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Abstract

In this paper we consider a three-dimensional planetary geostrophic viscous
model of the gyre-scale mid-latitude ocean. We show the global existence and
uniqueness of the weak and strong solutions to this model. Moreover, we es-
tablish the existence of a finite-dimensional global attractor to this dissipative
evolution system. c© 2003 Wiley Periodicals, Inc.

1 Introduction

The starting point for many models in ocean and atmospheric dynamics uses the
so-called Boussinesq approximation equations with rotation. These are, roughly
speaking, the Navier-Stokes equations with rotation, forced by the heat buoyancy
and coupled with the heat transport equation. Since the heat transport equation
satisfies some sort of maximum principle, one is able to show that the tempera-
ture remains bounded in various L p-norms for all time. Therefore, in studying
the question of global regularity and well-posedness for this system of equations,
one faces the same mathematical difficulties as in the case of three-dimensional
Navier-Stokes equations with rotation. This is because, in both cases, the momen-
tum equations are the same, and the subtlety in dealing with the nonlinearity, the
advection terms, is similar. However, due to the rotation and other geophysical
situations, such as the shallowness of the oceans and the atmosphere, geophysi-
cists take advantage of certain geophysical balances, such as geostrophic balance
or hydrostatic balance, to derive reasonable, yet simplified, balanced models [30].
Averaging in the vertical directions, justified by shallowness, some of these mod-
els are two-dimensional, such as the Charney-Stommel ocean circulation model
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(cf. [4, 30, 37]). Some of these models are, therefore, treated using the same math-
ematical tools used for the two-dimensional Euler and Navier-Stokes equations
(see, e.g., [2, 9, 10, 18, 19, 25, 26, 29, 42] and references therein).

In this article we consider the following planetary geostrophic viscous model
(see [32, 34, 35]):

∇ p + f Ek × v + εL1v = 0 ,(1.1)
∂z p + T = 0 ,(1.2)

∇ · v + ∂zw = 0 ,(1.3)
∂t T + v · ∇T + w∂zT + L2T = Q ,(1.4)

in the domain
� = M × (−h, 0) ⊂ R

3 ,

where M is a bounded smooth domain in R
2, or the square M = (0, 1) × (0, 1).

Here v = (v1, v2), (v1, v2, w) is the velocity field, T is the temperature, and p is
the pressure. f = f0(β + y) is the Coriolis parameter, Q is a heat source, and ε is
a positive, dimensionless constant. The operators L 1 and L2 are given by

L1 = −Ah1− Av∂2
z ,(1.5)

L2 = −Kh1− Kv∂
2
z ,(1.6)

where Ah and Av are positive molecular viscosities, and Kh and Kv are positive
conductivity constants. We set ∇ p = (∂x p, ∂y p), ∇ · v = ∂xv1 + ∂yv2, and
1 = ∂2

x + ∂2
y . We denote the different parts of the boundary of � by

0u = {(x, y, z) ∈ � : z = 0} ,(1.7)
0b = {(x, y, z) ∈ � : z = −h} ,(1.8)
0s = {(x, y, z) ∈ � : (x, y) ∈ ∂M} .(1.9)

We equip the system (1.1)–(1.4) with the following boundary conditions, with
wind-driven on the top surface and nonslip and nonflux on the side walls and bot-
tom (see, e.g., [30, 31, 34, 35, 36]):

on 0u : Av
∂v

∂z
= τ, w = 0 , −Kv

∂T
∂z

= α(T − T ∗) ,(1.10)

on 0b :
∂v

∂z
= 0, w = 0 ,

∂T
∂z

= 0 ,(1.11)

on 0s : v · En = 0 ,
∂v

∂ En
× En = 0 ,

∂T
∂ En

= 0 ,(1.12)

where τ(x, y) is the wind stress, En is the normal vector of 0s , T ∗(x, y) is the typical
temperature of the top (upper) surface, and α > 0 is a positive constant.

Due to the boundary conditions (1.10)–(1.12), it is natural to assume that T ∗

satisfies the compatibility boundary condition

(1.13)
∂T ∗

∂ En
= 0 on ∂M .
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In addition, we supply the system with the initial condition

(1.14) T (x, y, z, 0) = T0(x, y, z) .

We became familiar with this model (1.1)–(1.14) from [32], where the authors
established global existence (without uniqueness) of the weak solutions and short-
time existence of strong solutions. These are similar to the well-known results
for the case of the three-dimensional Bénard convection problem and the three-
dimensional Navier-Stokes equations. However, the main difference between this
model and the three-dimensional Bénard convection with rotation lies in the mo-
mentum equations. In this model the momentum equations are linear in the veloc-
ity field. In particular, the main obstacle to proving the global regularity for the
three-dimensional Bénard problem (as well as the Navier-Stokes equations), the
nonlinear advection term (u · ∇)u, is absent in this case. In this paper we take
advantage of this very fact, in addition to the “maximum principle” for the temper-
ature, to establish the global regularity of the strong solution and the uniqueness of
the weak solution for this geophysical model.

It is worth noting the similarity between this model and the model of Bénard
convection in a porous medium. In the latter the Darcy law is used to model the
balance of momentum. As a matter of fact, the global regularity of the three-
dimensional Bénard convection in a porous medium is proven in [12] and, by using
a different approach, also in [28]. Indeed, the main idea used here is inspired by
[12, 13, 28]. We would like to emphasize that our proofs rely on certain technical
elliptic regularity results for nonlocal, Stokes-type, second-order elliptic systems
in domains with corners. Such results are readily available in the classical literature
for the case of smooth domains (see, for example, [23, 41]). However, due to the
fact that our physical domain � has corners, one can use similar techniques to
those developed in [21, 44] to obtain the needed elliptic regularity. Such elliptic
regularity results have also been used recently in [20] for studying the primitive
equations in domains with corners.

In a recent work [33], which was brought to our attention by S. Wang after we
completed an earlier draft of this paper, the authors proved the global existence of
strong solutions to the system (1.1)–(1.14). However, they established their result
under a stronger restriction on the initial data, namely, that either T0 ∈ L∞(�)

or T0 ∈ H 2(�), which is needed for the proof of the maximum principle on T .
Here, we show the global existence of strong solutions under a milder condition,
namely, T0 ∈ H 1(�), thus avoiding the direct use of the maximum principle for T
and thereby answering one of the three open problems posed in [33]. Moreover, we
establish the uniqueness of weak solutions and the existence of a finite-dimensional
global attractor, the remaining two open problems posed in [33]. Our results for
this three-dimensional model are in a sense similar to the well-known results for
the two-dimensional Bénard convection and Navier-Stokes equations.

In the inviscid case, i.e., ε = 0, the natural physical boundary condition for
the velocity field is no-normal flow, i.e., v · En = 0. The natural physical boundary
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condition for the temperature on the literal boundary is no-heat flux (see, e.g.,
[34]). Due to the rotation, i.e., f 6= 0, the no-normal flow dictates an additional
independent boundary condition on the temperature that makes the heat parabolic
PDE overdetermined with boundary conditions and hence ill-posed. For further
details about the physical and numerical background and history of this problem,
the reader is referred to [34] and references therein.

To remedy this situation, the authors of [34] introduced, in an ad hoc fash-
ion, a fourth-order diffusion term in the temperature equation that compensates for
the additional boundary condition. Samelson, Temam, and Wang [32] studied the
well-posedness of the inviscid system by adding a bi-Laplacian to the heat equa-
tion. To take advantage of the dissipation nature of the bi-Laplacian, the authors of
[32] supplemented this operator by yet another boundary condition that is indepen-
dent of the previous two boundary conditions imposed on the temperature, thereby
making the hyperdiffusion problem overdetermined. In a subsequent paper [3], we
introduce a proper fourth-order diffusion operator, which is dissipative when it is
subject to the two natural physical boundary conditions for the velocity field and
temperature, namely, no-normal flow for the velocity field and no-heat flux at the
literal boundary. Moreover, we prove the global well-posedness and regularity of
both the weak and strong solutions to the above-mentioned inviscid hyperdiffu-
sion, thermocline planetary geostrophic model. Furthermore, we also show that
this model possesses a finite-dimensional global attractor.

The rest of this paper is organized as follows: In Section 2 we introduce the
functional setting. In Section 3 we establish the existence and uniqueness of the
global weak solution. In Section 4 we prove the global existence and uniqueness
of a strong solution under the assumption that T0 ∈ H 1(�). In Section 5 we show
the existence of a global attractor for the system (1.1)–(1.14) and provide an upper
bound estimating its dimension.

2 Preliminaries and Functional Setting

2.1 New Formulation
Let us follow [32] to derive an equivalent formulation for the system (1.1)–

(1.14). By integrating equation (1.3) in the z-direction, we obtain

(2.1) w(x, y, z, t) = w(x, y,−h, t)−

∫ z

−h
∇ · v(x, y, ξ, t)dξ .

Since w(x, y, z, t) = 0 at z = −h and z = 0 (see (1.10) and (1.11)), we have

(2.2) w(x, y, z, t) = −

∫ z

−h
∇ · v(x, y, ξ, t)dξ

and

(2.3)
∫ 0

−h
∇ · v(x, y, ξ, t)dξ = ∇ ·

∫ 0

−h
v(x, y, ξ, t)dξ = 0 .
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By integrating equation (1.2) with respect to z, we obtain

(2.4) p(x, y, z, t) = −

∫ z

−h
T (x, y, ξ, t)dξ + ps(x, y, t) ,

where ps(x, y, t) is a free function to be determined. Moreover, notice that by
setting

(2.5) T = T ∗ + T̃ ,

we convert the boundary condition (1.10) to be homogeneous; namely, T̃ satisfies
the following homogeneous boundary conditions:

(2.6)
∂ T̃
∂z

∣∣∣∣
z=−h

= 0 ,
(
∂ T̃
∂z

+
α

Kv

T̃
)∣∣∣∣

z=0
= 0 ,

∂ T̃
∂ En

∣∣∣∣
0s

= 0

(notice that we have also used the compatibility condition (1.13)). Based on all the
above, we get the following new formulation for the system (1.1)–(1.14):

(2.7) ∇

[
ps(x, y, t)−

∫ z

−h
T̃ (x, y, ξ, t)dξ − (z + h)T ∗(x, y, t)

]

+ f Ek × v + εL1v = 0 ,

∇ ·

∫ 0

−h
v(x, y, z, t)dz = 0 ,(2.8)

∂t T̃ + L2T̃ + v · ∇ T̃ −

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂z T̃ + v · ∇T ∗ = Q∗ ,(2.9)

∂v

∂z

∣∣∣∣
z=0

= τ ,
∂v

∂z

∣∣∣∣
z=−h

= 0 , v · En
∣∣∣∣
0s

= 0 ,
∂v

∂ En
× En

∣∣∣∣
0s

= 0 ,(2.10)

(
∂z T̃ +

α

Kv

T̃
)∣∣∣∣

z=0
= 0 , ∂z T̃

∣∣∣∣
z=−h

= 0 ,
∂

∂ En
T̃

∣∣∣∣
0s

= 0 ,(2.11)

T̃ (x, y, z, 0) = T0(x, y, z)− T ∗(x, y) ,(2.12)

where

Q∗ = Q + Kh1T ∗ .

