [ 1 C
N

j=1
F
W

(Nkj(x) : Nkj(x)) dx2
1/2

which concludes our proof. i

Theorem 6. The Hausdorff and fractal dimensions of the global attrac-
tor of the viscous Camassa–Holm (NS-a) equations, dH(A) and DF(A),
respectively, satisfy:

dH(A) [ dF(A) [ c max 3G4/3 1 1
ca2

1l1

22/3

, G3/2 1 1
a4

0c
2l1a

2
1

23/84

where G= |f|

n
2
l

3/4
1

is the Grashoff number and, as before, 1
c=min {

1

a
2
0
, 1

a
2
1l1

4 .

Proof. The linearized equation (8) about a regular solution u(t) takes
the form

d
dt
dv+nA dv+B̃(du, v)+B̃(u, dv)=0 (29)

where v(t)=a2
0u+a

2
1Au and dv=a

2
0du+a

2
1A du. Notice that du evolves

according to the equation

d
dt
du+nA du+(a2

0I+a
2
1A)

−1 [B̃(du, a2
0u+a

2
1Au)+B̃(u, a

2
0 du+a

2
1A du)=0

(30)

which we write symbolically as

d
dt
du+T(t) du=0
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Let duj(0), for j=1,..., N, be a set of linearly independent vectors
in V, and let duj(t) be the corresponding solutions of (30) with initial value
duj(0), for j=1,..., N. We denote

TN(t)=Trace(PN(t) T(t)|PN(t) V) (31)

where PN(t) V=R dv1(t)+R dv2(t)+· · ·+R dvN(t), and PN(t) is the
orthogonal projector of V onto PN(t) V with respect to the inner product
[ · , · ] given in (2).

Let {jj(t)}
N
j=1 be an orthonormal basis, with respect to inner product

[ · , · ] of the space PNV, i.e., [ji, jj]=dij, i, j=1,..., N. We set

kj=1a0jj, a1
“

“x1
jj, a1

“

“x2
jj, a1

“

“x3
jj
2T

Notice that (kj, kk)=djk, j, k=1,..., N. We set

k2(x, t)=C
N

j=1
(kj(x, t) ·kj(x, t))

=a2
0 C

N

j=1
jj(x, t) ·jj(x, t)+a

2
1 C

N

j=1
(Njj(x, t) : Njj(x, t))

Notice that by the Lieb–Thirring inequality (27)

F
W

(k(x, t))10/3 dx [ CLTQN(t)

where QN(t) :=;N
j=1 >W (Nkj(x, t) : Nkj(x, t)) dx.

Let us denote hj(x, t)=a
2
0jj(x, t)+a

2
1Ajj(x, t), for j=1,..., N. From

(31) we have

TN(t)=C
N

j=1
[T(t) jj( · , t), jj( · , t)]

=n C
N

j=1
[Ajj, jj]+C

N

j=1
(B̃(jj, v), jj)+C

N

j=1
(B̃(u, hj), jj)

and by virtue of (4) we have

Tn(t)=n C
N

j=1
[Ajj, jj]+C

N

j=1
(B̃(u, hj), jj)
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Observe that

C
N

j=1
[Ajj, jj]=a

2
0 C

N

j=1
(Ajj, jj)+a

2
1 C

N

j=1
(Ajj, Ajj)

=C
N

j=1
F
W

(Nkj(x, t) : Nkj(x, t)) dx=QN(t)

Thus

TN(t)=nQN(t)+IN(t) (32)

where IN(t) :=;N
j=1 (B̃(u, hj), jj). Let us now estimate IN(t). Using (4)

and (3) we have

IN(t)=C
N

j=1
[((u ·N) hj, jj)+((jj ·N) u, hj)]

=C
N

j=1
[−((u ·N) jj, hj)+((jj ·N) u, hj)]

again by (3)

IN(t)=C
N

j=1
[−a2

1((u ·N) jj, Ajj)+a
2
0((jj ·N) u, jj)+a

2
1((jj ·N) u, Ajj)

integrating by parts and using (3)

