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ABSTRACT. This paper introduces an explicit numerical crite-
rion for the stabilization of steady state solutions of the Navier-
Stokes equations (NSE) with linear feedback control. Given a
linear feedback controller that stabilizes a steady state solution to
the closed-loop standard Galerkin (or nonlinear Galerkin) NSE
discretization, it is shown that, if the number of modes involved
in the computation is large enough, this controller stabilizes a
nearby steady state of the closed-loop NSE. We provide an ex-
plicit estimate, in terms of the physical parameters, for the num-
ber of modes required in order for this criterion to hold. More-
over, we provide an estimate for the distance between the sta-
bilized numerical steady state and the actually stabilized steady
state of the closed-loop Navier-Stokes equations. More accurate
approximation procedures, based on the concept of postprocess-
ing the Galerkin results, are also presented. All the criterion con-
ditions are imposed on the computed numerical solution, and no
a priori knowledge is required about the steady state solution of
the full PDE. This criterion holds for a large class of unbounded
linear feedback operators and can be slightly modified to include
certain nonlinear parabolic systems such as reaction-diffusion sys-
tems.
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1. INTRODUCTION

There is, recently, a reinforced interest in the important subject of flow control
(see for example the monograph [36] or the proceedings of the recent NSF work-
shop on Control of Flows [56]). This is certainly due to an array of emerging
technologies, such as the microfabrication of minute, programmable (and cheap)
sensors and actuators. Part of the excitement is certainly due to cross-fertilization
at the intersection between physical fluid mechanics and nonlinear partial differ-
ential equations. Indeed, the last few years have seen extensive applications of
systems theory approaches and methods to the control and stabilization of flow
models (see for example [1, 9, 13, 14, 41, 55]).

For physical problems modeled by partial differential equations (as fluid flow
is governed by the Navier-Stokes Equations (NSE),) the state in the corresponding
control problem is infinite dimensional. Practical considerations (finite precision,
memory capacity of computers that would implement control action) dictate the
discretization of the distributed parameter system (DPS) to a finite dimensional
dynamical system ([3, 22, 68]). How well this (lumped) discretized system cap-
tures the dynamics of the original PDE is the subject of ongoing research (see,
e.g., [42, 49, 50, 66, 74] and references therein). The dissipative nature of many
evolutionary PDEs forms the basis of arguments for the qualitative validity of such
approximations.

Using existing control methodologies, it is conceptually straightforward to
synthesize finite-dimensional controllers for the finite dynamical systems resulting
from such (finite difference, finite element, spectral) discretizations. A defini-
tive sequence of articles by Balas, Curtain, Sakawa and others over the last 20
years ([3, 4, 5, 6, 7, 22, 68]) states that such finite dimensional controllers can be
used to stabilize linear infinite dimensional systems from which the discretization
originates. The controllers should of course be based on a sufficiently converged
discretization of the PDE (see [5] and also later [7]). One of our goals in this
article is to prove that such finite dimensional controllers can indeed stabilize un-
stable steady states of the closed-loop NSE, and provide estimates of the necessary
discretization dimension.

High order and ill-conditioning, however, make the routine design of con-
trollers for such problems a difficult issue on its own ([71]); recourse to nontrivial
computational methods is required in order to assess basic properties of the lin-
earized state space models, such as controllability, stabilizability, observability and
stability ([10, 25]). A second level of model reduction then becomes necessary:
after the reduction of the infinite-dimensional system to a (“large”) finite dimen-
sional one, we seek to exploit the dissipativity of the original PDE to construct
(or approximate) accurate, dynamic, “small” finite dimensional models that can be
used in controller design. Such “further reduced” models are often based on modal
representations of the dynamics, the modes coming from the leading part of the
linearized problem ([8]), from their Krylov subspace approximations ([44]), from
empirically determined eigenfunctions ([43], and references therein), or from an
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appropriate (dissipative) part of the linear problem operator, such as the eigen-
functions of the Stokes operator in the case of the Navier-Stokes equations ([17],
[73], [74]). Beyond the qualitative similarity with singular perturbation methods
that construct invariant manifolds and exploit them in controller design for finite
dimensional systems ([57]), there is an extensive interest in the use of inertial man-
ifolds and approximate inertial manifolds for closed loop dynamics analysis and
controller design (see, for example, [12, 15, 69, 70]). Motivated by the theory
of Inertial Manifolds and Approximate Inertial Manifolds, we will also explore a
second (Nonlinear Galerkin, NLG) model reduction step.

In this paper we demonstrate our results and tools on a specific system, the
Navier-Stokes equations of viscous incompressible fluids. We use the NSE as an
illustrative paradigm. However, our results and technique hold for a larger class of
nonlinear dissipative evolution systems of equations.

The Navier-Stokes equations

∂u
∂t
− ν∆u+ (u · ∇)u+∇p = g, in Ω,(1.1)

∇ ·u = 0, in Ω,(1.2)

u = 0, on ∂Ω,(1.3)

u(x,0) = uin(x)(1.4)

are the equations that govern the motion of viscous incompressible flows in a
domain Ω, of R2 or R3, subject to the no-slip Dirichlet boundary conditions.
Here, u represents the unknown velocity vector, and p is the unknown pressure
scalar; where ν > 0, the constant kinematic viscosity, and g, the body forcing
term, are given.

It is well known that in both the two-dimensional and three-dimensional cases
the system (1.1)-(1.4) has a steady state solution ([17], [37], [72], [73]). More-
over, for small Reynolds numbers (for example, large viscosity or small forcing)
the system has a unique steady state solution which is globally stable ([54], [72]).
As the Reynolds number increases, one expects that this steady state loses its sta-
bility and goes through a bifurcation (however, this scenario is not always true,
see, e.g., [21], [62]). Moreover, this system could go through successive bifur-
cation, and exhibit chaotic and turbulent behavior (see, e.g., [59], [73]). Such
turbulent dynamics is not restricted to transient solutions, but it can sustain itself
for infinitely long intervals of time. To study rigorously this long-time turbulent
dynamics one has to make sure that the solutions of (1.1)-(1.4) remain regular
globally in time. This is known to be true in the two-dimensional case. How-
ever, in the case of three-dimensional flows this is still one of the most challenging
open scientific problems. As a result, the study of the long-time behavior of the
solutions and the global attractor for the system (1.1)-(1.4) has been restricted to
the two-dimensional case. Indeed, the first such rigorous study was presented by
Foias and Prodi in [29], where the authors have shown that the global dynamics
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is “determined” by finitely many degrees of freedom. Since then lots of work con-
cerning this issue has been done, and we refer the reader to, for example, [16],
[19], [21], [32], [33], [51] and the references therein, for the best available results
in this regard.

In this paper we are interested in developing a numerical criterion for the
stabilization of steady state solutions of system (1.1)-(1.4), using linear feedback
control operators. The results and techniques presented here are inspired by [20]
and [75].

Our main result states that if we can design a linear feedback controller that
stabilizes a steady state solution to the closed-loopm−state Galerkin approxima-
tion orm−state nonlinear Galerkin approximation, wherem is bigger than some
MGLK (in the Galerkin case) or someMNLG (in the nonlinear Galerkin case), then
there is a nearby steady state solution to the closed-loop Navier-Stokes system with
the same linear feedback controller. Our objective echoes the approach in [55]:
we are concerned with “an entirely new stable system” (the closed loop system).
We provide explicit bounds on MGLK and MNLG in terms of the physical param-
eters of the equations. Moreover, we show that in this case the steady state of the
nonlinear Galerkin converges to the exact solutions much faster than the one of
the standard Galerkin.

It is worth mentioning that all the conditions of this criterion are checkable
by the computed numerical solutions, and no other conditions are imposed on the
unknown exact solution. Furthermore, let us stress the fact that in general there
are no error estimates for nonlinear elliptic steady state problem. This is due to
the fact that such equations might have multiple solutions and even a continuum
of solutions ([30], [35]). This is obvious, for instance, in the case of non-constant
steady state solutions of equations with translational symmetry. However, we do
not encounter this problem here because the feedback control operator isolates
the steady state under consideration and makes the use of standard versions of the
implicit function theorem at hand. Here we will present only the two-dimensional
NSE case. Similar results are also valid in the three dimensional case, but with
different dependence on the physical parameters.

This paper is organized as follows: In Section 2 on the facing page we review
preliminaries and functional spaces. In Section 3 on page 44 we give a criterion
for the Galerkin approximation case. In Section 4 on page 60 we provide a similar
criterion for the nonlinear Galerkin approximation. In Section 5 on page 83 we
show that we can use postprocessing Galerkin and nonlinear Galerkin methods
to improve the accuracy. In Section 6 on page 88 we provide an algorithm for
applying our numerical criterion.

This paper is dedicated to Professor Ciprian Foias on the occasion of his re-
tirement from Indiana University, and to Professor Roger Temam on the occasion
of his 60th birthday. We would like to thank them both for their continuous sup-
port and encouragement through all over our careers. Their work is a constant
source of inspiration for us.
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2. PRELIMINARIES AND FUNCTIONAL SETTING

As we mentioned earlier, we consider here only the two dimensional Navier-Stokes
case. Therefore we suppose that Ω is a bounded subset of R2 with smooth bound-
ary. Let Hq(Ω) denote the usual Sobolev spaces of index q (cf. [2]). We will
denote by | · | the L2− norm, and (·, ·) the L2− inner product. We set

V = {ϕ ∈ (C∞0 (Ω))2 : ∇ ·ϕ = 0}.

The spaces H, V will denote the closures of V in L2 and H1 respectively. We
introduce the inner product

((u,v)) =
2∑
i=1

∫
Ω
∂u
∂xi

∂v
∂xi

dx, for u, v ∈ V,

and denote by ‖ · ‖ the norm induced by the inner product ((·, ·)). Thanks
to the Poincaré inequality, the norm ‖ · ‖ is equivalent to the H1-norm on V .
Let P : L2 → H be the orthogonal projection, and let A = −P∆ be the Stokes
operator, subject to the homogeneous Dirichlet, no-slip, boundary condition. It
is well known that A−1 is a self-adjoint positive compact operator from H onto
D(A) = H2 ∩ V (cf. [17], [37], [58], [73]). Let 0 < λ1 ≤ λ2 ≤ · · · be the
eigenvalues of A, repeated according to their multiplicities, and let {ωk}∞k=1 be
the corresponding eigenfunctions. We denote by Hm the linear space spanned by
{ω1, . . . ,ωm}, by Pm : H → Hm the orthogonal projection, and byQm = I−Pm.
Moreover, we observe that V ′ = D(A−1/2) is the dual space of V .