In the above system, the unknowns are the vector field v(x, y, z, t) and the scalar
functions ps(x, y, t) and T̃ (x, y, z, t), while T ∗, τ , Q∗, and T̃0 are given.

It is clear that once we determine v(x, y, z, t), ps(x, y, t), and T̃ (x, y, z, t), we
can easily recover, thanks to (2.1), (2.4), and (2.5), the original unknowns of the
system (1.1)–(1.14), that is, (v,w), T , and p, which makes the new formulation
equivalent to the original system (1.1)–(1.14).



6 C. CAO AND E. S. TITI

2.2 Functional Spaces and Inequalities
Let us denote by L2(�) and H 1(�), H 2(�), . . . , the usual L2-Lebesgue and

Sobolev spaces, respectively. We denote by

(2.13) |T | =

( ∫

�

|T (x, y, z)|2 dx dy dz
)1/2

for every T ∈ L2(�), and by

‖T ‖ =

(
α

∫

0u

|T (x, y, 0)|2 dx dy(2.14)

+

∫

�

[
Kh|∇T (x, y, z)|2 + Kv|∂zT (x, y, z)|2

]
dx dy dz

)1/2

for every T ∈ H 1(�). Let

Ṽ =

{
T̃ ∈ C∞(�) :

∂ T̃
∂z

∣∣∣∣
z=−h

= 0,
(
∂ T̃
∂z

+
α

Kv

T̃
)∣∣∣∣

z=0
= 0,

∂ T̃
∂ En

∣∣∣∣
0s

= 0
}
.

We also denote by H ′ the dual space of H 1(�) with the dual action 〈·, ·〉.
Next, we recall the following version of the Poincaré inequality (cf. [1, 43]):

PROPOSITION 2.1 The norm defined as in (2.14) is equivalent to the H 1(�) norm;
namely, there is a constant K1 such that

(2.15)
1

K1
‖T ‖2 ≤ ‖T ‖2

H1(�)
≤ K1‖T ‖2

for every T ∈ H 1(�). Moreover, we have

(2.16) |T |2 ≤ K̃‖T ‖2 for all T ∈ H 1(�)

where

(2.17) K̃ = max
{

2h
α
,

2h2

Kv

}
.

For convenience, we state the following version of the Sobolev interpolation
inequalities (cf. [1]):

(2.18)





‖h(x, y)‖L4(M) ≤ C4‖h(x, y)‖1/2
L2(M)‖h(x, y)‖1/2

H1(M)

‖h(x, y)‖L6(M) ≤ C4‖h(x, y)‖1/3
L2(M)‖h(x, y)‖2/3

H1(M)

and
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(2.19)

{
‖g(x, y, z)‖L3(�) ≤ C5|g(x, y, z)|1/2‖g(x, y, z)‖1/2

H1(�)

‖g(x, y, z)‖L6(�) ≤ C5‖g(x, y, z)‖H1(�)

for all h ∈ H 1(M) and g ∈ H 1(�), respectively. Also, we recall the integral
version of the Minkowski inequality for the L p-spaces, p ≥ 1. Let �1 ⊂ R

m1 and
�2 ⊂ R

m2 be two measurable sets, where m1 and m2 are two positive integers.
Suppose that f (ξ, η) is measurable over �1 ×�2. Then

(2.20)
[ ∫

�1

( ∫

�2

| f (ξ, η)|dη
)p

dξ
]1/p

≤

∫

�2

( ∫

�1

| f (ξ, η)|p dξ
)1/p

dη .

Hereafter, C , which may depend on the domain � and the constant parameters ε,
f0, β, α, Ah , Av, Kh, and Kv in the system (1.1)–(1.14), will denote a constant that
may change from line to line.

Finally, we state the following proposition, which plays an important role in our
proof of the well-posedness to the model (1.1)–(1.14). The proof of this proposition
will be given in the appendix.

PROPOSITION 2.2 Let u = (u1, u2) be a smooth vector field, and let f and g be
smooth scalar functions. Then

∣∣∣∣
∫

�

(
∇ ·

∫ z

−h
u(x, y, ξ, t)dξ

)
f g dx dy dz

∣∣∣∣ ≤

C | f |‖u‖
1/2
H1(�)

‖u‖
1/2
H2(�)

‖g‖
1/2
H1(�)

|g|1/2 .

2.3 Regularity Results

In this subsection we recall some regularity results that will be used in our
proofs. First, by following the techniques developed in [21, 44] (see also [23, p. 89]
for the case of smooth domains), one can show the following regularity results for
solutions to the boundary value problem:

(2.21)

{
Lo

2T̃ =: −Kh1T̃ − Kv∂
2
z T̃ = G(x, y, z) in �

(∂z T̃ + α
Kv

T̃ )
∣∣
z=0 = 0, ∂z T̃

∣∣
z=−h = 0, ∂

∂ En T̃
∣∣
0s

= 0.

PROPOSITION 2.3 Let G(x, y, z) ∈ L2(�) be given, and let T̃ be the solution of
the boundary value problem (2.21). Then, for every T̃ ∈ Ṽ ,

(2.22) ‖T̃ ‖H2(�) ≤
C1

min{Kh, Kv}
|G| =

C1

min{Kh, Kv}
|Lo

2T̃ | .
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Let T̃ ∈ Ṽ be an arbitrary function; notice that by integrating by parts and using
the boundary conditions (2.11), for all T̃ ∈ Ṽ we have

∫

�

T̃ Lo
2T̃ dx dy dz

= −

∫

�

T̃
(
Kh1T̃ + Kv∂

2
z T̃

)
dx dy dz

=

∫

�

[
Kh|∇ T̃ |2 + Kv|∂z T̃ |2

]
dx dy dz −

∫

0u

Kv T̃ ∂z T̃ dx dy

=

∫

�

[
Kh|∇ T̃ |2 + Kv|∂z T̃ |2

]
dx dy dz + α

∫

0u

|T̃ |2 dx dy

= ‖T̃ ‖2 .

(2.23)

As a result of (2.16), (2.22), (2.23), and the Rellich lemma [1], one can show that
the operator Lo

2 with domain

D(Lo
2) = closure of Ṽ with respect to the H 2(�) topology,

is a positive self-adjoint operator with compact inverse. Therefore, the space L 2(�)

possesses an orthonormal basis {φk(x, y, z)}∞
k=1 of eigenfunctions of the operator

Lo
2 such that

(2.24) Lo
2φk(x, y, z) = λkφk(x, y, z)

where 0 < λ1 ≤ λ2 ≤ · · · and limk→∞λk = ∞. Moreover, we have the following
Weyl’s asymptotic formula (cf. [5]): There is a constant C0 > 0 such that

(2.25)
k2/3

C0
≤
λk

λ1
≤ C0k2/3 .

We will let Hm = span{φ1, φ2, . . . , φm} and Pm : L2(�) → Hm be the L2(�)

orthogonal projection onto Hm .
Next, we recall the following regularity results, which will be used to show the

regularity of solutions of equations (2.7) and (2.8) with the boundary conditions
(2.10). First, being motivated by the two-dimensional Stokes problem, we consider
the following system:

∇qs(x, y)+ f Ek × u(x, y)− εAh1u(x, y) =
ε

h
τ(x, y) in M ,(2.26)

∇ · u = 0 in M ,(2.27)

u · En = 0 ,
∂u
∂ En

× En = 0 , on ∂M .(2.28)
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Here, the vector field u(x, y) and the scalar function qs(x, y) are the unknowns,
while τ(x, y) is given. One can follow the proof of the existence and uniqueness
theorem of solutions for the Stokes problem and the techniques developed in [21,
44] to show the following results (cf. [8, 17, 38, 39]):

PROPOSITION 2.4 Let τ ∈ H 1
0 (M) be given. Then there is a unique solution

(qs(x, y), u(x, y)) (qs is unique up to a constant) of the system (2.26)–(2.28) such
that

(i) u ∈ (H 2(M))2 and qs ∈ H 1(M), and
(ii) for γ = 0 or 1,

(2.29) εAh‖u‖2
Hγ+1(M) + ‖qs‖

2
Hγ (M) ≤

Cε
h

‖τ‖2
H1(M) .

Furthermore, and again by following the techniques developed in [21, 44] (for
the case of smooth domains, see [23, p. 89] and [41]), we have the following regu-
larity results for solutions of the following three-dimensional second-order elliptic
boundary value problem:

∇η(x, y, z)+ f Ek × v + εL1v = 0 in �,(2.30)

∂v

∂z

∣∣∣∣
z=0

= τ ,
∂v

∂z

∣∣∣∣
z=−h

= 0 , v · En
∣∣∣∣
0s

= 0 ,
∂v

∂ En
× En

∣∣∣∣
0s

= 0 .(2.31)

Here v(x, y, z) is the unknown, while η(x, y, z) and τ(x, y) are given.

PROPOSITION 2.5 Let η ∈ H γ (�), γ = 0 or 1, and τ ∈ H 1
0 (M) be given. Then

there is a unique solution v ∈ H γ+1(�) of equations (2.30)–(2.31) such that

(2.32) ‖v‖Hγ+1(�) ≤
C2

ε Ã

(
‖η‖Hγ (�) + ε‖τ‖H1(M)

)

where

(2.33) Ã = min{Ah, Av} .

Finally, let us present our weak formulation of the system (2.7)–(2.12) and state
the definition of weak solutions. Again, as we mentioned before, the role of the
fundamental functional spaces in problem (2.7)–(2.12) will be played by H 1(�)

and H ′, and not by H 1
0 (�) and H−1(�), as in the Dirichlet boundary value problem

(cf. [23, pp. 61, 121]).