IN(t)=C
N

j=1
C
3

k=1
a2

1
11 “
“xk

u ·N2 jj,
“

“xk
jj
2+a2

0 C
N

j=1
((jj ·N) u, jj)

−a2
1 C

N

j=1
C
3

k=1

11 “
“xk

u ·N2 u, “
“xk
jj
2

−a2
1 C

N

j=1
C
3

k=1

1 (jj ·N)
“

“xk
u,
“

“xk
jj
2

Therefore,

|IN(t)| [ c F
W

(Nu(x, t) : Nu(x, t))1/2 k2(x, t) dx

+ca2
1 F
W

51 C
3

i, k=1

1 “2u
“xi “xk

(x, t)2
22 j2(x, t)

×1 C
N

j=1
(Njj(x, t) : Njj(x, t))26

1/2

dx
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where j2(x, t)=;N
j=1 (jj(x, t) ·jj(x, t)). As a result we have

|IN(t)| [ c F
W

(Nu(x, t) : Nu(x, t))1/2 k2(x, t) dx

+a1 F
W

k(x, t) j(x, t) 1 C
3

k, i=1

1 “2

“xi “xk
u(x, t)2

221/2

dx

Thanks to (28) we have

|IN(t)| [ c F
W

(Nu(x, t) : Nu(x, t))1/2 k2(x, t) dx

+C1/2
F Q1/4

N (t) F
W

1 C
3

k, i=1

1 “2

“xi “xk
u(x, t)2

221/2

k(x, t) dx (33)

and by the Hölder inequality we get

|In(t)| [ c ||Nu||L5/2 1F
W

(k(x, t))10/3 dx2
3/5

+cQ1/4
N (t) |Au|1F

W

k2(x, t) dx2
1/2

Since [ji, jj]=dij we have >W k2(x, t) dx=N. Therefore, the above gives

|IN(t)| [ c ||Nu||L5/2 1F
W

(k(x, t))10/3 dx2
3/5

+cQ1/4
N (t) |Au| N1/2

Applying the Lieb–Thirring inequality (27) we obtain

|IN(t)| [ ccLT ||Nu||L5/2 1 C
N

j=1
F
W

(Nkj(x, t) : Nkj(x, t)) dx2
3/5

+cQ1/4
N (t) |Au| N1/2

that is

|IN(t)| [ c ||Nu||L5/2 Q3/5
N (t)+cQ1/4

N (t) |Au| N1/2

Applying Young’s inequality

|IN(t)| [
c
n3/2 ||Nu||

5/2
L5/2+

n

2
QN(t)+c |Au|4/3 1N2

n
21/3
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then using Hölder’s inequality

|IN(t)| [
c
n3/2 ||Nu||

7/4
L2 ||Nu||3/4

L6 +
n

2
QN(t)+c |Au|4/3 1N2

n
21/3

and by virtue of the Sobolev inequality (6c) we obtain

|IN(t)| [
c
n3/2 ||u||

1/2 ||u||5/4 |Au|3/4+
n

2
QN(t)+c |Au|4/3 1N2

n
21/3

using Young’s inequality again we reach

|IN(t)| [
c
n3/2

||u||1/2

a5/4
0 a

3/4
1

(a2
0 ||u||

2+a2
1 |Au|

2)+
n

2
QN(t)+c |Au|4/3 1N2

n
21/3

Substituting in (32) we get:

TN(t) [
n

2
QN(t)−

c
n3/2

||u||1/2

a5/4
0 a

3/4
1

(a2
0 ||u||

2+a2
1 |Au|

2)−c |Au|4/3 1N2

n
21/3

Now, we require N to be large enough such that

lim inf
T Q.

1
T
F

T

0
TN(s) ds > 0 (34)

According to the trace formula (see [12], [13] or [36]) such an N will be
an upper bound for the fractal and Hausdorff dimensions of the global
attractor. Observe that from the asymptotic behavior of the eigenvalues of
the operator A there is a constant c0 such that

lj \ c0l1 j2/3 for j=1, 2,...

Therefore, since QN(t) is the trace of the operator A restricted to some
subspace of dimension N, we have

QN(t) \ C
N

j=1
lj \ cl1N5/3 (35)

Let us require N to be large enough so that

nl1N5/3 \ c lim sup
T Q.