It is well known that the Navier-Stokes equations (NSE) (1.1)-(1.4) are equiv-
alent to the functional differential equation (see, e.g., [17], [72])

du
dt
+ νAu+ B(u,u) = g,(2.1)

u(0) = uin,(2.2)

where B(u,u) = P((u · ∇)u), the nonlinear (bilinear) term.
The following are well-known facts (cf. [17], [37], [58], [73])

‖v‖ ≥ λ1/2
1 |v|, ∀v ∈ V ′,(2.3)

|Av| ≥ λ1/2
1 ‖v‖, ∀v ∈ D(A).(2.4)

There is a constant C0 > 0 such that (cf. [64])

m
C0
≤ λm
λ1
≤ C0m.(2.5)
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(B(u,v),w) = −(B(u,v),w); (B(u,v), v) = 0, ∀u,v,w ∈ V ,(2.6)

|(B(u,v),w)| ≤ C1|u|1/2‖u‖1/2‖v‖ |w|1/2‖w‖1/2, ∀u,v,w ∈ V ,(2.7)

|(B(u,v),w)| ≤ C1|u|1/2|Au|1/2‖v‖ |w|,(2.8)
∀u ∈ D(A),∀v ∈ V,∀w ∈ H,

|(B(u,v),w)| ≤ C1|u| ‖v‖ |w|1/2|Aw|1/2,(2.9)
∀u ∈ H, ∀v ∈ V, ∀w ∈ D(A),

|(B(u,v),w)| ≤ C1|u|1/2‖u‖1/2‖v‖1/2|Av|1/2|w|,(2.10)
∀u ∈ V, ∀v ∈ D(A),∀w ∈ H,

|(B(u,v),w)| ≤ C1
(‖u‖1/2|Au|1/2‖v‖1/2|Av|1/2(2.11)
× +|u|1/2|Au|1/2|Av|)|A−1/2w|,

∀u,v ∈ D(A), ∀w ∈ D(A−1/2).

Next we recall the following two-dimensional version of the Lieb-Thirring in-
equality (cf. [60], see also [74]), for the two dimensional case.

Proposition 2.1. (Lieb-Thirring inequality) Let {ϕj}Nj=1 ⊂ V be a subset of
orthogonal functions in H with ‖ϕj(x)‖L2 = ν, for j = 1, 2, . . . , N. Then there is
an absolute constant C2, which is independent of N, such that

∫
Ω
[ N∑
j=1

|ϕj(x)|2
]2
dx ≤ C2ν2

N∑
j=1

‖ϕj(x)‖2,(2.12)

where |ϕj(x)| denotes the absolute value of ϕj(x).

The Galerkin approximation to the Navier-Stokes equations (NSE) (2.1) and
(2.2), which is based on the firstm−eigenmodes of the Stokes operator A, is given
by the system of ordinary differential equations

dum
dt

+ νAum + PmB(um,um) = Pmg,(2.13)

um(0) = Pmuin,(2.14)

where um(t) ∈ Hm = Span{ω1, . . . ,ωm}.
Suppose that the equations (2.13) and (2.14) have a stationary solution u∗m,

which is unstable. Let Lm : Hm → Hm be a linear feedback stabilizing operator.
That is, u∗m is a stable steady state solution to the closed-loop

dum
dt

+ νAum + PmB(um,um)+ Lm(um −u∗m) = Pmg.(2.15)
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The above equation can be viewed as them−state Galerkin approximation to the
following closed-loop Navier-Stokes system

du
dt
+ νAu+ B(u,u)+ Lm(u−u∗m) = g.(2.16)

As a result, the n−state Galerkin approximation associated with (2.16), for n ≥
m, is given by

dun
dt

+ νAun + PnB(un,un)+ PnLm(un −u∗m) = Png.(2.17)

The question is: provided that m is large enough, is Lm stabilizing a steady
state solution u∗n of (2.17) which is nearby u∗m? In this chapter we will give an
affirmative answer to this question, provided Lm belongs to a certain class of linear
operators. Moreover, we will provide an explicit estimate on how large m should
be in order for the answer to be affirmative.

Motivated by the above discussion we will consider, by analogy with (2.16),
the more general closed-loop NSE

du
dt
+ νAu+ B(u,u)+ γLu = f ,(2.18)

u(0) = uin,(2.19)

where γ ≥ 0, is a tracking parameter, and L is a linear operator which satisfies the
following properties:

(i) There is a fixed α ∈ [0,1) such that L :D(Aα)→ H.
(ii) There is a dimensionless constant CL > 0 such that for any β ∈ [0,1] we

have

|Aβ−αLu| ≤ νλ1−α
1 C1−α

L |Aβu|, ∀u ∈ D(Aβ).(2.20)

In particular, when β = max{0, α− 1
2} in (2.20) we have

|(Lu,u)| ≤ νλ1−α
1 C1−α

L |u|2−2α‖u‖2α, ∀u ∈ V.(2.21)

Notice that for γ = 0, the equation (2.18) is the NSE (1.1), and that f contains
the term Lmu∗m.

The feedback linear operator L is designed to stabilize the steady state of
the Galerkin approximation. Therefore, roughly speaking, it stabilizes the lower
modes. However, when it is introduced into the full PDE it could destabilize (ex-
cite) the higher modes (a phenomenon known as spillover). The above technical
conditions on the operator L simply mean that the viscous linear term νA in the
closed-loop system is stronger than γL, and hence will “suppress” this potential
spillover phenomenon.
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3. A STABILIZATION CRITERION FOR THE STANDARD GALERKIN
APPROXIMATION CASE

The Galerkin approximation equation of the closed-loop NSE based on m-
eigenmodes of the Stokes operator is (cf. [17], [37], [58], [73])

dum
dt

+ νAum + PmB(um,um)+ γPmLum = Pmf ,(3.1)

um(0) = Pmuin,(3.2)

where um ∈ Hm.
Following the notation in [20] and [75] we denote, for 1 ≤ m ≤ ∞, by u∞m

the stationary solution of the equations (3.1), and by u∞ ≡ u∞∞ the steady state of
the equations (2.18). Furthermore, we also denote by Am(u0) : Hm → Hm the
linearized operator about u0 ∈ D(A), defined as

Am(u0)v = νAv + Pm(B(u0, v)+ B(v,u0))+ γPmLv, ∀v ∈ Hm.(3.3)

When m = ∞, we will denote by A = A∞. We will denote Sp(Am(u0)) the
spectrum of Am(u0); B(E, ρ) = {z ∈ C : dist(z, E) < ρ}, for any subset E ⊂ C;
and by (E)σ = {z ∈ E : |<z| ≤ σ}. Notice that our definition of (E)σ is
different than the one in [20] and [75].

In the following Lemma we follow closely the papers [20] and [75]. However,
we adjust the details to take into consideration the effect of the feedback operator
L.

Lemma 3.1. Let 1 ≤ m ≤ ∞, let u∞m ∈ V be a steady state solution of the
equation (3.1).

(i) If

|u∞m| ≤ K1,(3.4)

then

‖u∞m‖ ≤ K2 =
(
νλ1GK1

1−α
)1/2

+ γ1/[2(1−α)]C1/2
L λ1/2

1 K1,(3.5)

|Au∞m| ≤ λ1/2
1 K3 = 8νλ1G

1−α + 321/2C2
1K1K2

2

ν2(1−α)2 + 81/2γ1/(1−α)CLλ1K1,(3.6)

where G = |f |/(λ1ν2), the Grashoff number.
(ii) If γC1/2

L < 1, then

‖u∞m‖ ≤ K̄2 = |f |
νλ1/2

1 (1− γC1/2
L )

,(3.7)

|Au∞m| ≤ λ1/2
1 K̄3 = 8νλ1G

1−α + 321/2C2
1 K̄

3
2

ν2λ1/2
1 (1−α)2

+ 81/2γ1/(1−α)CLλ
1/2
1 K̄2.(3.8)
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Notice in particular that γ = 0, i.e., the open-loop case falls into this situation.

Proof. Let u∞m be a stationary solution of the equation (3.1) with |u∞m| ≤ K1.
Taking the inner product of the equation (3.1) with u∞m in Hm, and using (2.6),
we get

ν‖u∞m‖2 ≤ |f | |u∞m| + γνC1−α
L λ1−α

1 |u∞m|2−2α‖u∞m‖2α.

By Young’s inequality, we obtain

‖u∞m‖2 ≤ |f |K1

ν(1−α) + γ
1/(1−α)CLλ1K2

1 .

Thus we have proved the estimate (3.5). Taking the inner product of equation
(3.1) with Au∞m in Hm gives us

ν|Au∞m|2 ≤ |f | |Au∞m| + |(B(u∞m,u∞m),Au∞m)| + γ|(Lu∞m,Au∞m)|.

By using the Cauchy-Schwarz inequality, and (2.8) and (2.20) with β = α, we
reach

ν|Au∞m|2 ≤ |f | |Au∞m| + C1|u∞m|1/2‖u∞m‖ |Au∞m|3/2

+ γνC1−α
L λ1−α

1 |u∞m|1−α|Au∞m|1+α.

Thanks to Young’s inequality, we get

|Au∞m| ≤
8|f |

ν(1−α) +
321/2C2

1K1K2
2

ν2(1−α)2 + 81/2γ1/(1−α)CLλ1K1,

which completes the proof part (i) of the lemma. The proof of the part (ii) of the
lemma is similar to the one in the case of γ = 0, i.e., the NSE. We refer to [17],
[73] for details. ❐

Remark. The condition γC1/2
L < 1 in part (ii) of the above lemma means

that the linear instabilities (about zero) that might be caused by the linear feedback
operator, L, are weak and can be suppressed by the viscous term A.

Lemma 3.2. Let R > 0, u0 ∈ D(A) with |Au0| ≤ λ1/2
1 R. If w is an eigen-

function ofAm(u0), thenw ∈ D(A). Moreover, if |w| = ν andAm(u0)w = Λw
for some Λ ∈ C, then we have

‖w‖ ≤ K4(γ,Λ, ν, R),(3.9)

|Aw| ≤ K5(γ,Λ, ν, R),(3.10)
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where

K4(γ,Λ, ν, R) = (2ν|Λ|
1−α + 2γ1/(1−α)ν2λ1CL

)1/2
+ C1R

1−α,(3.11)

and

K5(γ,Λ, ν, R) = |Λ|
1−α +

C1RK4(γ,Λ, ν, R)
ν(1−α)(3.12)

+ C1λ
1/4
1 RK1/2

4 (γ,Λ, ν, R)
1−α + γ1/(1−α)νCLλ1.

Proof. Let |w| = ν and

Am(u0)w = Λw.(3.13)

Taking the inner product of the above equation with w in Hm, and using (2.6)
leads to

ν‖w‖2 ≤ |Λ| |w|2 + |(B(w,u0),w)| + γ|(Lw,w)|.

The inequalities (2.7) and (2.21) give us

ν‖w‖2 ≤ |Λ| |w|2 + C1‖u0‖ |w| ‖w‖ + γνC1−α
L λ1−α

1 |w|2−2α‖w‖2α.