DEFINITION 2.6 Let T̃0 ∈ L2(�), and let S be any fixed positive time. The vector
field v(x, y, z, t) and the scalar functions ps(x, y, t) and T̃ (x, y, z, t) are called a
weak solution of (2.7)–(2.12) on time interval [0, S] if

ps(x, y, t) ∈ C([0, S], L2(M)) ∩ L2([0, S], H 1(M)) ,

v(x, y, z, t) ∈ C([0, S], H 1(�)) ∩ L2([0, S], H 2(�)) ,

T̃ (x, y, z, t) ∈ C([0, S], L2(�)) ∩ L2([0, S], H 1(�)) ,

∂t T̃ (x, y, z, t) ∈ L1([0, S], H ′)
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(recall that H ′ is the dual space of H 1(�)), and if they satisfy
∫

�

∇

[
ps(x, y, t)−

∫ z

−h
(T̃ (x, y, ξ, t)+ T ∗)dξ

]
φ dx dy dz

+

∫

�

( f Ek × v)φ dx dy dz + ε

∫

�

(Ah∇v · ∇φ + Av∂zv∂zφ)dx dy dz

=

∫

0u

Avτφ dx dy dz

(2.34)

and ∫

�

T̃ (t)ψ dx dy dz +

∫ t

t0

∫

�

(
Kh∇ T̃ · ∇ψ + Kv∂z T̃ ∂zψ

)
dx dy dz

+ α

∫ t

t0

∫

0u

T̃ψ dx dy +

∫ t

t0

∫

�

(v · ∇T ∗)ψ dx dy dz

+

∫ t

t0

∫

�

[
(v · ∇ T̃ )ψ −

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂z T̃ψ

]
dx dy dz

=

∫

�

T̃ (t0)ψ dx dy dz +

∫ t

t0

∫

�

Q∗ψ dx dy dz

(2.35)

for every φ ∈ (C∞(�))2 and ψ ∈ C∞(�), and almost every t , t0 ∈ [0, S].
Moreover, a weak solution is called a strong solution of (2.7)–(2.12) on [0, S]

if, in addition, it satisfies

ps(x, y, t) ∈ C([0, S], H 1(M)) ∩ L2([0, S], H 2(M)) ,

v(x, y, z, t) ∈ C([0, S], H 1(�)) ∩ L2([0, S], H 2(�)) ,

T̃ (x, y, z, t) ∈ C([0, S], H 1(�)) ∩ L2([0, S], H 2(�)) .

(Notice that for strong solutions we require T̃0 ∈ H 1(�)).

Observe that the difference between our definition of weak and strong solution
is in the regularity of the temperature T̃ .

3 Global Existence, Uniqueness, and Well-Posedness
of Weak Solutions

Now we are ready to show the global existence and uniqueness of weak solu-
tions to the system (2.7)–(2.12).

THEOREM 3.1 Suppose that τ ∈ H 1
0 (M), T ∗ ∈ H 2(M), and Q ∈ L2(�). Then

for every T̃0 = T0 − T ∗ ∈ L2(�) and S > 0, there is a unique weak solution
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(ps, v, T̃ ) (ps is unique up to a constant) of the system (2.7)–(2.12) on the interval
[0, S]. Moreover, T̃ satisfies

∂t T̃ ∈ L2(0, S; H ′) , |T̃ |2 ≤ K2(S, Q, |T0|, T ∗, τ ) ,(3.1)
∫ S

0
‖T̃ (s)‖2 ds ≤ K3(S, Q, |T0|, T ∗, τ ) ,(3.2)

where K2(S, Q, |T0|, T ∗, τ ) and K3(S, Q, |T0|, T ∗) are as specified in (3.17) and
(3.19), respectively.

PROOF: The existence of weak solutions was proven in [32]. For the sake
of completeness we present the proof again. In particular, we establish certain
estimates that will be used later in the proof of uniqueness. We will use a Galerkin-
like procedure based on the eigenfunctions {φk}

∞
k=1 to show the existence. Let

m ∈ Z
+ be fixed. The Galerkin approximating system of order m that we use for

(2.7)–(2.12) reads

(3.3) ∇

[
ps(x, y, t)−

∫ z

−h
T̃m(x, y, ξ, t)dξ − (z + h)T ∗(x, y)

]

+ f Ek × v + εL1v = 0 ,

(3.4) ∇ ·

∫ 0

−h
v(x, y, z, t)dz = 0 ,

(3.5)
∂

∂t
T̃m + Lo

2T̃m + Pm
[
v · ∇ T̃m

]

+ Pm

[
−

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂ T̃m

∂z
+ (v · ∇)T ∗

]
= Pm Q∗ ,

∂v

∂z

∣∣∣∣
z=0

= τ ,
∂v

∂z

∣∣∣∣
z=−h

= 0 , v · En
∣∣∣∣
0s

= 0 ,
∂v

∂ En
× En

∣∣∣∣
0s

= 0 ,(3.6)

T̃m(x, y, z, 0) = Pm[T0(x, y, z)− T ∗(x, y)] ,(3.7)

where T̃m =
∑m

k=1 ak(t)φk(x, y, z). In the above system the unknowns are the
vector field v(x, y, z, t) and the scalar functions ps(x, y, t) and T̃m(x, y, z, t) (i.e.,
the coefficients {ak(t)}m

k=1), while T ∗, τ , Q, and T̃0 are given. Observe that v and
ps depend on m.

First, by applying Proposition 2.4 and Proposition 2.5, we have that, for every
fixed and given T̃m , there is a unique (ps, v) = (ps(T̃m), v(T̃m)) (ps is unique up to
a constant) such that, for γ = 0 or 1,

v ∈ H γ+1(�) and ps ∈ H γ (M) .

Furthermore,

(3.8) ‖v(·, t)‖2
Hγ+1(�)

+ ‖ps‖
2
Hγ (M) ≤ C

(
‖T̃m‖2

Hγ (�) + ‖T ∗‖2
H2(M) + ‖τ‖2

H1(M)

)
.
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By replacing v = v(T̃m) in equation (3.5), we get an ODE system with the un-
known T̃m . That is, equation (3.5) is an ODE system with the unknown ak(t),
k = 1, 2, . . . ,m. Furthermore, since equation (3.3) is linear, and due to the esti-
mate (3.8), it is easy to check that each term of equation (3.5) is locally Lipschitz
in T̃m . Therefore, there is a unique solution ak(t), k = 1, 2, . . . ,m, to the equation
(3.5) for a short interval of time [0, S∗). As a result, we also have the existence
and uniqueness of ps(x, y, t) and v(x, y, z, t) for a short interval of time [0, S∗).
Moreover, since T̃m ∈ Ṽ , by (3.8),

v(x, y, z, t) ∈ (H 2(�))2 and ps(x, y, t) ∈ H 1(M) for all t ∈ [0, S∗) .

By taking the L2(�) inner product of equation (3.5) with T̃m and using (2.23), we
reach

1
2

d|T̃m |2

dt
+ ‖T̃m‖2 +

∫

�

(v · ∇T ∗)T̃m dx dy dz

+

∫

�

[
v · ∇ T̃m −

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂z T̃m

]
T̃m dx dy dz

=

∫

�

T̃m Q∗ dx dy dz .

(3.9)

It is easy to show by integrating by parts and by using the boundary conditions
(2.10) and (2.11) that

(3.10)
∫

�

[
v · ∇ T̃m −

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂z T̃m

]
T̃m dx dy dz = 0 .

Furthermore, by the Hölder inequality we have∣∣∣∣
∫

�

(v · ∇T ∗)T̃m dx dy dz
∣∣∣∣ ≤ C‖v‖L6(�)‖∇T ∗‖L3(M)|T̃m | .

By (2.19) and (3.8), we have

(3.11) ‖v‖L6(�) ≤ C‖v‖H1(�) ≤ C
[
|T̃m | + ‖T ∗‖H2(M) + ‖τ‖H1(M)

]
.

By (2.18), we obtain ‖∇T ∗‖L3(M) ≤ C‖T ∗‖H2(M). As a result of the above esti-
mates, we obtain

(3.12)
∣∣∣∣
∫

�

(v · ∇T ∗)T̃m dx dy dz
∣∣∣∣ ≤

C‖T ∗‖H2(M)|T̃m |2 + C‖T ∗‖H2(M)
[
‖T ∗‖2

H2(M) + ‖τ‖2
H1(M)

]
.

Applying the Cauchy-Schwarz inequality and the definition of Q∗, we obtain

(3.13)
∣∣∣∣
∫

�

Q∗T̃m dx dy dz
∣∣∣∣ ≤ C

[
|Q| + ‖T ∗‖H2(M)

]
|T̃m | .
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Therefore, from estimates (3.10)–(3.13) above and (2.23), (3.9) gives

1
2

d|T̃m |2

dt
+ ‖T̃m‖2 ≤

[
|Q| + ‖T ∗‖H2(M)

]
|T̃m | + C‖T ∗‖H2(M)|T̃m |2

+ C‖T ∗‖H2(M)
[
‖T ∗‖2

H2(M) + ‖τ‖2
H1(M)

]
.

By Cauchy-Schwarz inequality, we get

d|T̃m |2

dt
+ 2‖T̃m‖2 ≤ C‖T ∗‖H2(M)|T̃m |2(3.14)

+ C
[
|Q|2 + ‖T ∗‖H2(M)

(
‖T ∗‖2

H2(M) + ‖τ‖2
H1(M)

)]
.

Thanks to the Gronwall inequality, we conclude

(3.15) |T̃m(t)|2 ≤

eC‖T ∗‖H2(M)t
[
|T0|

2 + C
(
|Q|2 + ‖T ∗‖H2(M)(‖T ∗‖2

H2(M) + ‖τ‖2
H1(M))

)]
,

when 0 ≤ t < S∗. But since the right-hand side is bounded as t goes to S∗, we
conclude that T̃m(t) must exist globally, i.e., S∗ = +∞. Therefore, for any given
S > 0 and any t ∈ [0, S], we have

(3.16) |T̃m(t)|2 ≤ K2(S, Q, |T0|, T ∗, τ ),

where

(3.17) K2(S, Q, |T0|, T ∗, τ ) =

eC‖T ∗‖H2(M)S
[
|T0|

2 + C
(
|Q|2 + ‖T ∗‖H2(M)(‖T ∗‖2

H2(M) + ‖τ‖2
H1(M))

)]
.

By integrating (3.14) with respect to t over [0, S] and by (3.16), we get
∫ S

0
‖T̃m‖2 ds ≤ K3(S, Q, |T0|, T ∗, τ ) ,(3.18)

where

(3.19) K3(S, Q, |T0|, T ∗, τ ) = |T0|
2 + C |Q|2S

+ C‖T ∗‖H2(M)
(
‖T ∗‖2

H2(M) + ‖τ‖2
H1(M) + K2(S, Q, |T0|, T ∗, τ )

)
S

and K2(S, Q, |T0|, T ∗, τ ) is as in (3.17). Notice that estimate (3.16) is unbounded
in time (i.e., as S → ∞), but it is uniformly bounded in m. However, in Section 5
we will present a sharper estimate that is asymptotically bounded in time.

As a result of all the above, we have that T̃m exists globally in time and is
uniformly bounded, in m, in the L∞([0, S]; L2(�)) and L2([0, S]; H 1(�)) norms.
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Next, let us show that ∂t T̃m is uniformly bounded, in m, in the L2([0, S]; H ′)

norm. From (3.5), we have, for every ψ ∈ C∞(�),
〈
∂

∂t
T̃m, ψ

〉
=

〈
Pm Q∗ − L2T̃m, ψ

〉

−

〈
Pm

[
v · ∇ T̃m −

(
∇ ·

∫ z

−h
v(x, y, ξ, t

)
dξ)

∂ T̃m

∂z
+ (v · ∇)T ∗

]
, ψ

〉
.