1 1
T
F

T

0
|Au(s)|4/3 ds21N

2

n
21/3
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and

nl1N5/3 \
c

n3/2a5/4
0 a

3/4
1

lim sup
T Q.

1
T
F

T

0
||u(s)||1/2 (a2

0 ||u(s)||
2+a2

1 |Au(s)|
2) ds

For such an N the inequality (34) is satisfied, and thus N provides an upper
bound for the fractal and Hausdorff dimensions of the global attractor.

By Hölder’s inequality we have

lim sup
T Q.

1
T
F

T

0
|Au(s)|4/3 ds [ lim sup

T Q.

1 1
T
F

T

0
|Au(s)|22

2/3

and thanks to (14) we get

lim sup
T Q.

1
T
F

T

0
|Au(s)|4/3 ds [ 1G

2n2l1/2
1

ca2
1

22/3

Therefore, from the above, (13) and (14) we have

dH(A) [ dF(A) [ c max 3G4/3 1 1
ca2

1l1

22/3

, G3/2 1 1
a2

0c
2l1a

2
1

23/84

which concludes our proof. i

5. NUMBERS OF DEGREES OF FREEDOM IN TURBULENT
FLOWS

An argument from the classical theory of turbulence [30] suggests
that there are finitely many degrees of freedom in turbulent flows. Heuristic
physical arguments are used to justify this assertion and to provide an
estimate for this number of degrees of freedom by dividing a typical length
scale of the flow, L, by the Kolmogorov dissipation length scale and taking
the third power in 3D. The resulting formula is usually expressed explicitly
in terms of the mean rate of dissipation of energy and the kinematic visco-
sity. In analogy with this heuristic approach we will derive here an estimate
for the ‘‘dissipation’’ length scale (i.e., what would correspond to the
Kolmogorov length scale) for the viscous Camassa–Holm (NS-a) equations
in terms of the mean rate of dissipation of ‘‘energy’’ and the kinematic vis-
cosity. We will also show that the corresponding number of degrees of
freedom is proportional to the dimension of the global attractor. This, in
a sense, suggests that in the absence of boundary effects (e.g., in the case
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of periodic boundary conditions) the viscous Camassa–Holm equations
represent, very well, the averaged equation of motion of turbulent flows.
Hence, one is tempted to use the viscous Camassa–Holm equations as a
closure model for the Reynolds equations, which represent the ensemble-
averaged Navier–Stokes equations. Indeed, this idea motivated our studies
in [5], [6] and [7], and it also led to a physical derivation in [26] (see also
[6]) of the viscous Camassa–Holm (NS-a) equations, in the inviscid case,
as averaged equations.

As before, we denote v=a2
0u+a

2
1Au, hence Eq. (8) and Eq. (10) take

the form

dv
dt
+nAv+B̃(u, v)=f

u(0)=u in

(36)

In analogy with Kolmogorov’s mean rate of dissipation of energy in tur-
bulent flow [30] we define

E(u in)=l3/2
1 n 5lim sup

T Q.

1
T
F

T

0
(a2

0 ||u(s)||
2+a2

1 |Au(s)|
2) ds6 (37)

the mean rate of dissipation of ‘‘energy,’’ and

Ē= sup
uin

¥A

E(u in)

the maximal mean rate of dissipation of energy on the attractor. From
equation (33), and since > k2(x, t) dx=N, we have:

|IN(t)| [ c F
W

(Nu(x, t) : Nu(x, t))1/2 k2(x, t) dx

+cC1/2
F Q1/4

N (t) |Au| N1/2

and by Hölder’s inequality we have

|IN(t)| [ c ||Nu||L6 ||k2||L6/5+cQ1/4
N (t) |Au| N1/2

Again by Hölder’s inequality and (6) we get

|IN(t)| [ c |Au(t)| 1F
W

k2(x, t) dx2
7/12 1F

W

(k2(x, t))5/3 dx2
1/4

+cQ1/4
N (t) |Au(t)| N1/2
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Using the Lieb–Thirring inequality (27) and > k2(x, t) dx=N we obtain

|IN(t)| [ c |Au(t)| N7/12Q1/4
N (t)+cQ1/4

n (t) |Au(t)| N1/2

and hence

|IN(t)| [ c |Au(t)| N7/12Q1/4
N (t)