By Young’s inequality and the Cauchy-Schwarz inequality, we get

‖w‖2 ≤ 2ν|Λ|
1−α +

C2
1R2

(1−α)2 + 2γ1/(1−α)ν2λ1CL,

which leads to (3.9). Now by taking the L2−norm in the equation (3.13), we
reach

ν|Aw| ≤ |Λ| |w| + |B(u0,w)| + |B(w,u0)| + γ|Lw|

By using (2.8), (2.10), and (2.20) with β = α, we get

ν|Aw| ≤ |Λ| |w| + C1|u0|1/2|Au0|1/2‖w‖ + C1|w|1/2‖w‖1/2‖u0‖1/2|Au0|1/2

+ γνC1−α
L λ1−α

1 |w|1−α|Aw|α.

Following Young’s inequality, we conclude that

|Aw| ≤ |Λ|
1−α +

C1RK4(γ,Λ, ν, R)
ν(1−α) + C1λ

1/4
1 RK1/2

4 (γ,Λ, ν, R)
1−α

+ γ1/(1−α)νCLλ1. ❐
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Lemma 3.3. Let R > 0, u0 ∈ V with ‖u0‖ ≤ R and s ∈ R, and let M1(s) be
the number of the eigenvalues ofAm(u0) whose real parts are less than or equal to s,
i.e.,

M1(s) = # of {λ ∈ Sp(Am(u0)) : <λ < s}.
Then we have

M1(s) ≤ K6(γ, s, ν, R),(3.14)

where

(3.15) K6(γ, s, ν, R) =
1
2

{(
4sC0

νλ1(1−α)
− 1

)
+
[(

4sC0

νλ1(1−α)
− 1

)2

+ 8C0C2R2

ν2λ1(1−α)2
+ 16γ1/(1−α)C0CL

]1/2}
.

Proof. Letm <∞ be finite, and letΛ1, . . . , ΛK be the eigenvalues ofAm(u0),
repeated according to their multiplicities, such that <Λj ≤ s, for j = 1, 2, . . . , K.
We will denote by EK the linear space spanned by the generalized eigenfunctions
ofAm(u0) corresponding to the eigenvalues Λ1, . . . , ΛK . Let ψ1, . . . , ψK be an
orthogonal basis of EK with |ψj| = ν for j = 1, 2, . . . , K, and let ΠK : Hm → EK
be the orthogonal projection. Then we get

<
( ∑
j=1

KΛj) = <{trace(ΠKAm(u0)ΠK)} = ν−2<
( ∑
j=1

K(Am(u0)ψj,ψj)
)
.

By using (2.6) and (2.21), we reach

<
( ∑
j=1

KΛj)
= ν−2<

{ ∑
j=1

K[ν(Aψj,ψj)+ (B(ψj,u0),ψj)+ γ(Lψj,ψj)]
}

≥ ν−2
∑
j=1

K
[
ν‖ψj‖2 − |(B(ψj,u0),ψj)| − γνC1−α

L λ1−α
1 |ψj|2−2α‖ψj‖2α

]
.

By using the Cauchy-Schwarz and Lieb-Thirring (2.12) inequalities, we obtain

∣∣∣ K∑
j=1

(B(ψj,u0),ψj)
∣∣∣ ≤ (∫Ω

( ∑
j=1

Kψ2
j(x)

)2
dx

)1/2
‖u0‖

≤
(
C2ν2

∑
j=1

K‖ψj‖2
)1/2
‖u0‖

≤ ν(1−α)
2

( ∑
j=1

K‖ψj‖2
)
+ C2ν‖u0‖2

2(1−α) .
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On the other hand, and by Young’s inequality, we have

γνC1−α
L λ1−α

1 |ψj|2−2α‖ψj‖2α ≤ να‖ψj‖2 + ν(1−α)γ1/(1−α)CLλ1|ψj|2,

that is

γνC1−α
L λ1−α

1 |ψj|2−2α‖ψj‖2α ≤ να‖ψj‖2 + ν3(1−α)γ1/(1−α)CLλ1.

Moreover, ∑
j=1

K‖ψj‖2 =
∑
j=1

K(Aψj,ψj) ≥ ν2
∑
j=1

Kλj.

Therefore,

Ks ≥ <
( ∑
j=1

KΛj) ≥ ν(1−α)2

∑
j=1

Kλj − C2‖u0‖2

2ν(1−α)

−
∑
j=1

Kν(1−α)γ1/(1−α)CLλ1.

By using(2.5), we get

Ks ≥ νλ1(1−α)
2C0

K(K + 1)
2

− C2‖u0‖2

2ν(1−α) − ν(1−α)γ
1/(1−α)CLλ1K,

which implies (3.14). ❐

Remark. In a sense, the estimate (3.14) is sharp because the constant
K6(γ, s, ν, R) is growing linearly in s. For example, in the case when u0 = 0
and γ = 0 we have A(u0) = νA, and in this case the Λj = λj behaves like j
asymptotically (see (2.5)). Thus, in this special case, M1(s) ∼ s.

3.1. Estimates for the resolvents in the Galerkin case. For every R > 0 we
define with Prodi [67] the parabola-like set σ(R) ⊂ C by setting

σ(R) = {z ∈ C : ∃x ≥ λ1, |z − νx| ≤ C1Rx1/2 + γνλ1−α
1 C1−α

L xα},(3.16)

where C1 and CL are as in (2.7) and (2.21) respectively. It is worth mentioning that
when one deals with three dimensional Navier-Stokes equations, the set σ(R) is
bigger, but it has the same properties as far as the spectra of the operatorAm(u0),
for ‖u0‖ ≤ R and 1 ≤m ≤ ∞, is concerned.

As in [20] and [75], one can show that the spectrum of Am(u0) consists of
isolated eigenvalues of finite multiplicities. The following lemmas are similar to
those of [20] and [75], but we add the contribution of the linear control operator
L. The proofs will be omitted here, and can be found for the case where L = 0 in
[20].
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Lemma 3.4. Let R > 0, u0 ∈ V with ‖u0‖ ≤ R. Then
• the spectra ofAm(u0),m = 1, . . . , ∞, are in σ(R),
• for every z 6∈ σ(R) the following inequalities hold:

|(Am(u0)− z)−1v| ≤ dist(z,σ(R))−1|v| = KH(γ, ν,R, z)|v|,(3.17)
‖(Am(u0)− z)−1v‖ ≤ KV(γ, ν,R, z)|v|, ∀v ∈ Hm,(3.18)
|A(Am(u0)− z)−1v| ≤ KA(γ, ν,R, z)|v|, ∀v ∈ Hm,(3.19)

where

KV(γ, ν,R, z) =
[(

2λ1γ1/(1−α) + C2
1R2

(1−α)2ν2(3.20)

+ 2|z|
(1−α)ν

)
K2
H(γ, ν,R, z)+

2KH(γ, ν,R, z)
(1−α)ν

]1/2
,

KA(γ, ν,R, z) = KH(γ, ν,R, z)
[

4
ν(1−α) +

(
8|z|

(1−α)ν(3.21)

+ 16C2
1R2

ν2(1−α)2 + 4γ2/(1−α)C2
Lλ

2
1

)1/2
KV(γ, ν,R, z)

]
.

Following [75], we will use Carleman’s inequality for the Hilbert-Schmidt (H-
S) operators to prove this section’s main result, Lemma 3.6 on the next page. First
let us recall some well known facts about H-S operators (cf. [24])

Theorem 3.1. LetH be a Hilbert space, F :H →H be an H-S operator with
non-zero eigenvalues µ1, µ2, . . . , repeated according to their multiplicities. Then

(i) the following infinite product

ϕλ(F) =
∏
k≥1

(
1− µk

λ

)
eµk/λ

converges and defines an analytic function for every λ ≠ 0, λ 6∈ Sp(F);
(ii) (Carleman’s inequality) the following inequality

‖ϕλ(F)λI − F)−1‖L(H ,H ) ≤ |λ|e1/2[1+(‖F‖2/|λ|)2]

holds for every λ ≠ 0, λ 6∈ Sp(F), where ‖F‖2 denotes the H-S norm;
(iii) for every T ∈ L(H ,H ), TF and FT are H-S operators. Moreover,

max{‖FT‖2,‖TF‖2} ≤ ‖F‖2‖T‖L(H ,H ).
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We recall the following Lemma, which was presented in [75]. We refer to [75]
for details of the proof.

Lemma 3.5. Let R > 0, u0 ∈ V with ‖u0‖ ≤ R. Then for every z 6∈ σ(R) the
operators (Am(u0)− z)−1, form = 1, . . . , ∞, are H-S operators. Moreover,

‖(Am(u0)− z)−1‖2 ≤ KHS(γ, ν,R, z),(3.22)

where

KHS(γ, ν,R, z) =
C0π√
6λ1

KA(γ, ν,R, z),(3.23)

where KA(γ, ν,R, z) is as in (3.21).

Lemma 3.6. Let R > 0, u0 ∈ D(A), with |Au0| ≤ λ1/2
1 R and ρ, s ≥ 0, and

let λ ∈ C and satisfy |λ| ≤ s. Let

λc = −
C2

1R2

4ν(1−α) − γ
1/(1−α)ν(1−α)CLλ1.(3.24)

Then for everym <∞, if

dist(λ,Sp(Am(u0))) ≥ ρ,(3.25)

then we have

|(Am(u0)− λ)−1v| ≤ K7(γ, ρ, s, ν, R)|v|, ∀v ∈ Hm,(3.26)

‖(Am(u0)− λ)−1v‖ ≤ K8(γ, ρ, s, ν, R)|v|, ∀v ∈ Hm,(3.27)

|A(Am(u0)− λ)−1v| ≤ K9(γ, ρ, s, ν, R)|v|, ∀v ∈ Hm,(3.28)

where

(3.29) K7(γ, ρ, s, ν, R)

=



KH(γ,R, ν, f , z), λ 6∈ σ(R − λc/2)

exp
{

1
2
+ 5

2
|s − 2λc|2K2

HS(γ, ν,R, |s − 2λc|)
}

× 1
λc|λ− 2λc|2

(
2|s − λc|
ρ

)M̃
, λ ∈ σ(R − λc/2),
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(3.30) K8(γ, ρ, s, ν, R)

=
[(

2λ1γ1/(1−α) + C2
1R2

(1−α)2ν2+ +
2s

(1−α)ν
)
K2

7(γ, ν,R, z)

+ 2K7(γ, ν,R, z)
(1−α)ν

]1/2
,

(3.31) K9(γ, ρ, s, ν, R)

=
( 8s
(1−α)ν +

16C2
1R2

ν2(1−α)2 + 4γ2/(1−α)C2
Lλ

2
1

)1/2

K8(γ, ν,R, z)

+ 4
ν(1−α)

]
K7(γ, ν,R, z),

where

M̃ = K6

(
γ,2λc +

2
|λc|

, ν, R
)
,

λc is defined earlier in (3.24), and KHS is as in (3.23).