Recall that 〈·, ·〉 is the dual action of H ′, the dual space of H 1(�). It is clear from
(2.16) that

∣∣〈Pm Q∗, ψ〉
∣∣ ≤ C

(
|Q| + h1/2‖T ∗‖H2(M)

)
|ψ |(3.20)

≤ C K̃
(
|Q| + h1/2‖T ∗‖H2(M)

)
‖ψ‖ ,

and by integration by parts we have

(3.21)
∣∣〈L2T̃m, ψ〉

∣∣ ≤ C‖T̃m‖‖ψ‖ .

Next, let us get an estimate for

∣∣∣∣
〈

Pm

[
v · ∇

(
T̃m + T ∗

)
−

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂ T̃m

∂z

]
, ψ

〉∣∣∣∣ =

∣∣∣∣
∫

�

[
v · ∇

(
T̃m + T ∗

)
−

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)∂ T̃m

∂z

]
ψm dx dy dz

∣∣∣∣

where ψm = Pmψ . Thus, by integration by parts, we obtain

∣∣∣∣
〈

Pm

[
v · ∇

(
T̃m + T ∗

)
−

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂ T̃m

∂z

]
, ψ

〉∣∣∣∣ =

∣∣∣∣
∫

�

[
v · ∇ψm −

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂ψm

∂z

](
T̃m + T ∗

)
dx dy dz

∣∣∣∣ .

Next, we estimate
∣∣∣∣
∫

�

(v · ∇ψm)
(
T̃m + T ∗

)
dx dy dz

∣∣∣∣ ≤ ‖ψm‖H1(�) ‖v‖L6(�) ‖T̃m + T ∗‖L3(�) .

Applying (2.19) and (3.11), we have

(3.22)
∣∣∣∣
∫

�

(v · ∇ψm)
(
T̃m + T ∗

)∣∣∣∣ ≤ C
[
‖T̃m‖H1(�) + ‖T ∗‖H2(M) + ‖τ‖H1(M)

]

×
[
|T̃m |1/2‖T̃m‖

1/2
H1(�)

+ ‖T ∗‖H2(M)
]
‖ψm‖H1(�) .
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Applying Proposition 2.2 by setting u = v, f = ∂zψm , and g = T̃m + T ∗, respec-
tively, and since ∂zT ∗ = 0, we have

∣∣∣∣
∫

�

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂z T̃mψm dx dy dz

∣∣∣∣(3.23)

≤ C‖ψm‖ ‖v‖
1/2
H1(�)

‖v‖
1/2
H2(�)

∥∥T̃m + T ∗
∥∥1/2

H1(�)

∣∣T̃m + T ∗
∣∣1/2

≤ C
(
|T̃m | + ‖T ∗‖H2(M) + ‖τ‖H1(M)

)

×
(
‖T̃m‖ + ‖T ∗‖H2(M) + ‖τ‖H1(M)

)
‖ψm‖ .

By (3.22) and (3.23), we have
∣∣∣∣
〈

Pm

[
v · ∇

(
T̃m + T ∗

)
−

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂ T̃m

∂z

]
, ψ

〉∣∣∣∣ ≤

C
(
|T̃m | + ‖T ∗‖H2(M) + ‖τ‖H1(M)

)

×
(
‖T̃m‖ + ‖T ∗‖H2(M) + ‖τ‖H1(M)

)
‖ψm‖H1(�) .

Since ψ ∈ H 1(�), the Fourier series
∞∑

k=1

( ∫

�

ψφk dx dy dz
)
φk = ψm +

∞∑

k=m+1

( ∫

�

ψφk dx dy dz
)
φk

converges to ψ in H 1(�) (cf. [23, p. 54]). As a result, we get

‖ψm‖H1(�) ≤ C‖ψ‖H1(�) ;

therefore,
∣∣∣∣
〈

Pm

[
v · ∇

(
T̃m + T ∗

)
−

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂ T̃m

∂z

]
, ψ

〉∣∣∣∣ ≤

C
(
|T̃m | + ‖T ∗‖H2(M) + ‖τ‖H1(M)

)

×
(
‖T̃m‖ + ‖T ∗‖H2(M) + ‖τ‖H1(M)

)
‖ψ‖H1(�) .

(3.24)

By estimates (3.20)–(3.24), (3.16), and (3.18), we have
∣∣〈∂t T̃m, ψ〉

∣∣ ≤

C K̃
(
|Q| + ‖T ∗‖H2(M)

)
‖ψ‖ + C‖T̃m‖‖ψ‖

+ C
(
|T̃m | + ‖τ‖H1(�) + ‖T ∗‖H2(�)

)(
‖T̃m‖ + ‖τ‖H1(�) + ‖T ∗‖H2(�)

)
‖ψ‖ .

Thus, due to (3.16) and (3.18), we have

(3.25)
∫ S

0
‖∂t T̃m(t)‖2

H ′ dt ≤ K4(S, Q, |T0|, T ∗, τ ) ,
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where

K4(S, Q, |T0|, T ∗, τ ) =

C K3(S, Q, |T0|, T ∗, τ )+ C
[
|Q|2 + ‖T ∗‖2

H2(M)

]
S

+ C
[
K2(S, Q, |T0|, T ∗, τ )+ ‖τ‖2

H1(�)
+ ‖T ∗‖2

H2(�)

]

×
[
K3(S, Q, |T0|, T ∗, τ )+ ‖T ∗‖2

H2(M) + ‖τ‖2
H1(M)

]
S .

(3.26)

Therefore, ∂t T̃m is uniformly bounded in m in the L2([0, S]; H ′) norm. Thanks
to (3.8), (3.16), (3.18), and (3.25), one can apply the Aubin compactness theorem
(cf. [8, 27, 38]) and extract a subsequence {T̃m j } of {T̃m}, a subsequence {vm j }

of {vm = v(T̃m)}, a subsequence {ps m j
} of {ps m = ps(T̃m)}, and a subsequence

{∂t T̃ m j } of {∂t T̃ m}, which converge to

T̃ ∈ L∞([0, S]; L2(�)) ∩ L2([0, S]; H 1(�)) ,

v ∈ L∞([0, S]; H 1(�)) ∩ L2([0, S]; H 2(�)) ,

ps ∈ L∞([0, S]; L2(�)) ∩ L2([0, S]; H 1(�)) ,

∂t T̃ ∈ L2([0, S]; H ′) ,

respectively, in the following sense:




T̃m j → T̃ in L∞([0, S]; L2(�))

T̃m j → T̃ in L2([0, S]; H 1(�)) weakly

ps m j
→ ps in L∞([0, S]; L2(M))

ps m j
→ ps in L2([0, S]; H 1(M)) weakly

vm j → v in L∞([0, S]; H 1(�))

vm j → v in L2([0, S]; H 2(�)) weakly

∂t T̃m j → ∂t T̃ in L2([0, S]; H ′) weakly.

Notice that since T̃m j ∈ Ṽ , by (3.8) and integration by parts it is clear that

∫

�

∇

[
ps m j

(x, y, t)−

∫ z

−h
T̃m j (x, y, ξ, t)dξ − (z + h)T ∗(x, y, t)

]
φ dx dy dz

+

∫

�

(
f Ek × vm j

)
φ dx dy dz + ε

∫

�

(
Ah∇vm j · ∇φ + Av∂zvm j ∂zφ

)
dx dy dz

=

∫

0u

Avτφ dx dy dz
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and∫

�

T̃m j (x, y, z, t)ψ dx dy dz −

∫

�

T̃m j (x, y, z, t0)ψ dx dy dz

+

∫ t

t0

∫

�

(
Kh∇ T̃m j · ∇ψ + ∂z T̃m j ∂zψ

)
dx dy dz + α

∫ t

t0

∫

0u

T̃m jψ dx dy

+

∫ t

t0

∫

�

[(
vm j · ∇ T̃m j

)
−

(
∇ ·

∫ z

−h
vm j (x, y, ξ, t)dξ

)
∂z T̃m j

]
ψ dx dy dz

+

∫ t

t0

∫

�

(
vm j · ∇T ∗

)
ψ dx dy dz

=

∫

�

Q∗ψ dx dy dz

for every φ ∈ (C∞(�))2 and ψ ∈ C∞(�), and for every t , t0 ∈ [0, S]. By passing
to the limit, one can show as in the case of Navier-Stokes equations (see [8, 38])
that T̃ also satisfies (2.34) and (2.35). In other words, (ps, v, T̃ ) is a weak solution
of the system (2.7)–(2.12).

Next, we show the uniqueness. Let (p′
s, v

′, T̃1) and (p′′
s , v

′′, T̃2) be two weak
solutions of the system (2.7)–(2.12) with initial values T̃ ′

0(x, y, z) and T̃ ′′
0 (x, y, z),

respectively. Let u = v′′ − v′, χ = T̃2 − T̃1, and qs = p′′
s − p′

s . It is clear from
(2.7)–(2.12) that qs , u, and χ satisfy

∇

[
qs(x, y, t)−

∫ z

−h
χ(x, y, ξ, t)dξ

]
+ f Ek × u + εL1u = 0 ,(3.27)

∇ ·

∫ 0

−h
u(x, y, z, t)dz = 0 ,(3.28)

∂tχ + Lo
2χ + u · ∇ T̃1 + v2 · ∇χ + u · ∇T ∗(3.29)

−

(
∇ ·

∫ z

−h
u(x, y, ξ, t)dξ

)
∂ T̃1

∂z
−

(
∇ ·

∫ z

−h
v′′(x, y, ξ, t)dξ

)
∂zχ

= 0 ,

∂u
∂z

∣∣∣∣
z=0

= 0 ,
∂u
∂z

∣∣∣∣
z=−h

= 0 , u · En
∣∣∣∣
0s

= 0 ,
∂u
∂ En

× En
∣∣∣∣
0s

= 0 ,(3.30)

(
∂χ

∂z
+
α

Kv

χ

)∣∣∣∣
z=0

= 0 ,
∂χ

∂z

∣∣∣∣
z=−h

= 0 ,
∂χ

∂ En

∣∣∣∣
∂M

= 0 ,(3.31)

χ(x, y, z, 0) = T̃ ′′
0 (x, y, z)− T̃ ′

0(x, y, z) .(3.32)
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By averaging (3.27) and (3.29) with respect to z and using (3.28), we get

∇

[
qs(x, y, t)+

1
h

∫ 0

−h
ξχ(x, y, ξ, t)dξ

]
+ f Ek × u − εAh1u = 0 ,(3.33)

∇ · u = 0 ,(3.34)

u · En = 0 ,
∂u
∂ En

× En = 0 on ∂M ,(3.35)

where

u(x, y, t) =
1
h

∫ 0

−h
u(x, y, z, t)dz .

By taking the L2(�) inner product to equation (3.33) with u, we obtain
∫

�

[
∇

(
qs(x, y, t)+

1
h

∫ 0

−h
ξχ(x, y, ξ, t)dξ

)
− εAh1u

]
u dx dy dz = 0 .

By using integration by parts and applying (3.34) and (3.35), we get∫

�

|∇u|2 dx dy dz = 0 .