After applying Young’s inequality to the above and substituting in Eq. (32)
we obtain

TN(t) \
n

2
QN(t)−cn−1/3N7/9 |Au(t)|4/3

Therefore, in order to satisfy (34), and based on the above, it suffices to
choose N large enough so that for every trajectory u(t) on the global
attractorA we have

lim inf
T Q.

1
T
F

T

0

5n
2
QN(t)−cn−1/3N7/9 |Au(t)|4/36 dt > 0

Therefore, such a large N is an upper bound for the dimension of the
global attractor. Based on (35) it suffices to require

n4/3l1N5/3 ·N−7/9 > c lim sup
T Q.

1
T
F

T

0
|Au(s)|4/3 ds

for every solution u in ¥A, i.e.,

n4/3l1N8/9 > c sup
uin

¥A

1 lim sup
T Q.

1
T
F

T

0
|Au(s)|4/3 ds2

On the other hand, using Hölder’s inequality and (37) we have

sup
uin

¥A

1 lim sup
T Q.

1
T
F

T

0
|Au(s)|4/3 ds2

[ sup
uin

¥A

1 lim sup
T Q.

1
T
F

T

0
|Au(s)|2 ds2

2/3

[ sup
uin

¥A

1 lim sup
T Q.

1
Ta2

1

F
T

0
(a2

0 ||u(s)||
2+a2

1 |Au(s)|
2) ds2

2/3

[ sup
uin

¥A

1 E(u in)
nl1/2

1 (a2
1l1)
22/3

[ 1 Ē

nl1/2
1 (a2

1l1)
22/3
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Therefore, every N large enough such that

N \ c 1 Ē

n3l2
1(a

2
1l1)
23/4

(38)

is an upper bound for the fractal dimension of the global attractor, and
hence is an upper bound for the number of degrees of freedom in turbulent
flows.

We set the dissipation length scale, in analogy with the Kolmogorov
dissipation length scale in the classical theory of turbulence, to be

aE=1
n3

Ē
21/4

Then Eq. (38) leads to the following

Theorem 7. The Hausdorff and fractal dimensions of the global
attractor of the viscous Camassa–Holm (NS-a) equations, dH(A) and
dF(A), respectively, satisfy:

dH(A) [ dF(A) [
c

(a2
1l1)3/4
1 1
aEl

1/2
1

23

This estimate for the number of degrees of freedom is consistent with
the conventional estimate a la Kolmogorov–Landau–Lifshitz [30]. In par-
ticular, the number of degrees of freedom scales as the cube of the ratio of
the domain size divided by the Kolmogorov dissipation length scale (times
a factor involving the fixed a1).

6. CONVERGENCE TO THE NAVIER–STOKES EQUATIONS

We observed earlier that the system (8) reduces to the Navier–Stokes
for a0=1 and a1=0. In this section we will fix a0=1 and investigate the
convergence of the solutions of the system (8) as a1 Q 0+, and relate the
limit to the Navier–Stokes equations. We will be studying further the rela-
tion between solutions of the system (8) and the 3D Navier–Stokes equa-
tion in a subsequent work. In particular, we will investigate the conver-
gence (in a suitable sense) of the global attractor of the system (8) to the
global attractor of the 3D Navier–Stokes equations, as it was defined by
Sell in [34], and to the ‘‘universal attracting’’ set introduced in [21].

The Three Dimensional Viscous Camassa–Holm Equations 31



Theorem 8. Let f ¥H, u in ¥ V and a0=1. Let ua1 and va1=ua1+a
2
1Aua1,

denote the solution of the initial-value problem (8) (or equivalently (36)).
Then there are subsequences uaj

1
, vaj

1
, and a function u such that as a j

1 Q 0+

we have:

(i) uaj
1
Q u, strongly in L2

loc([0,.); H);

(ii) uaj
1
Q u, weakly in L2

loc([0,.); V);

(iii) for every T ¥ (0,.) and every w ¥H we have (uaj
1
(t), w)Q

(u(t), w) uniformly on [0, T];

(iv) vaj
1
Q u weakly in L2

loc([0,.); H) and strongly in L2
loc([0,.); VŒ).