Proof. By applying Lemma 3.4 on page 49, we only consider the case of λ ∈
σ(R − λc/2). One can check that 2λc 6∈ σ(R). Thus, by Lemma 3.5, Fm =
(Am(u0)− 2λc)−1 is an H-S operator. On the other hand, we can write

(Am(u0)− λ)−1 = (λ− 2λc)−1(Am(u0)− 2λc)−1

× ((λ− 2λc)−1I − (Am(u0)− 2λc)−1)−1.

Notice that (λ − 2λc)−1 6∈ Sp(Fm). We apply Lemma 3.4 on page 49 and the
Carleman inequality to get

‖(Am(u0)− λ)−1‖L(Hm,Hm)

≤ 1
λc|λ− 2λc|2

|ϕλ−2λc (Fm)|−1e1/2[1+‖Fm‖2
2(|λ−2λc|2].

Now we apply Lemma 3.5 on the facing page and the estimate for |ϕλ−2λc (Fm)|
in [75] (see [75] for details), and we have

|(Am(u0)− λ)−1v| ≤ K7(γ, ρ, s, ν, R)|v|,

where K7(γ, ρ, s, ν, R) is as in (3.29).
Now we show the estimates (3.27) and (3.28). For each g ∈ Hm, let (Am(u0)−

λ)−1g = v, i.e.,
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νAv + Pm(B(u0, v)+ B(v,u0)+ γPmLv)− λv = g.(3.32)

Taking the inner product of equation (3.32) with v in H, we obtain

ν‖v‖2 ≤ |λ| |v|2 + |(g, v)| + |(B(v,u0), v)| + γ|(Lv,v)|.
By using (2.8) and (2.21), we reach

ν‖v‖2 ≤ s|v|2| + |g| |v| + C1‖u0‖ |v| ‖v‖ + γνC1−α
L λ1−α

1 |v|2−2α‖v‖2α.

Thanks to Young’s inequality and the estimate (3.26), we get

ν(1−α)
2

‖v‖2 ≤ s|v|2 + |g| |v| + C
2
1‖u0‖2|v|2
2ν(1−α) + γ1/(1−α)ν(1−α)CLλ1|v|2

≤
[(
s + C2

1R2

2ν(1−α) + γ
1/(1−α)νCLλ1

)
K2

7(γ, ρ, s, ν, R)

+ K7(γ, ρ, s, ν, R)
]
|g|2,

which implies (3.27). Moreover, taking the inner product of (3.32) with Av in H
gives us

ν|Av|2 ≤ |λ| ‖v‖2 + |(g,Av)| + |(B(v,u0),Av)|

+ |(B(u0, v),Av)| + γ|(Lv,Av)|.

By using (2.9), (2.10), and (2.20) with β = α, we get

ν|Av|2 ≤ s‖v‖2 + |g| |Av| + C1‖u0‖1/2|Au0|1/2|v|1/2‖v‖1/2|Av|

+ C1|u0|1/2|Au0|1/2‖v‖ |Av| + γνC1−α
L λ1−α

1 |v|1−α|Av|1+α.

By Young’s inequality again, and the estimates (3.26) and (3.27), we reach

ν(1−α)
8

|Av|2 ≤ s‖v‖2 + 2|g|2
ν(1−α) +

2C2
1‖u0‖ |Au0| |v| ‖v‖

ν(1−α)

+ 2C2
1 |u0| |Au0| ‖v‖2

ν(1−α) + γ2/(1−α)ν
(1−α)

2
C2
Lλ

2
1|v|2

≤
[

2
ν(1−α) +

(
s + 4C2

1R2

2ν(1−α) + γ
2/(1−α)ν

(1−α)
2

C2
Lλ

2
1

)]

× K2
8(γ, ρ, s, ν, R)

]
|g|2,
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which implies (3.28) and completes the proof. ❐

We now show that the spectra of Am(u0) are, in some sense, close to each
other whenm is large enough.

Lemma 3.7. Let R > 0, u0, u1 ∈ D(A) with |Au0| ≤ λ1/2
1 R, |Au1| ≤

λ1/2
1 R, and let s, ρ > 0. Then there exist a constant

(3.33) η(γ, s, ρ, ν,R) = ν
3C1K

1/2
5 (γ, s, ν, R)K7(γ, ρ, s, ν, R)

× λ1/4
1

K1/2
4 (γ, s, ν, R)+ λ1/4

1

,

and a constant

(3.34) M2(γ, ρ, s, ν, R)

= max
{
CL
C0
(4γK5(γ, s, ν, R)K7(γ, ρ, s, ν, R))

1/(1−α) ,

2C0

ν
(2C1RK5(γ, s, ν, R)K7(γ, ρ, s, ν, R)+K4(γ, s, ν, R))

}
,

where K4(γ, s, ν, R), K5(γ, s, ν, R), and K7(γ, ρ, s, ν, R) are as in (3.11), (3.12),
and (3.29), respectively, such that if ‖u0−u1‖ ≤ η(γ, ρ, s, ν, R), and the condition(

Sp(Am(u0))
)
s = ∅(3.35)

holds for somem ∈ [M2(γ, ρ, s, ν, R),∞), then for every n ∈ [m,∞] we have

(Sp(An(u1)))s ⊂ B(Sp(Am(u0)), ρ).(3.36)

Proof. Let n ≥ m, and let λ ∈ (Sp(An(u1)))s , i.e., there is a w ∈ Hn,
|w| = ν such thatAn(u1)w = λw and |<λ| ≤ s. Denote by

wm = Pmw and w̃m = Qmw,

where Pm andQm are the orthogonal projections defined in Section 2 on page 41.
Suppose that λ ∉ B(Sp(Am(u0)), ρ), i.e., dist(λ,Sp(Am(u0))) ≥ ρ. Then by
Lemma 3.6 on page 50, we get

|Am(u0)wm − λwm| ≥
|wm|

K7(γ, ρ, s, ν, R)
.
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Since

|wm| ≥ |w| − |w̃m|,

then by applying Lemma 3.3 on page 47, we have

|w̃m| ≤
‖w̃m‖
λ1/2
m+1

≤ K4(γ, s, ν, R)
λ1/2
m+1

,

where K4(γ, s, ν, R) is given by (3.11). From the above we reach

|Am(u0)wm − λwm| ≥ 1
K7(γ, ρ, s, ν, R)

(
ν − K4(γ, s, ν, R)

λ1/2
m+1

)
,

where K7(γ, ρ, s, ν, R) is as in (3.29). On the other hand,

Am(u0)wm − λwm =Am(u0)wm − Pm(An(u1)w)

= Pm
[
B(u0 −u1,wm)− B(u1, w̃m)− B(w̃m,u0)

+ B(w,u0 −u1)− γLw̃m
]
.

By using the inequalities (2.8)-(2.10) and (2.20) with β = α, we obtain

|(Am(u0)− λ)wm|

≤ C1

(
‖u0 −u1‖
λ1/4

1

‖wm‖1/2|Awm|1/2 + |u1|1/2|Au1|1/2‖w̃m‖
)

+ C1

(
‖u0‖1/2|Au0|1/2|w̃m|1/2‖w̃m‖1/2 + ‖u0 −u1‖ |w|1/2|Aw|1/2

)
+ γνC1−α

L λ1−α
1 |w̃m|1−α|Aw̃m|α

≤ C1K
1/2
5 (γ, s, ν, R)

(
K1/2

4 (γ, s, ν, R)

λ1/4
1

+ 1

)
‖u0 −u1‖

+ 2C1RK5(γ, s, ν, R)
λ1/2
m+1

+ γνC
1−α
L λ1−α

1 K5(γ, s, ν, R)
λ1−α
m+1

,

where K4(γ, s, ν, R) and K5(γ, s, ν, R) are given by (3.11) and (3.12), respec-
tively.

Now if we let

‖u0 −u1‖ ≤ η(γ, ρ, s, ν, R) and m ≥ M2(γ, ρ, s, ν, R),

where η(γ, ρ, s, ν, R) and M2(γ, ρ, s, ν, R) are as in (3.33) and (3.34), respec-
tively, then
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ν
K7(γ, ρ, s, ν, R)

≥ C1K
1/2
5 (γ, s, ν, R)

[
K1/2

4 (γ, s, ν, R)

λ1/4
1

+ 1

]
‖u0 −u1‖

+ 2C1RK5(γ, s, ν, R)
λ1/2
m+1

+ K4(γ, s, ν, R)
K7(γ, ρ, s, ν, R)λ

1/2
m+1

+ γνC
1−α
L λ1−α

1 K5(γ, s, ν, R)
λ1−α
m+1

.

This leads into a contradiction. Thus, λ ∈ B(Sp(Am(u0)), ρ), i.e.,

(Sp(An(u1)))s ⊂ B(Sp(Am(u0)), ρ).

❐

Since f ∈ H, then there exist a constant M3(γ,σ , ν, f ,K3) such that

|Qmf | < λ1

8C1K9(γ,σ/2, σ , ν,K3)
∀m ≥ M3(γ,σ , ν, f ),(3.37)

where K3 is as in (3.6) and K9(σ/2, σ , ν,K3) is as in (3.31).
Indeed, given f , we can compute K3 and K9(σ/2, σ , ν,K3), and then esti-

mate M3(γ,σ , ν, f ,K3). However, we do not have a priori knowledge about the
magnitude of M3(γ,σ , ν, f ,K3). For the case f ∈ V , we have an explicit a priori
estimate

M3(γ,σ , ν, f ,K3) = (8C1‖f‖K9(γ,σ/2, σ , ν,K3))2

C0λ3
1

.

3.2. The main result in the Galerkin case. Next we present our main the-
orem of this section.

Theorem 3.2. Let σ > 0 be given, and let u∞m ∈ V be a steady state solution
of the Galerkin approximation (3.1) of the closed-loop NSE (2.18) with |u∞m| ≤ K1.
Then there exists a constant

MGLK(γ,σ , ν, f ,K1) = max{M4(γ,σ , ν, f ,K1), M5(γ,σ , ν, f ,K1)},(3.38)

where M4(γ,σ , ν, f ,K1), M5(γ,σ , ν, f ,K1) are specified in (3.49) and (3.59),
respectively, such that if the condition

(Sp(Am(u∞m)))σ = ∅(3.39)

holds for somem ≥MGLK(γ,σ , ν, f ,K1), then we have
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(i) For everyn ∈ [m,∞] there is a hyperbolic stationary solutionu∞n of the Galerkin
approximation equation (3.1) of order n, for which

(Sp(A(u∞n )))σ/2 = ∅,(3.40)

|u∞m −u∞n | ≤
K10(γ,σ , ν, f ,K1)

λm+1
,(3.41)

|A(u∞m −u∞n )| ≤ K11(γ,σ , ν, f ,K1),(3.42)

where

K10(γ,σ , ν, f ,K1) = 1+ 4C1K3K8(γ,σ/2, σ , ν,K3)
λ1/2

1

(3.43)

+ 2γν
(
λ1CL
λm+1

)1−α
,

K11(γ,σ , ν, f ,K1) = λ1K9(γ,σ/2, σ , ν,K3)
2C1

,(3.44)

where K8(γ,σ/2, σ , ν,K3)) and K9(γ,σ/2, σ , ν,K3)) are as in (3.30) and
(3.31), respectively.