Thus, u is a constant function. By (3.35), we reach u = 0. As a result, we have

(3.36) qs(x, y, t) = −
1
h

∫ 0

−h
ξχ(x, y, ξ, t)dξ

(qs is unique up to a constant); therefore, (3.27) can be written as

(3.37) −∇

[
1
h

∫ 0

−h
ξχ(x, y, ξ, t)dξ+

∫ z

−h
χ(x, y, ξ, t)dξ

]
+ f Ek×u+εL1u = 0 .

Notice that u satisfies the boundary condition (3.30). For this second-order elliptic
boundary value problem we have the following regularity results (by following
similar techniques to those developed in [21, 44] (for the case of smooth domains,
see [23, p. 89] and [41]):

(3.38) ‖u‖H1(�) ≤
C2

ε Ã
|χ | and ‖u‖H2(�) ≤

C2

ε Ã
‖χ‖ .

By taking the H ′ dual action to equation (3.29) with χ , we obtain
〈
∂tχ + Lo

2χ, χ
〉
+

〈
u · ∇ T̃1 + v′′ · ∇χ + u · ∇T ∗, χ

〉

−

〈(
∇ ·

∫ z

−h
u(x, y, ξ, t)dξ

)
∂z T̃1 −

(
∇ ·

∫ z

−h
v′′(x, y, ξ, t)dξ

)
∂zχ, χ

〉
= 0 .

Since ∂tχ ∈ L2([0, S], H ′), we apply Lions’ lemma [38, lemma 1.2, p. 260] and
(2.23) to reach

〈∂tχ, χ〉 =
1
2

d|χ |2

dt
and 〈Lo

2χ, χ〉 = ‖χ‖2 .
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Moreover, we have
〈
u · ∇ T̃1 + v′′ · ∇χ + u · ∇T ∗, χ

〉
=

∫

�

[
u · ∇ T̃1 + v′′ · ∇χ + u · ∇T ∗

]
χ

and〈(
∇ ·

∫ z

−h
u(x, y, ξ, t)dξ

)
∂z T̃1 +

(
∇ ·

∫ z

−h
v′′(x, y, ξ, t)dξ

)
∂zχ, χ

〉
=

∫

�

[(
∇ ·

∫ z

−h
u(x, y, ξ, t)dξ

)
∂z T̃1 +

(
∇ ·

∫ z

−h
v′′(x, y, ξ, t)dξ

)
∂zχ

]
χ

as long as the integrals make sense. Therefore, we have

1
2

d|χ |2

dt
+ ‖χ‖2 =

∫

�

[
−u · ∇ T̃1 − v′′ · ∇χ − u · ∇T ∗

+

(
∇ ·

∫ z

−h
u(x, y, ξ, t)dξ

)
∂z T̃1

+

(
∇ ·

∫ z

−h
v′′(x, y, ξ, t)dξ

)
∂zχ

]
χ .

Next we estimate the above equation term by term.

(1) By integrating by parts and (3.30), we reach

(3.39)
∫

�

[
v′′ · ∇χ −

(
∇ ·

∫ z

−h
v′′(x, y, ξ, t)dξ

)
∂zχ

]
χ = 0 .

(2) We have
∣∣∣∣
∫

�

u · ∇
(
T̃1 + T ∗

)
χ

∣∣∣∣ ≤
∥∥T̃1 + T ∗

∥∥
H1(�)

‖u‖L6(�) ‖χ‖L3(�) .

By applying (3.38) and (2.19), we obtain

‖u‖L6(�) ≤
C
ε Ã

|χ | and ‖χ‖L3(�) ≤ C |χ |1/2 ‖χ‖1/2 .

Thus,

(3.40)
∣∣∣∣
∫

�

u · ∇
(
T̃1 + T ∗

)
χ

∣∣∣∣ ≤ C
[
‖T̃1‖ + ‖T ∗‖H1(M)

]
|χ |3/2 ‖χ‖1/2 .

(3) Applying Proposition 2.2 by setting u = u, f = ∂z T̃1, and g = χ , respec-
tively, we have

∣∣∣∣
∫

�

(
∇ ·

∫ z

−h
u(x, y, ξ, t)dξ

)
∂z T̃1χ

∣∣∣∣ ≤

C
∥∥T̃1

∥∥
H1(�)

‖u‖
1/2
H1(�)

‖u‖
1/2
H2(�)

‖χ‖|χ |1/2 .
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Applying (3.38) to the above estimate, we get

(3.41)
∣∣∣∣
∫

�

(
∇ ·

∫ z

−h
u(x, y, ξ, t)dξ

)
∂z T̃1χ dx dy dz

∣∣∣∣ ≤ C‖T̃1‖|χ |‖χ‖ .

Therefore, from the above estimates (3.39)–(3.41), we get

1
2

d|χ |2

dt
+ ‖χ‖2 ≤ C

(
‖T̃1‖ + ‖T ∗‖H1(M)

)
|χ |3/2 ‖χ‖1/2 + C‖T̃1‖|χ |‖χ‖ .

By Young’s inequality, we obtain

d|χ |2

dt
+ ‖χ‖2 ≤ C

[
1 + ‖T̃1‖

2 + ‖T ∗‖
4/3
H1(M)

]
|χ |2 .

Thanks to the Gronwall inequality, we get

(3.42) |χ |2(t) ≤ |χ |2(t0)e
C[1+‖T ∗‖

4/3
H1(M)

](t−t0)+
∫ t

t0
‖T̃1‖

2 ds
.

In particular, when we start with the same initial data, that is, T̃ ′′
0 (x, y, z) =

T̃ ′
0(x, y, z), let t0 = 0 in (3.42), and recall that T̃1 ∈ L2([0, S]; H 1(�)), we con-

clude that
χ(t) = 0 .

In other words, the weak solution is unique. �

COROLLARY 3.2 The weak solution of the system (2.7)–(2.12) depends continu-
ously on the initial data; that is, the problem is well-posed.

PROOF: The proof is an immediate consequence of inequality (3.42). �

4 Global Existence, Uniqueness,
and Well-Posedness of Strong Solutions

In previous sections we have reformulated the system (1.1)–(1.14) and estab-
lished the appropriate elliptic regularity results for the velocity field (v,w), and we
have proved the existence, uniqueness, and well-posedness of the weak solution for
the reformulated system (2.7)–(2.12). In this section we show the global existence,
uniqueness, and well-posedness of strong solutions for the system (2.7)–(2.12).

THEOREM 4.1 Suppose that τ ∈ H 1
0 (M), Q ∈ H 1(�), and T ∗ ∈ H 2(M). Then

for every T̃0 = T0 − T ∗ ∈ H 1(�) and S > 0, there is a unique strong solution T̃
of the system (2.7)–(2.12) such that

(4.1) ‖T̃ ‖2
H1(�)

+

∫ S

0
‖T̃ (t)‖2

H2(�)
dt ≤ Ks(S, T0, τ, Q, T ∗, τ )

where Ks(S, T0, τ, Q, T ∗, τ ) will be specified in (4.7).
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Remark. The steps of the following proof are formal in the sense that they can
be made rigorous by proving their corresponding counterpart estimates first for
the Galerkin approximation system (3.3)–(3.7). Then the estimates for the exact
solution can be established by passing to the limit in the Galerkin procedure by
using the appropriate “compactness theorems” and using the uniqueness of the
strong solution.

PROOF: Suppose that (ps, v, T̃ ) is the weak solution with initial value T̃0. By
taking the L2(�) inner product of equation (2.9) with Lo

2T̃ , we reach

1
2

d‖T̃ ‖2

dt
+ |Lo

2T̃ |2

=

∫

�

[
Q + Kh1T ∗

]
Lo

2T̃ dx dy dz

+

∫

�

[
−v · ∇(T̃ + T ∗)+

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂z T̃

]
Lo

2T̃ dx dy dz

≤
[
|Q| + h1/2 Kh‖T ∗‖H2(M) + ‖v‖L6(�)‖∇(T̃ + T ∗)‖L3(�)

]∣∣Lo
2T̃

∣∣

+

∣∣∣∣
∫

�

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂z T̃ Lo

2T̃ dx dy dz
∣∣∣∣ .

Let us consider the above inequality term by term.

• By (2.19) and Proposition 2.5, we obtain

(4.2) ‖v‖L6(�) ≤
C
ε Ã

[
|T̃ | + ‖T ∗‖H2(M) + ε‖τ‖H1(M)

]
.

• By (2.19) and Proposition 2.3, we get

‖∇ T̃ ‖L3(�) + h1/3‖∇T ∗‖L3(M) ≤ C‖T̃ ‖1/2‖T̃ ‖
1/2
H2(�)

+ C‖T ∗‖H2(M)(4.3)

≤
C

K̃ 1/2
‖T̃ ‖1/2|Lo

2T̃ |1/2 + C‖T ∗‖H2(M) .

• Applying Proposition 2.2 by setting u = v, f = Lo
2T̃ , and g = ∂z T̃ ,

respectively, we have
∣∣∣∣
∫

�

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂z T̃ Lo

2T̃ dx dy dz
∣∣∣∣

≤ C
∣∣Lo

2T̃
∣∣‖v‖1/2

H1(�)
‖v‖

1/2
H2(�)

∥∥∂z T̃
∥∥1/2

H1(�)

∣∣∂z T̃
∣∣1/2

≤
C

ε ÃK̃ 1/2

[
|T̃ |1/2‖T̃ ‖1/2 + ‖T ∗‖H2(M) + ε‖τ‖H1(M)

]
‖T̃ ‖1/2

∣∣Lo
2T̃

∣∣3/2
.

(4.4)
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Therefore, from the above estimates (4.2)–(4.4) we have

1
2

d‖T̃ ‖2

dt
+ |Lo

2T̃ |2 ≤

C
[
‖T ∗‖H2(�) + |Q|

]∣∣Lo
2T̃

∣∣

+
C

ε ÃK̃ 1/2

[
|T̃ | + ‖T ∗‖H2(M) + ε‖τ‖H1(M)

]

×
[
‖T̃ ‖1/2|Lo

2T̃ |1/2 + ‖T ∗‖H2(M)
]∣∣Lo

2T̃
∣∣

+
C

ε ÃK̃ 1/2

[
|T̃ |1/2‖T̃ ‖1/2 + ‖T ∗‖H2(M) + ε‖τ‖H1(M)

]
‖T̃ ‖1/2

∣∣Lo
2T̃

∣∣3/2
.

Using the Cauchy-Schwarz inequality and Young’s inequality, we get

d‖T̃ ‖2

dt
+

∣∣Lo
2T̃

∣∣2
≤

C
[
1 + ‖T ∗‖4

H2(�)
+ |Q|2 + ‖τ‖4

H1(M) + |T̃ |4
]

+ C
(
‖T ∗‖4

H2(M) + ‖τ‖4
H1(M) + |T̃ |4 + |T̃ |2‖T̃ ‖2)‖T̃ ‖2 .