Furthermore, u is a weak solution of the 3D Navier–Stokes equations with the
initial data u(0)=u in (for the definition of weak solutions to the 3D Navier–
Stokes equations see [13] and [35].)

Proof. Let T > 0 be fixed. From the proof of Theorem 3 and by
passing to the limit one can show that the estimates (17) and (18) also hold
for the exact solution of the system (8). That is

|ua1(t)|
2+a2

1 ||ua1(t)||
2 [ k1

and

n F
T

0
(||ua1(s)||

2+a2
1 |Aua1(s)|

2) ds [ k̄2(T)

This implies that there are subsequences {uaj
1
} and {vaj

1
}, and correspond-

ing functions u and v such that:

{uaj
1
}Q u weakly in L2([0, T]; V)

and

{vaj
1
}Q v weakly in L2([0, T]; H)

as a j
1 Q 0+.
Next we will use the above estimates and Eq. (8) to show that

F
T

0

:A−1 dua1(t)
dt
:2 dt=F

T

0

>dua1(t)
dt
>2

D(A)Œ
dt [K(T) (39)
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for some constant K which depends on T, but is independent of a1. Indeed,
from Eq. (8) (or equivalently (36)) we have

dua1
dt
+nAua1+(I+a

2
1A)

−1 B̃(ua1, va1)=(I+a2
1A)

−1 f

Thus

:A−1 dua1(t)
dt
: [ n |ua1 |+|A−1(I+a2

1A)
−1 B̃(ua1, va1)|+|A

−1f|

In order to prove (39) we only need to find the proper estimate for

|A−1(I+a2
1A)

−1 B̃(ua1, va1)| [ |A
−1B̃(ua1, va1)|

Applying part (v) of Lemma 1 we obtain

|A−1B̃(ua1, va1)| [ c(|ua1 |
1/2 ||ua1 ||

1/2 |va1 |+l
−1/4
1 |va1 | ||ua1 ||)

[ 2cl−1/4
1 |va1 | ||ua1 ||

[ 2cl−1/4
1 ||ua1 ||(|ua1 |+a

2
1 |Aua1 |)

As a result of the above estimates we have

|A−1B̃(ua1, va1)|
2 [ 8c2l−1/2

1 (||ua1 ||
2 |ua1 |

2+(a2
1 ||ua1 ||

2)(a2
1 |Aua1 |

2))

[ 8c2l−1/2
1 k1(||ua1 ||

2+a2
1 |Aua1 |

2)

and by integrating the above estimate over the interval [0, T] we have

F
T

0
|A−1B̃(ua1(t), va1(t))|

2 dt [
k̄2(T)
n

8c2l−1/2
1 k1

From all the above we conclude (39).
By virtue of the above estimates and Aubin’s compactness Theorem

(see, e.g., [13], [31], or [35]) there exists a subsequence, which will also be
labeled by {uaj

1
}, that converges to u strongly in L2([0, T]; H). Further-

more, since

F
T

0
|A−1/2(vaj

1
(t)−uaj

1
(t))|2 dt=(a j

1)
2 F

T

0
||uaj

1
(t)||2 dt [ (a j

1)
2 k̄2(T)
n

we have that vaj
1
Q u strongly in L2([0, T]; VŒ), as a j

1 Q 0+; and that v(t)=
u(t) a.e. in [0, T].
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As a result of these estimates one can extract subsequences, which will
be also labeled by {uaj

1
} and {vaj

1
}, respectively, and show that as a j

1 Q 0+

B̃(uaj
1
, vaj

1
)Q B̃(u, u)=B(u, u) weakly in L2([0, T]; D(A)Œ)

by following an approach similar to that used in the proof of Theorem 3.
This finishes the proof of the theorem. i
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