(ii) There is a stationary solution u∞ of the closed-loop system (2.18) such that

u∞n → u∞ as n→∞.(3.45)

Moreover, u∞ is hyperbolic and

(Sp(A(u∞)))σ/2 = ∅,(3.46)

|u∞ −u∞n | ≤
K10(γ,σ , ν, f ,K1)

λn+1
.(3.47)

Proof. First we will show the existence of u∞n . Let v = u∞n − u∞m. If u∞n is
a stationary solution of the Galerkin equations (3.1) of order n, then v should
satisfy

(3.48) νAv + PnB(u∞m + v,u∞m + v)− PmB(u∞m,u∞m
+ γPnL(u∞m + v)− γPmLu∞m = Pnf − Pmf .

Thus,

An(u∞m)v = νAv + Pn[B(u∞m,v)+ B(v,u∞m)+ γLv]

= QmPnf −QmPnB(u∞m,u∞m)− PnB(v,v)− γQmPnLu∞m.
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By Lemma 3.7 on page 53, we have (Sp(An(u∞m)))σ/2 = ∅, when m ≥
M2(σ,σ/2, ν,K3). Therefore,An(u∞m) is invertible. Denote by

F(v) = (An(u∞m))
−1(QmPnf −QmPnB(u∞m,u∞m)− PnB(v,v)− γQmPnLu∞m).

By Lemma 3.6 on page 50, we get

|AF(v)| ≤ K9

(
γ,
σ
2
, σ ,K3, ν, f

)
× |QmPnf −QmPnB(u∞m,u∞m)− PnB(v,v)− γQmPnLu∞m|.

By using (2.9), (2.11), and (2.20) with β = α, we obtain

|AF(v)| ≤ K9

(
γ,
σ
2
, σ , ν,K3

)[
|Qmf | +

2C1K2
3

λ1/2
1 λ1/2

m+1

+γνC
1−α
L λ1−α

1 K3

λ1−α
m+1

+ C1|Av|2
λ1

]
.

Therefore, if m ≥M4(γ,σ , ν, f ) , where

(3.49) M4(γ,σ , ν, f ,K1)

= max

M2

(
σ,
σ
2
, ν,K3

)
, M3,

1024C4
1K

4
3K

4
9(γ,σ/2, σ , ν,K3)
C0λ4

1
,

CL
C0

(
16C1γνK3K2

9(γ,σ/2, σ , ν,K3)
λ1

)1/(1−α) ,
then

|Qmf | +
2C1K2

3

λ1/2
1 λ1/2

m+1
+ γνC

1−α
L λ1−α

1 K3

λ1−α
m+1

<
λ1

4C1K2
9(γ,σ/2, σ , ν,K3)

.

As a result, F maps

B̄r = {v ∈ Hn : |Av| ≤ r}(3.50)

into B̄r , where

r = 2

[
|Qmf | +

C1K2
3

λ1/2
1 λ1/2

m+1
+ γνC

1−α
L λ1−α

1 K3

λ1−α
m+1

]
K9

(
γ,
σ
2
, σ , ν,K3

)
(3.51)

<
λ1

2C1K9(γ,σ/2, σ , ν,K3)
.
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Moreover,

|A(F(v1)−F(v2))| ≤ 2C1rK9(γ,σ/2, σ , ν,K3)
λ1

|A(v2 − v1)|,

and

2C1rK9(γ,σ/2, σ , ν,K3)
λ1

< 1.

Therefore, F is a contraction map on B̄r , given by (3.50), and as a result it has a
unique v∞ ∈ {v ∈ Hn : |Av| ≤ r} such that u∞n = u∞m + v∞ is a steady state of
the Galerkin equations (3.1) of order n, and

|A(u∞n −u∞m)| ≤ r ≤
λ1

2C1K9(γ,σ/2, σ , ν,K3)
,(3.52)

when m ≥ M4(γ,σ , ν, f ,K1), and M4(γ,σ , ν, f ,K1) and K9(γ,σ/2, σ , ν,K3)
are as in (3.49) and (3.31), respectively.

Next we will show the estimates (3.41). Let vm = Pmu∞n − u∞m and ṽm =
Qmu∞n . Subtract the Galerkin equations (3.1) of order m from the one of order
n, to get

νAvm + Pm(B(u∞n ,u∞n )− B(u∞m,u∞m)+ γPmL(u∞n −u∞m)) = 0,(3.53)

νAṽm +QmPnB(u∞n ,u∞n )+ γLu∞n ) = QmPnf .(3.54)

As a consequence of the equation (3.53) we obtain

Am(u∞m)vm

= νAv + Pm(B(u∞m,vm)+ B(vm,u∞m)+ γLvm)
= −Pm[B(vm + ṽm, vm + ṽm)+ B(u∞m, ṽm)+ B(ṽm,u∞m)+ γLṽm]
= −Pm[B(vm,vm)+ B(u∞n , ṽm)+ B(ṽm,u∞n )+ γLṽm].

By using (2.6) we have for every w1, w2, w3 ∈ Hm,

|((Am(u∞m))
−1B(w1,w2),w3)| = |(B(w1,w2), ((Am(u∞m))

−1)∗w3)|(3.55)

= |(B(w1, ((Am(u∞m))
−1)∗w3),w2)|.

By using (2.8) and (3.27), we get

|((Am(u∞m))−1B(w1,w2),w3)|
≤ C1|w1|1/2|Aw1|1/2‖((Am(u∞m))

−1)∗w3)‖ |w2|

≤ C1K8

(
γ,
σ
2
, σ , ν,K3

)
|w1|1/2|Aw1|1/2|w2| |w3|,
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where K8(γ,σ/2, σ , ν,K3) is given by (3.30). Now by using (2.9) and (3.27) in
(3.55), we obtain

|((Am(u∞m))−1B(w1,w2),w3)|
≤ C1|w1| ‖((Am(u∞m))

−1)∗w3)‖ |w2|1/2|Aw2|1/2

≤ C1K8

(
γ,
σ
2
, σ , ν,K3

)
|w1| |w2|1/2|Aw2|1/2|w3|.

Therefore, we reach

|(Am(u∞m))
−1B(w1,w2)|(3.56)

≤ C1K8

(
γ,
σ
2
, σ , ν,K3

)
|w1|1/2|Aw1|1/2|w2|,

|(Am(u∞m))
−1B(w1,w2)|.(3.57)

≤ C1K8

(
γ,
σ
2
, σ , ν,K3

)
|w1| |w2|1/2|Aw2|1/2

As a result of these estimates, Lemma 3.6 on page 50, and the inequalities (2.7)-
(2.11) and (2.20) with β = 0, we obtain

|vm| ≤ |(Am(u∞m))
−1Pm[B(vm,vm)+ B(u∞n , ṽm)+ B(ṽm,u∞n )+ Lṽm]|

≤ C1

λ1/4
1

K9

(
γ,
σ
2
, σ , ν,K3

)
|vm|3/2‖vm‖1/2

+ 2C1K8

(
γ,
σ
2
, σ , ν,K3

)
K1/2

1 K1/2
3 |ṽm|

+ γνC
1−α
L λ1−α

1 K9(γ,σ/2, σ , ν,K3)
λ1−α
m+1

|ṽm|.

Notice that

|vm|1/2‖vm‖1/2 ≤ |Avm|
λ3/4

1

,

and

C1

λ1
K9

(
γ,
σ
2
, σ , ν,K3

)
|Avm| ≤ 1

2
.

Therefore, by using the estimates (3.52), we get

|vm| ≤
K12(γ,σ , ν, f ,K1)

λm+1
,
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where

K12(γ,σ , ν, f ,K1) = 4C1K3K8(γ,σ/2, σ , ν,K3)
λ1/2

1
+ 2γν

(
λ1CL
λm+1

)1−α
.(3.58)

Then the estimate (3.41) is achieved.
Let

M5(γ,σ , ν, f ,K1) =
K12(γ,σ , ν, f ,K1)

C0λ1η(γ,σ ,σ/2, ν,K3)
.(3.59)

We apply Lemma 3.7 on page 53, whenm ≥MGLK(γ,σ , ν, f ,K1), to conclude

(Sp(A(u∞)))σ/2 = ∅. ❐

4. A STABILIZATION CRITERION FOR THE NONLINEAR GALERKIN
APPROXIMATION

Without loss of generality, we will assume that α = 1
2 in the condition (2.20) in

this section. By now, it is a well established fact that, for the dissipative parabolic
evolution equations, the nonlinear Galerkin method, which is based on the theory
of Inertial Manifolds [32] and Approximate Inertial Manifolds (AIM) (see, e.g.,
[27], [33], [53], [63], [76] and references therein), is a more accurate numerical
method than the standard Galerkin method (cf. [23], [39], [47], [48]). Motivated
by this superiority in accuracy of the nonlinear Galerkin method, we show here
that a similar criterion, yet stronger than the one stated in the previous section, is
available in the context of nonlinear Galerkin method.

Here, we will restrict ourselves to the nonlinear Galerkin method that is based
on one of the simplest AIM, the one introduced in [27]. That is, for the closed-
loop NSE (2.18) and (2.19) we have the following nonlinear Galerkin approxima-
tion:

dpm
dt

+ νApm + Pm
[
B(pm + qm,pm + qm)− B(qm,qm)

+ γL(pm + qm)
] = Pmf ,(4.1)

νAqm +Qm[B(pm,pm)+ γLpm] = Qmf ,(4.2)

pm(0) = Pmuin,(4.3)

where pm ∈ Hm and qm ∈ Qm.
For 1 ≤ m ≤ ∞ we denote by p∞m + q∞m the stationary solutions of the

equations (4.1) and (4.2). Specially, q∞∞ = 0 and u∞ = p∞∞ is a steady state of the
equation (2.18). We will denote by

Φapp(um) = (νA)−1[Qmf −QmB(um,um)− γQmLum],(4.4)
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for any um ∈ Hm, the Foias-Manley-Temam AIM [27]. Furthermore, we also
denote byNm(um) : Hm → Hm the linearized operator of the nonlinear Galerkin
closed-loop operator given in (1.1) and (4.2) about um + Φapp(um), defined as

(4.5) Nm(um)w = νAw + Pm
[
B(um + Φapp(um),w)

+ B(w,um + Φapp(um))+ B(um, ξ(w))+ B(ξ(w),um)+ γL(w + ξ(w))
]
,

for all w ∈ Hm, where ξ(w) ∈ Qm satisfies

νAξ +Qm[B(um,w)+ B(w,um)+ γLw] = 0.(4.6)

Whenm = ∞,N∞(u∞) =A(u∞).
Lemma 4.1. For any m ∈ [1,∞], if there is a steady state p∞m + q∞m ∈ V of

equations (4.1) and (4.2) with

|p∞m + q∞m| ≤ N1,(4.7)

then (p∞m + q∞m) ∈ D(A), and

‖p∞m + q∞m‖ ≤ N2 = (2νλ1GN1)1/2 + 2γC1/2
L λ1/2

1 N1,(4.8)

|A(p∞m + q∞m)| ≤ λ1/2
1 N3 = 4νλ1G+

12C2
1

ν2 N1N2
2 + 8γC1/2

L λ1/2
1 N2,(4.9)

where again G = |f |/(ν2λ1) is the Grashoff number.