(4.5)

Again, by the Gronwall inequality and Theorem 3.1, for every 0 ≤ t ≤ S, we
obtain

‖T̃ (t)‖2 +

∫ t

0

∣∣Lo
2T̃ (s)

∣∣2 ds ≤ Ks(S, T0, τ, Q, T ∗, τ ) ,(4.6)

where

Ks(S, T0, τ, Q, T ∗, τ ) =
[

2‖T0‖
2 + 2h‖T ∗‖2

H1(M)

+ C
1 + ‖T ∗‖4

H2(�)
+ |Q|2 + ‖τ‖4

H1(M) + (K2(S, Q, |T0|, T ∗, τ ))2

1 + ‖T ∗‖4
H2(M) + ‖τ‖4

H1(M) + (K2(S, Q, |T0|, T ∗, τ ))2

]

× exp
(

C S
[
‖T ∗‖4

H2(M) + ‖τ‖4
H1(M) + (K2(S, Q, |T0|, T ∗, τ ))2

]

+ K2(S, Q, |T0|, T ∗, τ )K3(S, Q, |T0|, T ∗, τ )
)
,

(4.7)

and K2(S, Q, |T0|, T ∗, τ ) and K3(S, Q, |T0|, T ∗, τ ) are as in (3.17) and (3.19),
respectively. In addition, by using similar steps that led to (4.2)–(4.4), one can
show that

∂t T̃ ∈ L2([0, S], L2(�)) .
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Therefore, T̃ ∈ C([0, S], H 1(�)) ∩ L2([0, S], H 2(�)). Moreover, by Proposi-
tion 2.5, we have

v ∈ C([0, S], H 1(�)) ∩ L2([0, S], H 2(�)) .

In other words, (v, T̃ ) is a strong solution. Since the strong solution must be a
weak solution and, by Theorem 3.1, there is only one weak solution, the strong
solution is unique. �

5 Global Attractor

In previous sections we proved the existence, uniqueness, and well-posedness
of the weak and strong solution of the system (1.1)–(1.14). In this section we show
the existence of the global attractor. Moreover, we give an upper bound for its
Hausdorff dimension. To establish this, we first present sharper estimates for vari-
ous norms of the solution, which are asymptotically uniform in time. Namely, we
demonstrate the existence of absorbing balls for the dynamical system introduced
by the solution operator of the system (1.1)–(1.14).

Denote by S(t)T0 = T (t) the solution operator of the system (1.1)–(1.14) with
initial data T0. Under the conditions of Theorem 3.1 and Theorem 4.1, one can
show that

T (t) = S(t)T0 ∈ L2(�) for all T0 ∈ L2(�), t ≥ 0 ,

and

T (t) = S(t)T0 ∈ H 1(�) for all T0 ∈ H 1(�), t ≥ 0 .

THEOREM 5.1 Suppose that τ ∈ H 1
0 (M), Q ∈ L2(�), and T ∗ ∈ H 2(M). Then

there is a global compact attractor A ⊂ L2(�) for the system (1.1)–(1.14); more-
over, A has finite Hausdorff dimension.

PROOF: First, let us show that there is an absorbing ball in L2(�) and H 1(�).
Let T be the solution of the system (1.1)–(1.14) with initial data T0 ∈ L2(�). In
other words, T̃ = T −T ∗ is the solution of the system (2.7)–(2.12) with initial data
T̃0 = T0 − T ∗ ∈ L2(�). By taking the H ′ dual action to equation (2.9) with T̃ , we
obtain

〈
∂t T̃ + Lo

2T̃ , T̃
〉
+

〈
v · ∇ T̃ , T̃

〉

+

〈
−

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂z T̃ + v · ∇T ∗, T̃

〉
= 〈Q∗, T̃ 〉 .
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Since ∂t T̃ ∈ L2([0, S], H ′), we apply Lions’ lemma [38, lemma 1.2, p. 260] and
reach 〈∂t T̃ , T̃ 〉 = 1

2(d|T̃ |2/dt). By (2.23), we have

1
2

d|T̃ |2

dt
+ ‖T̃ ‖2 =

∫

�

Q∗T̃ dx dy dz −

∫

�

[
v · ∇ T̃ −

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂z T̃

+ v · ∇T ∗

]
T̃ dx dy dz .

(5.1)

By taking ψ = T ∗ in the weak formulation (2.35), we get
∫

�

T̃ (t)T ∗ dx dy dz +

∫ t

t0

[ ∫

�

Kh∇ T̃ · ∇T ∗ dx dy dz + α

∫

0u

T̃ T ∗ dx dy
]

+

∫ t

t0

∫

�

[
v · ∇ T̃ −

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂z T̃ + v · ∇T ∗

]
T ∗ dx dy dz

=

∫

�

T̃ (t0)T ∗ dx dy dz +

∫ t

t0

∫

�

Q∗T ∗ dx dy dz .

It is equivalent to
d
dt

∫

�

T̃ (t)T ∗ dx dy dz +

∫

�

Kh∇ T̃ · ∇T ∗ dx dy dz + α

∫

0u

T̃ T ∗ dx dy

+

∫

�

[
v · ∇ T̃ −

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂z T̃ + v · ∇T ∗

]
T ∗ dx dy dz

=

∫

�

Q∗T ∗ dx dy dz .

(5.2)

By adding (5.1) and (5.2), we obtain

1
2

d
dt

(
|T̃ |2 + 2

∫

�

T̃ (t)T ∗ dx dy dz
)

+ ‖T̃ ‖2 + α

∫

0u

T̃ T ∗ dx dy

+

∫

�

[
v · ∇ T̃ −

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂z T̃ + v · ∇T ∗

]
(T̃ + T ∗)dx dy dz

+

∫

�

Kh∇ T̃ · ∇T ∗ dx dy dz

=

∫

�

Q∗(T̃ + T ∗)dx dy dz .
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Notice that the following equalities hold:

|T̃ |2 +

∫

�

2T̃ T ∗ dx dy dz = |T |2 −

∫

�

|T ∗|2 dx dy dz ,

‖T̃ ‖2 +

∫

�

Kh∇ T̃ · ∇T ∗ dx dy dz + α

∫

0u

T̃ T ∗ dx dy =

‖T ‖2 − ‖T ∗‖2 −

∫

�

Kh∇ T̃ · ∇T ∗ dx dy dz − α

∫

0u

T̃ T ∗ dx dy ,

∫

�

[
v · ∇ T̃ −

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂z T̃ + v · ∇T ∗

]
(T̃ + T ∗) dx dy dz =

∫

�

[
v · ∇T −

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂zT

]
T dx dy dz ,

∫

�

Q∗
(
T̃ + T ∗

)
dx dy dz =

∫

�

[
QT + KhT1T ∗

]
dx dy dz .

Therefore, we get

1
2

d|T |2

dt
+ ‖T ‖2 +

∫

�

[
v · ∇T −

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂zT

]
T dx dy dz

= ‖T ∗‖2 +

∫

�

Kh∇ T̃ · ∇T ∗ dx dy dz + α

∫

0u

T̃ T ∗ dx dy

+

∫

�

[
QT + KhT1T ∗

]
dx dy dz .

By integration by parts and (1.3), we obtain

(5.3)
∫

�

[
v · ∇T −

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂zT

]
dx dy dz = 0 .

Since ∂zT ∗ = 0, by integration by parts and (1.13), we get
∣∣∣∣‖T ∗‖2 +

∫

�

Kh∇ T̃ · ∇T ∗ dx dy dz + α

∫

0u

T̃ T ∗ dx dy

+

∫

�

KhT1T ∗ dx dy dz
∣∣∣∣ = α

∣∣∣∣
∫

0u

T T ∗ dx dy
∣∣∣∣ ≤ α1/2‖T ∗‖L2(M)‖T ‖ .



26 C. CAO AND E. S. TITI

By applying the Cauchy-Schwarz inequality to the above estimate, we reach
∣∣∣∣‖T ∗‖2 +

∫

�

Kh∇ T̃ · ∇T ∗ dx dy dz

+ α

∫

0u

T̃ T ∗ dx dy +

∫

�

KhT1T ∗ dx dy dz
∣∣∣∣

≤
α

2
‖T ∗‖2

L2(M) +
1
2
‖T ‖2 .

(5.4)

Therefore, by estimates (5.3) and (5.4), we obtain

d|T |2

dt
+ ‖T ‖2 ≤ α‖T ∗‖2

L2(M) + 2|Q||T | .

By the Cauchy-Schwarz inequality and the Poincaré inequality (2.16), we have

(5.5)
d|T |2

dt
+

1
2
‖T ‖2 ≤ α‖T ∗‖2

L2(M) + 2K̃ |Q|2 ,

where K̃ is as in (2.17). Thus, again by the Poincaré inequality (2.16), we obtain

d|T |2

dt
+

1
2K̃

|T |2 ≤ α‖T ∗‖2
L2(M) + 2K̃ |Q|2 .

By the Gronwall lemma, we get

|T (t)|2 ≤ |T0|
2e− 1

2K̃
t
+ 2α K̃‖T ∗‖2

L2(M) + 4K̃ 2|Q|2.

As a result of the above, when t is large enough such that

|T0|
2e− 1

K̃
t
≤ 2α K̃‖T ∗‖2

L2(M) + 4K̃ 2|Q|2 ,

we have

(5.6) |T (t)|2 ≤ R̃a(T ∗, Q) =: 4α K̃‖T ∗‖2
L2(M) + 8K̃ 2|Q|2 ;

in particular,
lim sup

t→∞
|T (t)|2 ≤ 2α K̃‖T ∗‖2

L2(M) + 4K̃ 2|Q|2 .

In other words, when t is large enough, we have

|T̃ (t)|2 ≤ Ra(T ∗, Q) =: 2R̃a(T ∗, Q)+ 2‖T ∗‖2
L2(M) ,(5.7)

where R̃a(T ∗, Q) is as in (5.6). Therefore, there is an absorbing ball in L 2(�) with
radius R̃a(T ∗, Q) for system (1.1)–(1.14) and with radius Ra(T ∗, Q) for system
(2.8)–(2.12), respectively.

Next, we show that there is an absorbing ball in H 1(�). First, notice that from
(5.5), we have

∫ t+r

t
‖T (s)‖2ds ≤ 2|T (t)| +

[
4α K̃‖T ∗‖2

L2(M) + 8K̃ 2|Q|2
]
r .
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Therefore, by (5.7), when t is large enough, we get

(5.8)
∫ t+r

t
‖T (s)‖2 ds ≤ Kr (r, Q, T ∗) ,

where

(5.9) Kr (r, Q, T ∗) = 2Ra(T ∗, Q)+
[
4α K̃‖T ∗‖2

L2(M) + 8K̃ 2|Q|2
]
r

and Ra(T ∗, Q) is as in (5.7).
From the proof of Theorem 4.1, we recall the inequality (4.5)

d‖T̃ ‖2

dt
+

∣∣Lo
2T̃

∣∣2

≤ C
[
1 + ‖T ∗‖4

H2(�)
+ |Q|2 + ‖τ‖4

H1(M) + |T̃ |4
]

+ C
(
‖T ∗‖4

H2(M) + ‖τ‖4
H1(M) + |T̃ |4 + |T̃ |2‖T̃ ‖2)‖T̃ ‖2 .