Proof. Let p∞m + q∞m be a stationary solution of the equations (4.1) and (4.2),
with |p∞m+q∞m| ≤ N1. Taking the inner product in Hm of the equation (4.1) with
p∞m and the equation (4.2) with q∞m in Qm, and using (2.6), we get

ν‖p∞m‖2 + (B(p∞m,q∞m),p∞m)+ γ(L(p∞m + q∞m),p∞m) = (f ,p∞m),

ν‖q∞m‖2 + (B(p∞m,p∞m), q∞m)+ γ(L(p∞m,q∞m)) = (f , q∞m).

Adding the above equations up and using (2.6) again, we obtain

ν‖p∞m‖2 + ν‖q∞m‖2 = (f ,p∞m + q∞m)− γ(L(p∞m + q∞m),p∞m + q∞m)+ γ(Lq∞m,q∞m).

By using (2.21), we obtain

ν‖p∞m‖2 + ν‖q∞m‖2 ≤ |f | |p∞m + q∞m| + 2γνC1/2
L λ1/2

1 |p∞m + q∞m| ‖p∞m + q∞m‖.

By the Cauchy-Schwarz inequality, we reach

ν
2
(‖p∞m‖2 + ‖q∞m‖2) ≤ |f |N1 + 2γ2νCLλ1N2

1 ,
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and the estimate (4.8) follows. Taking the L2−norm of the equations (4.1) and
(4.2) leads to

ν|A(p∞m + q∞m)| ≤ |f | + |B(p∞m,p∞m)| + |B(p∞m,q∞m)|

+ |B(q∞m,p∞m)| + γ[|Lp∞m| + |Lq∞m|].

By using (2.7)-(2.10) and (2.20) with β = 1
2 , we conclude

ν|A(p∞m + q∞m)| ≤ |f | + C1|p∞m|1/2‖p∞m‖ |Ap∞m|1/2 + C1|p∞m|1/2‖q∞m‖ |Ap∞m|1/2

+ C1|q∞m|1/2‖p∞m‖ |Aq∞m|1/2 + γνC1/2
L λ1/2

1 [‖p∞m‖ + ‖q∞m‖].

Thanks to the Cauchy-Schwarz inequality, we get

ν
4
|A(p∞m + q∞m)| ≤ |f | +

C2
1

ν
[|p∞m| ‖p∞m‖2 + p∞m| ‖q∞m‖2 + |q∞m| ‖p∞m‖2]

+ γνC1/2
L λ1/2

1 [‖p∞m‖ + ‖q∞m‖],

which implies the estimate (4.9). ❐

Lemma 4.2. Let um ∈ Hm with |Aum| ≤ λ1/2
1 R. Then

|AΦapp(um)| ≤ λ1/2
1 N4(γ,R, ν, f ),(4.10)

where

N4(γ,R, ν, f ) =
|Qmf |
νλ1/2

1
+ 2C1R2

νλ1/2
m+1

+ C
1/2
L νλ1R
λ1/2
m+1

.(4.11)

Suppose that ω ∈ V and ξ(ω) satisfies (4.6). Then

‖ξ(ω)‖ ≤ 2C1R
ν

|ω| + γC1/2
L λ1/2

1 |ω|.(4.12)

Proof. Let vm = Φapp(um). Then vm satisfies

νAvm +Qm[B(um,um)+ γLum] = Qmf .

Thus

|Avm| ≤ 1
ν

[
|Qmf | + |∇B(um,um)|

νλ1/2
m+1

+ γ |A
1/2Lum|
λ1/2
m+1

]
.
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By using (2.11) and (2.20) with β = 1, we get

|Avm| ≤ |Qmf |ν
+ 2C1|Aum|2
νλ1/2

1 λ1/2
m+1

+ C
1/2
L νλ1R
λ1/2
m+1

.

Then (4.10) follows. Now, taking the inner product in H of equation (4.6) with
ω, we get

ν‖ξ(ω)‖2 ≤ |(B(um,ω), ξ(ω))| + |(B(um,ω), ξ(ω))| + γ|(Lω,ξ(ω))|.

By using (2.7)-(2.10) and (2.21), we obtain

ν‖ξ(ω)‖2 ≤ 2C1|um|1/2|Aum|1/2‖ξ(ω)‖ |ω| + γνC1/2
L λ1/2

1 ‖ξ(ω)‖ |ω|.

Therefore, (4.12) holds. ❐

Lemma 4.3. Let um ∈ Hm with |Aum| ≤ λ1/2
1 R. If w is an eigenfunction of

Nm(um), thenw ∈ D(A). Moreover, if |w| = ν andNm(um)w = Λw for someΛ, then we have

‖w‖ ≤ N5(γ,Λ, R, ν, f ),(4.13)

|Aw| ≤ N6(γ,Λ, R, ν, f ),(4.14)

where

(4.15) N5(γ,Λ, R, ν, f )
= (4|Λ|ν)1/2 + 2C1(R +N4(γ,R, ν, f ))+

C2
1λ

1/2
1 R2

νλ1/2
m+1

+
√

12γνC1/2
L λ1/2

1 ,

(4.16) N6(γ,Λ, R, ν, f )
= |Λ| + γC1/2

L λ1/2
1
[
N1/2

5 (γ, s, R, ν, f )+ 2C1R + γνC1/2
L λ1/2

1
]

+ 2C1

ν
[R +N4(γ,R, ν, f )]

[
N5(γ,Λ, R, ν, f )+ 2C1R + γνC1/2

L λ1/2
1
]
.

Proof. Let vm = Φapp(um), and letw be an eigenfunction ofNm(um) with
corresponding eigenvalue Λ such that |w| = ν, i.e.,

νAw + Pm[B(um + vm,w)+ B(w,um + vm)+ B(um, ξ(w))(4.17)

+ B(ξ(w),um)+ γL(w + ξ(w))] = Λw,

νAξ +Qm(B(um,w)+ B(w,um)+ γLw) = 0.(4.18)
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Taking the inner product in H of the equations above with w and ξ respectively,
gives

ν‖w‖2 + (B(w,um + vm),w)+ (B(um, ξ),w)(4.19)

+ (B(ξ,um),w)+ γ(L(w + ξ),w) = Λ|w|2,

ν‖ξ‖2 + (B(um,w), ξ)+ (B(w,um), ξ)+ γ(Lw, ξ) = 0.(4.20)

Adding up these two equations,

ν‖w‖2 + ν‖ξ‖2 ≤ |Λ| |w|2 + |(B(w,um + vm),w)| + |(B(ξ(w),um),w)|
+ |(B(w,um), ξ)| + γ|(Lw,w)| + γ|(Lw, ξ)| + γ|(Lξ,w)| .

By using (2.7)-(2.10) and (2.21), we obtain

ν‖w‖2 + ν‖ξ‖2 ≤ |Λ| |w|2 + C1‖um + vm‖ |w| ‖w‖

+ 2C1

λ1/2
1
|Aum| |w|1/2‖w‖1/2|ξ| + γνC1/2

L λ1/2
1 |w| ‖w‖

+ 2γνC1/2
L λ1/2

1 |w| ‖ξ‖.

By Young’s inequality and the Cauchy-Schwarz inequality, we reach

ν
2
‖w‖2 ≤ ν2|Λ| + C4

1λ
2
1R4

4νλ2
m+1

+ νC2
1[R +N4(γ,R, ν, f )]2 + 3γ2ν3CLλ1.

Therefore, the estimate (3.9) is proved. Moreover, by taking the L2−norm of the
equation (4.17), we get

ν|Aw| ≤ ν|Λ| + |B(um + vm,w)+ B(w,um + vm)
+ B(um, ξ)+ B(ξ,um)+ γL(w + ξ)|.

By using (2.7)-(2.10) and (2.21) again to the above estimate and equation (4.20),
we have

ν|Aw| ≤ ν|Λ| + C1

λ1/2
1

|A(um + vm)| ‖w‖ + C1

λ1/4
1

|w|1/2‖w‖1/2|A(um + vm)|

+ C1

λ1/2
1
|A(um + vm)| ‖ξ‖ +

C1

λ1/4
1 λ1/4

m+1

‖ξ‖ |A(um + vm)|

+ γνC1/2
L λ1/2

1 ‖w + ξ‖.
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From the estimate (4.12), we obtain

‖ξ‖ ≤ 2C1R + γνC1/2
L λ1/2

1 .

As a result of these estimates we get (4.14), which completes the proof of the
lemma. ❐

Lemma 4.4. Let R > 0, um ∈ D(A) with |Aum| ≤ λ1/2
1 R, and s ∈ R, and

let T1(s) be the number of the eigenvalues ofNm(um) whose real parts are less than
or equal to s, i.e.,

T1(s) = # of {λ ∈ Sp(Nm(um)) : <λ < s}.

Then

T1(s) ≤ N7(γ, s, R, ν, f ),(4.21)

where

(4.22) N7(γ, s, R, ν, f ) = 1
2

{(
4sC0

νλ1
+ 8C2

1R2

ν2λ1/2
1 λ1/4

m+1

+ 12γ2CLC0 − 1

)

+
[(

4sC0

νλ1
+ 8C2

1R2

ν2λ1/2
1 λ1/4

m+1

+ 12γ2CLC0 − 1

)2

+ 16C0C2(R +N4(γ,R, ν, f ))2

ν2λ1

]1/2}
.

Remark. Here again, in a sense, the estimate (4.21) is sharp since the constant
N7(γ, s, R, ν, f ) is growing linearly in s. For example, when uin = 0 and γ = 0
we haveA(uin) = νA, and in this case the Λj = λj behaves like j asymptotically
(see (2.5)). Indeed, T1(s) ∼ s in this special case.

Proof. Letm <∞ be finite, and letΛ1, . . . , ΛK be the eigenvalues ofNm(um)
repeated according to their multiplicities such that <Λj ≤ s for j = 1, 2, . . . , K.
We will denote by EK the linear space spanned by the generalized eigenfunctions
ofNm(um) corresponding the the eigenvalues Λ1, . . . , ΛK . Letψ1, . . . ,ψK be an
orthogonal basis of EK with |ψj| = ν for j = 1, 2, . . . , K, and let ΠK : Hm → EK
be the orthogonal projection. We set vm = Φapp(um) and observe that



66 CHONGSHENG CAO, IOANNIS G. KEVREKIDIS & EDRISS S. TITI

<
( ∑
j=1

KΛj) = <{trace(ΠKNm(um)ΠK)}(4.23)

= ν−2<
( ∑
j=1

K(Nm(um)ψj,ψj)
)

= ν−2<
{ ∑
j=1

K
[
ν(Aψj,ψj)+ (B(ψj,um + vm),ψj)

+ (B(um, ξ(ψj)),ψj)+ (B(ξ(ψj),um),ψj)

+ γ(L(ψj + ξ(ψj),ψj)
]}

.

Since

νAξ(ψj)+Qm[B(um,ψj)+ B(ψj,um)+ γLψj] = 0,

by taking the inner product in H of the above equation with ξ(ψj), and by using
(2.6), we have

(B(um, ξ(ψj)),ψj) = ν(Aξ(ψj), ξ(ψj))+ (B(ψj,um), ξ(ψj))
+ γ(Lψj, ξ(ψj)).

Substituting (B(um, ξ(ψj),ψj)) in (4.23) gives us

<
( ∑
j=1

KΛj) = ν−2<
{ ∑
j=1

K
[
ν(Aψj,ψj)+ν(Aξ(ψj), ξ(ψj))+γ(Lψj, ξ(ψj))

+ (B(ξ(ψj),um),ψj)+ (B(ψj,um), ξ(ψj))

+ (B(ψj,um + vm),ψj)+ γ(L(ψj + ξ(ψj)),ψj)
]}
.

By (2.21), we obtain

<
( ∑
j=1

KΛj) ≥ ν−2
∑
j=1

K
[
ν‖ψj‖2 + ν‖ξ(ψj)‖2 − |(B(ψj,um + vm),ψj)|

− |(B(ξ(ψj),um),ψj)| − |(B(ψj,um), ξ(ψj))|

− γνC1/2
L λ1/2

1 |ψj|(‖ψj‖ + 2‖ξ(ψj)‖)
]
.
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Now let us estimate each term in the right hand side of the above inequality. First
by the Cauchy-Schwarz inequality and Lieb-Thirring inequality (2.12), we reach

∑
j=1

K|(B(ψj,um + vm),ψj)| ≤
(∫

Ω
( ∑
j=1

Kψj(x) ·ψj(x)
)
dx

)1/2
‖um + vm‖

≤
(
C2ν2

∑
j=1

K‖ψj‖2
)1/2
‖um + vm‖

≤ ν
4

∑
j=1

K‖ψj‖2 + C2‖um + vm‖2.

By using (2.7)-(2.10), we obtain

|(B(ξ(ψj),um),ψj)| ≤ C1R|ξ(ψj)| ‖ξ(ψj)‖,

and
|(B(ψj,um), ξ(ψj))| ≤ C1R|ξ(ψj)| ‖ξ(ψj)‖.

Thanks to the Cauchy-Schwarz inequality, we get

γνC1/2
L λ1/2

1 |ψj|(‖ψj‖ + 2‖ξ(ψj)‖)

≤ ν
4
‖ψj‖2 + γ2νCLλ1|ψj|2 + 2γνC1/2

L λ1/2
1 ]|ψj| ‖ξ(ψj)‖.

On the other hand,∑
j=1

K‖ψj‖2 =
∑
j=1

K(Aψj,ψj) ≥
∑
j=1

Kν2λj,

Ks ≥ <
( ∑
j=1

KΛj).
Therefore, by applying (4.12), we get

Ks ≥ <
( ∑
j=1

KΛj) ≥ ∑
j=1

K
[
ν
2
λj − 3νγ2CLλ1 −

2C2
1λ

1/2
1 R2

νλ1/2
m+1

]
− C2‖um + vm‖2

ν
.

By using (2.5) we reach

Ks ≥ νλ1

2C0

K(K + 1)
2

− 3νγ2CLλ1K −
2C2

1λ
1/2
1 R2

λ1/2
m+1

K − C2

ν
(R +N4(γ,R, ν, f )),

which implies (4.21). ❐
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4.1. Estimates for the resolvents in the nonlinear Galerkin case. In this
section we define as in Prodi [67] the parabola-like set τ(R) ⊂ C, by setting

(4.24) τ(R) =
{
z ∈ C : ∃x ≥ λ1, |z − νx|

≤ [C1(R +ϕ(R))+ γνλ1/2
1 C1/2

L
]
x1/2

+
[

3C1R
2λ1/4

1 λ1/4
m+1

+ γνλ
1/2
1 C1/2

L

λ1/2
m+1

]
x
}
,

where C1 and CL are as in (2.7) and (2.21) respectively, and

ζ(R) = |f |
νλ1/2

m+1
+ C1R2

νλ1/4
m+1

+ γλ
1/2
1 C1/2

L

λ1/2
m+1

.

Denote by

M̄ = max

{
1
C0λ2

1

(
6C1R
ν

)4

,
16γ2CL
C0

}
.(4.25)

It is clear that whenm ≥ M̄, τ(R) is a parabola-like set. Now and later we assume
that m ≥ M̄.

Similar to Section 3 on page 44, we can show the following two lemmas.

Lemma 4.5. Let R > 0, um ∈ V with ‖um‖ ≤ R. Then

• the spectra ofNm(um),m = 1, . . . , ∞, are in τ(R);
• for every z 6∈ τ(R) the following inequalities hold:

|(Nm(um)− z)−1v| ≤ dist(z, τ(R))−1|v| = NH(γ,R, ν, f , z)|v|,(4.26)

‖(Am(u0)− z)−1v‖ ≤ NV(γ, ν,R, z)|v|, ∀v ∈ Hm,(4.27)

|A(Am(u0)− z)−1v| ≤ NA(γ, ν,R, z)|v|, ∀v ∈ Hm,(4.28)

where
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NV(γ,R, ν, f , z)(4.29)

=
(

2NH(γ,R, ν, f , z)
ν

)1/2

+
(

2|z|
ν

)1/2
NH(γ,R, ν, f , z)

+
[√

2C1(R +N4(γ,R, ν, f ))
ν

+ γ
√

3CLλ1 +
2C1λ

1/4
1 R

νλ1/4
m+1

]

× NH(γ,R, ν, f , z),
NA(γ,R, ν, f , z)(4.30)

= 1
ν
+
(

2C1R
ν

+ γC1/2
L λ1/2

1

)2

NH(γ,R, ν, f , z)

+
[(

2|z|
ν

)1/2
+ 2C1

ν
(R +N4(γ,R, ν, f ))+ γC1/2

L λ1/2
1

]

× NV(γ,R, ν, f , z),

Lemma 4.6. Let R > 0, um ∈ V with ‖um‖ ≤ R. Then for every z 6∈ τ(R)
the operators (Nm(um)− z)−1, form = 1, . . . , ∞, are H-S operators. Moreover,

‖(Nm(um)− z)−1‖2 ≤ NHS(γ, ν,R, z),(4.31)

where

NHS(γ, ν,R, z) = C0π√
6λ1

NA(γ, ν,R, z),(4.32)

where NA(γ,R, ν, f , z) is as in (4.30).

Following Section 3 on page 44, we denote by

λc = − 1
2ν
[C1(R + ζ(R))+ γνλ1/2

1 C1/2
L ]2,

M̃ = N7

(
γ,2λc + 2

|λc|
, R, ν, f

)
,

where N7 is as (4.22).

Lemma 4.7. Let R > 0, um ∈ V with ‖um‖ ≤ R, and ρ, s > 0, and letΛ ∈ C satisfy |<Λ| ≤ s. Then for everym< ∞, if

dist(Λ,Sp(Nm(um))) ≥ ρ,(4.33)



70 CHONGSHENG CAO, IOANNIS G. KEVREKIDIS & EDRISS S. TITI

then we have

|(Nm(um)−Λ)−1v| ≤ N8(γ, ρ, s, R, ν, f )|v|, ∀v ∈ Hm,(4.34)

‖(Nm(um)−Λ)−1v‖ ≤ N9(γ, ρ, s, R, ν, f )|v|, ∀v ∈ Hm,(4.35)

|A(Nm(u0)−Λ)−1v| ≤ N10(γ, ρ, s, R, ν, f )|v|, ∀v ∈ Hm,(4.36)

where

(4.37) N8(γ, ρ, s, R, ν, f )

=



NH(γ,R, ν, f , z), Λ 6∈ σ(R − λc/2),
exp

{
1
2
+ 5

2
|s − 2λc|2N2

HS(γ, ν,R, |s − 2λc|)
}

× 1
λc|λ− 2λc|2

(
2|s − λc|
ρ

)M̃
, Λ ∈ σ (R − λc/2) ,

(4.38) N9(γ, ρ, s, R, ν, f )

=
(

2N8(γ, ρ, s, R, ν, f )
ν

)1/2

+
(

2s
ν

)1/2
N8(γ, ρ, s, R, ν, f )

+
[√

2C1(R +N4(γ,R, ν, f ))
ν

+ γ
√

3CLλ1 +
2C1λ

1/4
1 R

νλ1/4
m+1

]

× N8(γ, ρ, s, R, ν, f ),

(4.39) N10(γ, ρ, s, R, ν, f )

= 1
ν
+
(

2C1R
ν

+ γC1/2
L λ1/2

1

)2

N8(γ, ρ, s, R, ν, f )

+
[(

2s
ν

)1/2
+ 2C1

ν
(R +N4(γ,R, ν, f ))+ γC1/2

L λ1/2
1

]

× N9(γ, ρ, s, R, ν, f ),

and NHS(γ, ν,R, |s − 2λc|) is as in (4.31).

Proof. By using the same approach as for the estimate (3.26), we can get the
estimate (4.34). We only need to show the estimates (4.35) and (4.36).
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Let vm = Φapp(um) and for each g ∈ Hm, let (Nm(um)−λ)−1g = w, i.e.,

(4.40) νAw + Pm[B(um + vm,w)+ B(w,um + vm)+ B(um, ξ(w))

+ B(ξ(w),um)+ γL(w + ξ(w))]− λw = g,

and

νAξ(w)+Qm(B(um,w)+ B(w,um)+ γLw) = 0.(4.41)

Taking the inner product, in H, of the equation (4.40) with w and the equation
(4.41) with ξ(w), we obtain

ν‖w‖2 + (B(w,um + vm),w)+ (B(um, ξ(w)),w)

+ (B(ξ(w),um),w)+ γ(L(w + ξ(w)),w)− λ|w|2 = (g,w),

and

ν‖ξ(w)‖2 + (B(um,w), ξ(w))+ (B(w,um), ξ(w))+ γ(Lw, ξ(w)) = 0.