From the above, (2.24), and (5.7), we obtain for t large enough

d‖T̃ ‖2

dt
+

‖T̃ ‖2

λ1

≤ C
[
1 + ‖T ∗‖4

H2(�)
+ |Q|2 + ‖τ‖4

H1(M) + R4
a(T

∗, Q)
]

+ C
(
‖T ∗‖4

H2(M) + ‖τ‖4
H1(M) + R4

a(T
∗, Q)+ R2

a(T
∗, Q)‖T̃ ‖2)‖T̃ ‖2 ,

where λ1 is the first eigenfunction of operator Lo
2. Using the uniform Gronwall

inequality (cf. [40, p. 89]), we obtain, when t is large enough,

(5.10) ‖T̃ (t)‖ ≤ Rv(r, T ∗, Q, τ )

where r > 0 is fixed and
Rv(r, T ∗, Q, τ )

= C
[

Ra(T ∗, Q)
r1/2

+ ‖T ∗‖H1(M) + |Q|

+
C

λ
1/2
1

(
1 + ‖T ∗‖2

H2(�)
+ |Q| + ‖τ‖2

H1(M) + R2
a(T

∗, Q)
)]

× e
C
[
(Ra(T ∗,Q))4+

(
‖T ∗‖4

H2(M)
+‖τ‖4

H1(M)
+(Ra(T ∗,Q))4

)
r
]
.

(5.11)

Therefore, we have shown that there is an absorbing ball B in H 1(�) with radius
Rv(r, T ∗, Q, τ ). From the proofs of Theorems 3.1 and 4.1, we conclude that the
operator S(t) is a compact operator. Following the standard procedure (cf. [7, 8,
11, 24, 40] for details), one can prove that there is a global attractor

A =
⋂

t>0

S(t)B ⊂ H 1(� ).
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Moreover, A is compact in L2(�).
In addition to the compactness of the semigroup S(t), one can show its differ-

entiability on A with respect to the initial data. Therefore, one can use the trace
formula (cf. [7, 8, 40]) to get an upper bound for the dimension of the global at-
tractor A.

Let (ps, v, T̃ ) be a given solution of the system (2.7)–(2.12) with T̃ ∈ A.
Since T̃ is on the attractor A, (ps, v, T̃ ) is a strong solution to the system (2.7)–
(2.12). It is clear that the first variation equations of the system (2.7)–(2.12) around
(ps, v, T̃ ) read as follows:

∇

[
qs(x, y, t)−

∫ z

−h
χ(x, y, ξ, t)dξ

]
+ f Ek × u + εL1u = 0 ,(5.12)

∇ ·

∫ 0

−h
u(x, y, z, t)dz = 0 ,(5.13)

∂tχ = F ′(T̃ )χ ,(5.14)

∂u
∂z

∣∣∣∣
z=0

= 0 ,
∂u
∂z

∣∣∣∣
z=−h

= 0 , u · En
∣∣∣∣
0s

= 0 ,
∂u
∂ En

× En
∣∣∣∣
0s

= 0 ,(5.15)

(
∂zχ +

α

Kv

χ

)∣∣∣∣
z=0

= 0 , ∂zχ

∣∣∣∣
z=−h

= 0 , ∂nχ

∣∣∣∣
∂M

= 0 ,(5.16)

χ(x, y, z, 0) = ζ ,(5.17)

where qs , u, and χ are the unknown perturbations about ps , v, and T̃ , respectively,
with a given initial perturbation ζ ∈ L2(�). Moreover, here

F ′(T̃ )χ = −

[
Lo

2χ + u · ∇(T̃ + T ∗)+ v · ∇χ −

(
∇ ·

∫ z

−h
u(x, y, ξ, t)dξ

)
∂z T̃

−

(
∇ ·

∫ z

−h
v(x, y, ξ, t)dξ

)
∂zχ

]
.

It is not difficult to show that the above coupled second-order elliptic and linear
parabolic system has a unique solution (qs(t), u(t), and χ(t)). Moreover, by using
techniques similar to the ones developed in [21, 44], one can show that this solution
satisfies, for t > 0,

χ(t) ∈ H 1(�) , u(t) ∈ H 2(�) , qs(t) ∈ H 1(�) .

For any positive integer m we consider the volume element
∣∣χ1(t) ∧ χ2(t) ∧ · · · ∧ χm(t)

∣∣
∧m L2(�)

.
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We have the following trace formula (cf. [7, 8, 40]):

1
2

d
dt

∣∣∣∣χ1(t) ∧ χ2(t) ∧ · · · ∧ χm(t)
∣∣∣∣
2

∧m L2(�)

=

Tr
(
P̃m(t) ◦ F ′(T̃ (t)) ◦ P̃m(t)

)∣∣χ1(t) ∧ χ2(t) ∧ · · · ∧ χm(t)
∣∣2
∧m L2(�)

,

which gives

(5.18)
∣∣χ1(t) ∧ χ2(t) ∧ · · · ∧ χm(t)

∣∣2
∧m L2(�)

=

∣∣ζ1 ∧ ζ2 ∧ · · · ∧ ζm
∣∣2
∧m L2(�)

exp
( ∫ t

0
Tr

(
P̃m(s) ◦ F ′(T̃ (s)) ◦ P̃m(s)

)
ds

)
,

where χ1(s), χ2(s), . . . , χm(s) are the solutions of (5.12)–(5.17) corresponding to
the initial data ζ1, ζ2, . . . , ζm, respectively. The trace of the linear operator ( P̃m(s)◦
F ′(T̃ )◦ P̃m(s)) is Tr( P̃m(s)◦F ′(T̃ (s))◦ P̃m(s)), and the L2(�) orthogonal projector
onto the space spanned by {χ1(s), χ2(s), . . . , χm(s)} is P̃m(s). Thanks to (5.18), we
conclude that {χ1(s), χ2(s), . . . , χm(s)} are linearly independent for every s ≥ 0
if and only if {ζ1, ζ2, . . . , ζm} are linearly independent. Hence, from now on we
assume that {ζ1, ζ2, . . . , ζm} are linearly independent.

Let {ψ1(s), ψ2(s), . . . , ψm(s)} be an L2(�) orthonormal basis of the space
spanned by {χ1(s), χ2(s), . . . , χm(s)}. Notice that {ψ1(s), ψ2(s), . . . , ψm(s)} are
in H 1(�) for s > 0. Thus we have

Tr
(
P̃m(s) ◦ F ′(T̃ (s)) ◦ P̃m(s)

)
=

m∑

j=1

(
F ′(T̃ (s))ψj (s), ψj (s)

)
.

Notice that
(
F ′(T̃ (s))ψj (s), ψj (s)

)
= −‖ψj (s‖2 +

∫

�

[
u j · ∇(T̃ + T ∗)

]
ψj (s)dx dy dz

−

∫

�

[(
∇ ·

∫ z

−h
u j (x, y, ξ, s)dξ

)
∂z T̃

]
ψj (s)dx dy dz ,

where, for j = 1, 2, . . . ,m, u j (x, y, z, s) is the solution of the following linear
system:

∇

[
(qs)j (x, y, s)−

∫ z

−h
ψj (x, y, ξ, s)dξ

]
+ f Ek × u j + εL1u j = 0 ,

∇ ·

∫ 0

−h
u j (x, y, z, s)dz = 0 ,

∂u j

∂z

∣∣∣∣
z=0

= 0 ,
∂u j

∂z

∣∣∣∣
z=−h

= 0 , u j · En
∣∣∣∣
0s

= 0 ,
∂u j

∂ En
× En

∣∣∣∣
0s

= 0 .
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Here (qs)j and u j are the unknowns, while ψj is given and fixed. Following the
same steps that led to the estimates (3.40) and (3.41), we have∣∣∣∣

∫

�

u j · ∇(T̃ + T ∗)ψj (s)
∣∣∣∣ ≤

C
ε Ã

[
‖T̃ ‖ + h1/2‖T ∗‖H1(M)

]
|ψj (s)|3/2‖ψj (s)‖1/2

≤
C

ε Ãλ1/4
1

[
‖T̃ ‖ + h1/2‖T ∗‖H1(M)

]
|ψj (s)|‖ψj (s)‖

and ∣∣∣∣
(

∇ ·

∫ z

−h
u j (x, y, ξ, t)dξ

)
∂z T̃ψj (s)

∣∣∣∣ ≤
C

ε Ãλ1/4
1

‖T̃ ‖|ψj (s)|‖ψj (s)‖ .

Here we also use (2.24). Recall that |ψj | = 1 for j = 1, 2, . . . ,m. Thus,
∣∣∣∣
∫

�

[
u j · ∇(T̃ + T ∗)−

(
∇ ·

∫ z

−h
u j (x, y, ξ, s)dξ

)
∂z T̃

]
ψj (s)dx dy dz

∣∣∣∣ ≤

C

ε Ãλ1/4
1

[
‖T̃ (s)‖ + h1/2‖T ∗‖H1(M)

]
‖ψj (s)‖ .

By using the Cauchy-Schwarz inequality and the above estimate, we have
(
F ′(T̃ (s))ψj (s), ψj (s)

)
≤ −

1
2
‖ψj (s‖2 +

C

ε2 Ã2λ
1/2
1

[
‖T̃ (s)‖2 + h‖T ∗‖2

H1(M)

]
.

By (2.25), we have
m∑

j=1

‖ψj (s‖2 ≥ λ1 + λ2 + · · · + λm ≥ Cλ1m5/3 .

As a result, we obtain

Tr
(
P̃m(s) ◦ F ′(T̃ (s)) ◦ P̃m(s)

)
≤

−Cλ1m5/3 +
C

ε2 Ã2λ
1/2
1

[
‖T̃ (s)‖2 + h‖T ∗‖2

H1(�)

]
;

hence,

1
t

∫ t

0
Tr

(
P̃m(s) ◦ F ′(T̃ (s)) ◦ P̃m(s)

)
ds ≤

− Cλ1m5/3 +
C

ε2 Ã2λ
1/2
1

1
t

∫ t

0

[
‖T̃ (s)‖2 + h‖T ∗‖2

H1(�)

]
ds .

Therefore, by applying (3.2), we get

lim sup
t→∞

sup
|T̃0|≤Ra(T ∗,Q)

sup
ζj ∈L2(�)

|ζj |≤1
j=1,2,...,m

1
t

∫ t

0
Tr

(
P̃m(s) ◦ F ′(T̃ (s))

)
◦ P̃m(s)ds ≤

− Cλ1m5/3 + K5(ε, Ã, K̃ , T ∗, Q) ,



PG EQUATIONS WITH VISCOSITY 31

where

(5.19) K5(ε, Ã, K̃ , T ∗, Q) =
C

ε2 Ã2λ
1/2
1

[
h‖T ∗‖2

H1(M) + |Q|2
]
.

In order to guarantee −Cλ1m5/3 + K5(ε, Ã, K̃ , T ∗, Q) ≤ 0, we need to choose m
large enough such that

m > C
(

K5(ε, Ã, K̃ , T ∗, Q)
λ1

)3/5

.

Therefore, the Hausdorff and fractal dimensions of the attractor A can be estimated
by (cf. [11])

dH (A) ≤ dF(A) ≤ C
(

K5(ε, Ã, K̃ , T ∗, Q)
λ1

)3/5

.

�

Remark. The bound for the dimension of the global attractor presented here is
not sharp. We stress that our focus here is rather on the existence of a finite-
dimensional global attractor. As far as we know, there are no educational heuristic
physical arguments for the number of degrees of freedom for models of the type
studied here. Therefore, trying to make our estimate for the dimension of the global
attractor sharper without having a target bound is not necessarily the most efficient
thing to do at the moment. Furthermore, one can follow the usual procedure (see,
e.g., [6, 14, 15, 16, 22] and the references therein) to show that the system (1.1)–
(1.14) has a finite number of determining modes and nodes and determining func-
tionals and projections. All this indicates that the system has a finite number of
asymptotic degrees of freedom. Whether this system possesses a global invariant
inertial manifold [16] remains a challenging open problem.

Appendix: Proof of Proposition 2.2

Let u = (u1, u2) be a smooth vector field, and let f and g be smooth scalar
functions. Then

∣∣∣∣
∫

�

(
∇ ·

∫ z

−h
u(x, y, ξ, t)dξ

)
f g dx dy dz

∣∣∣∣ ≤

∫

M

(∫ 0

−h
|∇u|dz

)(∫ 0

−h
| f g|dz

)
dx dy .

Using the Cauchy-Schwarz inequality, we obtain
∫ 0

−h
| f g|dz ≤

(∫ 0

−h
| f |2dz

)1/2(∫ 0

−h
|g|2 dz

)1/2

;

thus,
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∣∣∣∣
∫

�

(
∇ ·

∫ z

−h
u(x, y, ξ, t)dξ

)
f g dx dy dz

∣∣∣∣ ≤

∫

M

(∫ 0

−h
|∇u|dz

)(∫ 0

−h
| f |2 dz

)1/2

×

(∫ 0

−h
|g|2 dz

)1/2

dx dy .

Applying the Hölder inequality, we reach
∣∣∣∣
∫

�

(
∇ ·

∫ z

−h
u(x, y, ξ, t)dξ

)
f g dx dy dz

∣∣∣∣ ≤

(∫

M

∫ 0

−h
| f |2 dz dx dy

)1/2

×

[∫

M

(∫ 0

−h
|g|2 dz

)2

dx dy
]1/4[∫

M

(∫ 0

−h
|∇u|dz

)4

dx dy
]1/4

.

By using the Minkowski inequality (2.20), we get
[∫

M

(∫ 0

−h
|g|2 dz

)2

dx dy
]1/2

≤

∫ 0

−h

(∫

M

|g|4 dx dy
)1/2

dz .

Thanks to (2.18), for every fixed z we have
(∫

M

|g(x, y, z, t)|4 dx dy
)1/4

≤ C4‖g(·, ·, z, t)‖1/2
L2(M)‖g(·, ·, z, t)‖1/2

H1(M) .

As a result of the above and the Cauchy-Schwarz inequality, we obtain
∫ 0

−h

(∫

M

|g(x, y, z, t)|4 dx dy
)1/2

dz

≤ C
∫ 0

−h
‖g(·, ·, z, t)‖L2(M)‖g(·, ·, z, t)‖H1(M) dz

≤ C
(∫ 0

−h
‖g(·, ·, z, t)‖2

L2(M) dz
)1/2(∫ 0

−h
‖g(·, ·, z, t)‖H1(M) dz

)1/2

≤ C‖g‖H1(�)|g| ;

therefore,

(A.1)
[∫

M

(∫ 0

−h
|g(x, y, z, t)|2 dz

)2

dx dy
]1/4

≤ C‖g‖
1/2
H1(�)

|g|1/2.

By using (2.18) we have
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[∫

M

(∫ 0

−h
|∇u(x, y, z)|dz

)4

dx dy
]1/4

≤

C4

∥∥∥∥
∫ 0

−h
|∇u(·, ·, z)|dξ

∥∥∥∥
1/2

L2(M)

∥∥∥∥
∫ 0

−h
|∇u(·, ·, z)|dz

∥∥∥∥
1/2

H1(M)
.

Notice that
∥∥∥∥
∫ 0

−h
|∇u(·, ·, z)|dξ

∥∥∥∥
1/2

L2(M)
=

[∫

M

(∫ 0

−h
|∇u|dz

)2

dx dy
]1/4

≤ h1/4
[∫

M

∫ 0

−h
|∇u(x, y, z)|2 dz dx dy

]1/4

= h1/4‖u‖
1/2
H1(�)

.

On the other hand,

[∫

M

∣∣∇
∫ 0

−h
|∇u(x, y, z)| dz

∣∣2 dx dy
]1/4

≤

[∫

M

(∫ 0

−h
|∇(∇u(x, y, z))|dz

)2

dx dy
]1/4

.

Again, by using the Minkowski inequality (2.20), we get

[∫

M

(∫ 0

−h

∣∣∇(∇u(x, y, z))
∣∣dz

)2

dx dy
]1/2

≤

∫ 0

−h

(∫

M

∣∣∇(∇u(x, y, z))
∣∣2 dx dy

)1/2

dz

≤ h1/2
(∫ 0

−h

∫

M

∣∣∇(∇u(x, y, z))
∣∣2 dx dy dz

)1/2

≤ C‖u‖H2(�) ;

thus,

(A.2)
[∫

M

(∫ 0

−h
|∇u(x, y, z)|dz

)4

dx dy
]1/4

≤ C‖u‖
1/2
H1(�)

‖u‖
1/2
H2(�)

.
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As a result of (A.1) and (A.2), we have

(A.3)
∣∣∣∣
∫

�

(
∇ ·

∫ z

−h
u(x, y, ξ, t)dξ

)
f g dx dy dz

∣∣∣∣ ≤

C | f |‖u‖
1/2
H1(�)

‖u‖
1/2
H2(�)

‖g‖
1/2
H1(�)

|g|1/2 .
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[15] Foiaş, C.; Prodi, G. Sur le comportement global des solutions non-stationnaires des équations
de Navier-Stokes en dimension 2. Rend. Sem. Mat. Univ. Padova 39 (1967), 1–34.



PG EQUATIONS WITH VISCOSITY 35

[16] Foias, C.; Sell, G. R.; Temam, R. Inertial manifolds for nonlinear evolutionary equations. J. Dif-
ferential Equations 73 (1988), no. 2, 309–353.

[17] Galdi, G. P. An introduction to the mathematical theory of the Navier-Stokes equations. I. Lin-
earized steady problems. II. Nonlinear steady problems. Springer Tracts in Natural Philosophy,
38, 39. Springer, New York, 1994.

[18] Hauk, S. The long-time behavior of the Stommel-Charney model of the Gulf Stream: an ana-
lytical and computational study. Thesis, University of California, Irvine, 1997.

[19] Hauk, S.; Titi, E. S. Long-time behavior of the Stommel-Charney model of the Gulf Stream.
Submitted.

[20] Hu, C.; Temam, R.; Ziane, M. The primitive equations for large scale ocean under shallow
water hypothesis. Discrete Contin. Dynam. Systems, in press.

[21] Hu, C.; Temam, R.; Ziane, M. Regularity results for GFD-Stokes problem and some linear
elliptic PDE’s related to the primitive equations. Preprint.

[22] Jones, D. A.; Titi, E. S. Upper bounds on the number of determining modes, nodes, and volume
elements for the Navier-Stokes equations. Indiana Univ. Math. J. 42 (1993), no. 3, 875–887.

[23] Ladyzhenskaya, O. A. The boundary value problems of mathematical physics. Applied Mathe-
matical Sciences, 49. Springer, New York, 1985.

[24] Ladyzhenskaya, O. Attractors for semigroups and evolution equations. Lezioni Lincee. Cam-
bridge University Press, Cambridge, 1991.

[25] Levermore, C. D.; Oliver, M.; Titi, E. S. Global well-posedness for the Lake equations. Phys.
D 98 (1996), 492–509.

[26] Levermore, C. D.; Oliver, M.; Titi, E. S. Global well-posedness for models of shallow water in
a basin with a varying bottom. Indiana Univ. Math. J. 45 (1996), no. 2, 479–510.

[27] Lions, J. L. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod;
Gauthier-Villars, Paris, 1969.

[28] Ly, H. V.; Titi, E. S. Global Gevrey regularity for the Bénard convection in a porous medium
with zero Darcy-Prandtl number. J. Nonlinear Sci. 9 (1999), no. 3, 333–362.

[29] Oliver, M. Classical solutions for a generalized Euler equation in two dimensions. J. Math.
Anal. Appl. 215 (1997), no. 2, 471–484.

[30] Pedlosky, J. Geophysical fluid dynamics. Second edition. Springer, New York, 1987.
[31] Samelson, R. M. Coastal boundary conditions and the baroclinic structure of wind-driven con-

tinental shelf currents. J. Physical Oceanography 27 (1997), 2645–2662.
[32] Samelson, R.; Temam, R.; Wang, S. Some mathematical properties of the planetary geostrophic

equations for large-scale ocean circulation. Appl. Anal. 70 (1998), no. 1-2, 147–173.
[33] Samelson, R.; Temam, R.; Wang, S. Remarks on the planetary geostrophic model of gyre scale

ocean circulation. Differential Integral Equations 13 (2000), no. 1-3, 1–14.
[34] Samelson, R. M.; Vallis, G. K. A simple friction and diffusion scheme for planetary geostrophic

basin models. J. Physical Oceanography 27 (1997), 186–194.
[35] Samelson R. M.; Vallis, G. K. Large-scale circulation with small diapycnal diffusion: the two-

thermocline limit. J. Marine Research 55 (1997), 223–275.
[36] Seidov, D. An intermediate model for large-scale ocean circulation studies. Dynamics of Atmo-

spheres and Oceans 25 (1996), no. 1, 25–55.
[37] Stommel, H. The westward intensification of wind-driven ocean currents. Trans. Amer. Geo-

phys. Union 29 (1948), 291–304.
[38] Temam, R. Navier-Stokes equations. Theory and numerical analysis. Revised edition. Studies

in Mathematics and Its Applications, 2. North-Holland, Amsterdam–New York, 1979.
[39] Temam, R. Navier-Stokes equations and nonlinear functional analysis. CBMS-NSF Regional

Conference Series in Applied Mathematics, 41. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, 1983.



36 C. CAO AND E. S. TITI

[40] Temam, R. Infinite-dimensional dynamical systems in mechanics and physics. Second edition.
Applied Mathematical Sciences, 68. Springer, New York, 1997.
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