The summation of these two equations leads to

ν‖w‖2 + ν‖ξ‖2 ≤ |(g,w)| + |λ| |w|2 + |(B(w,um + vm),w)|

+ |(B(ξ(w),um),w)| + |(B(w,um), ξ(w))|

+ γ|(L(w + ξ(w)),w)| + γ|(Lw, ξ(w))|.

By using (2.7)-(2.10) and (2.21), we reach

ν‖w‖2 + ν‖ξ‖2 ≤ |g| |w| + s|w|2 + γνC1/2
L λ1/2

1 |w|(‖w‖ + ‖ξ‖)

+ C1|um + vm|1/2|A(um + vm)|1/2|w| ‖w‖

+ 2C1λ
1/4
1 R

λ1/4
m+1

|w| ‖ξ‖.

By the Cauchy-Schwarz inequality, we conclude

ν
2
‖w‖2 ≤ |g| |w| + s|w|2 + 3

2
γ2νCLλ1|w|2

+ C
2
1 |um + vm| |A(um + vm)| |w|2

ν
+ 2C2

1λ
1/2
1 R2

λ1/2
m+1

|w|2.
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By applying the estimate (4.34), we get (4.35).
Moreover, taking the inner product, in H, of the equation (4.40) with Aw

gives

ν|Aw|2 ≤ s‖w‖2 + |(g,Aw)|

+ |(B(um + vm,w),Aw)+ (B(w,um + vm),Aw)

+ (B(um, ξ),Aw)+ (B(ξ,um),Aw)+ γ(Lw,Aw)|.

By using (2.7)-(2.10) and (2.20) with β = 1
2 , we get

ν|Aw|2 ≤ s‖w‖2 + |g| |Aw| + C1|um + vm|1/2|A(um + vm)|1/2‖w‖ |Aw|

+ C1‖um + vm‖1/2|A(um + vm)|1/2|w|1/2‖w‖1/2|Aw|

+ C1|Aum| ‖ξ‖
λ1/2

1

|Aw| + C1|Aum| ‖ξ‖
λ1/4

1 λ1/4
m+1

|Aw|

+ γνC1/2
L λ1/2

1 (‖w‖ + ‖ξ‖)|Aw|.

By using estimates (4.12) and (4.34), we obtain

‖ξ(w)‖ ≤
(

2C1R
ν

+ γC1/2
L λ1/2

1

)
N8(γ, ρ, s, R, ν, f )|g|,

By the Cauchy-Schwarz inequality, and using estimates (4.34) and (4.35) and the
above inequality, we get (4.36). ❐

Lemma 4.8. Let R > 0 and u0, u1 ∈ D(A) with |Au0| ≤ λ1/2
1 R, |Au1| ≤

λ1/2
1 R, and let s, ρ > 0. Then there are two constants

η(γ, ρ, s, R, ν, f ) = ν
2C1N8(γ, ρ, s, R, ν, f )N11(γ, ρ, s, R, ν, f )

,(4.42)

and

T2(γ, ρ, s, R, ν, f ) =
4N2

8(γ, ρ, s, R, ν, f )N
2
12(γ, ρ, s, R, ν, f )

C0ν2 ,(4.43)

where

(4.44) N11(γ, ρ, s, R, ν, f ) =
N1/2

5 (γ, s, R, ν, f )N1/2
6 (γ, s, R, ν, f )

λ1/4
1

+ ν1/2N1/2
6 (γ, s, R, ν, f ),
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(4.45) N12(γ, ρ, s, R, ν, f )

= C1λ
1/2
1
{
R +N4(γ,R, ν, f )

[
N5(γ, s, R, ν, f )+ ν1/2N1/2

6 (γ, s, R, ν, f )
]

+ 4C1RN0(γ, s, R, ν, f )+ 2C1N6(γ, s, R, ν, f )
}

+ γνC1/2
L λ1/2

1 [N6(γ, s, R, ν, f )+ 2N0(γ, s, R, ν, f )],

and N4(γ,R, ν, f ), N5(γ, s, R, ν, f ), N6(γ, s, R, ν, f ), and N8(γ, ρ, s, R, ν, f )
are as in (4.11), (4.15), (4.16), and (4.37) respectively, and N0(γ,R, ν, f ) is as
specified in (4.49), such that if

‖Pm(u0 −u1)‖ ≤ η(γ, ρ, s, R, ν, f )

and

(Sp(Nm(Pmu0)))s = ∅(4.46)

holds for somem ∈ [T2(γ, ρ, s, R, ν, f ),∞), then for every n ∈ [m,∞] we have

(Sp(Nn(Pnu1)))s ⊂ B(Sp(Nm(Pmu0)), ρ).(4.47)

Proof. Let um = Pmu0, vm = Φapp(um); and pm = Pmu1, qm = Qmu1;
and p̃n = Pnu1, q̃n = Φapp(un). Suppose that λ ∈ (Sp(Nn(p̃n)))s , i.e., there is
a w ∈ Hn, |w| = ν such thatNn(p̃n)w = λw and |<λ| ≤ s. Denote by

wm = Pmw and w⊥m = Qmw.

If λ ∉ B(Sp(Nm(um)), ρ), i.e., dist(λ,Sp(Nm(um))) ≥ ρ, by Lemma 4.7 on
page 69, and using the same argument as in Lemma 3.7 on page 53, we get

|Nm(um)wm − λwm| ≥ |wm|
N8(γ, ρ, s, ν, R)

(4.48)

≥ 1
N8(γ, ρ, s, ν, R)

(
ν − N5(γ, s, ν, R)

λ1/2
m+1

)

=: LH ,

where N5(γ, s, R, ν, f ) is as in (4.15), and N8(γ, ρ, s, R, ν, f ) is as in (4.37).
On the other hand,
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Nm(um)wm − λwm
=Nm(um)wm − Pm(Nn(p̃n)w)

= Pm
[
B(um + vm − p̃n − q̃n,wm)+ B(p̃n + q̃n,−w⊥m)
+ B(−w⊥m,um + vm)+ B(w,um + vm − p̃n − q̃n)+ B(um, ξ(wm))
+ B(ξ(wm),um)− B(p̃n, ζ(w))− B(ζ(w), p̃n)− γLw⊥m

]
= Pm

[
B(um − pm,wm)+ B(w,um − pm)+ B(ξ(wm),um)+ B(um, ξ(wm))
+ B(vm − qm,wm)+ B(w,vm − qm)+ B(ζ(w), p̃n)+ B(p̃n, ζ(w))
+ B(−w⊥m,um + vm)+ B(p̃n + q̃n,−w⊥m)− γLw⊥m

]
,

where ξ(wm) and ζ(w) satisfy following equations

νAξ +Qm[B(um,wm)+ B(wm,um)+ γLwm] = 0,

νAζ +Qn[B(p̃n,w)+ B(w, p̃n)+ γLw] = 0.

By using (2.7), (2.8), and (2.20) with β = 1
2 , it is clear that

|Aξ| ≤ N0(γ, s, R, ν, f ),

|Aζ| ≤ N0(γ, s, R, ν, f ),

where

(4.49) N0(γ, s, R, ν, f ) = C1R
ν
(N5(γ, s, R, ν, f )+ ν1/2λ1/2

1 N1/2
5 (γ, s, R, ν, f ))

+ γC1/2
L λ1/2

1 N5(γ, s, R, ν, f ).

By using the inequalities (2.8)-(2.10) and (2.20) with β = 1
2 , we obtain

|(Nm(um)− λ)wm|

≤ C1‖um − pm‖
(
‖wm‖1/2|Awm|1/2

λ1/4
1

+ |w|1/2|Aw|1/2
)

+ C1

[
|Avm| + |Aqm|

λ1/2
m+1

(‖wm‖ + |w|1/2|Aw|1/2)

+ 2(|Aξ| |Aum| + |Aζ| |Ap̃n|)
λ1/2

1 λ1/2
m+1

]

+ γνC1/2
L λ1/2

1
[‖w⊥m‖ + ‖ξ‖ + ‖ζ‖]

+ C1

[
|A(p̃n + q̃n)|

λ1/2
1

‖w⊥m‖ + |w⊥m|1/2|Aw⊥m|1/2‖p̃n + q̃n‖
]

≤
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≤ C1

[
N1/2

5 (γ, s, R, ν, f )N1/2
6 (γ, s, R, ν, f )

λ1/4
1

+ ν1/2N1/2
6 (γ, s, R, ν, f )

]
‖um − pm‖

+ 1
λ1/2
m+1

[
C1λ

1/2
1
(
R +N4(γ,R, ν, f )(N5(γ, s, R, ν, f )+ ν1/2N1/2

6 (γ, s, R, ν, f ))

+ 4C1RN0(γ, s, R, ν, f ) + 2C1N6(γ, s, R, ν, f )+ γνC1/2
L λ1/2

1
)

× (N6(γ, s, R, ν, f )+ 2N0(γ, s, R, ν, f )
)] =:RH ,

where N4(γ,R, ν, f ), N5(γ, s, R, ν, f ), and N6(γ, s, R, ν, f ) are as in (4.11),
(4.15), and (4.16) respectively, and N0(γ, s, R, ν, f ) is as in (4.49). Therefore,
we have

LH ≤ RH .

But if we let

‖um − pm‖ ≤ η(γ, ρ, s, R, ν, f ) and m ≥ T2(γ, ρ, s, R, ν, f ),

where η(γ, ρ, s, R, ν, f ) and T2(γ, s, ρ,R, ν, f ) are as in (4.42) and (4.43), then

LH = 1
N8(γ, ρ, s, R, ν, f )

[
ν − N5(γ, s, ν,R)

λ1/2
m+1

]
≥ RH

= C1

[
N1/2

5 (γ, s, R, ν, f )N1/2
6 (γ, s, R, ν, f )

λ1/4
1

+ ν1/2N1/2
6 (γ, s, R, ν, f )

]
‖um − pm‖

+ 1
λ1/2
m+1

[
C1λ

1/2
1
(
R+N4(γ,R, ν, f )(N5(γ, s, R, ν, f )+ν1/2N1/2

6 (γ, s, R, ν, f ))

+ 4C1RN0(γ, s, R, ν, f )+ 2C1N6(γ, s, R, ν, f ) + γνC1/2
L λ1/2

1
)

× (N6(γ, s, R, ν, f )+ 2N0(γ, s, R, ν, f )
)]
.

This leads into contradiction. Thus λ ∈ B(Sp(Nm(u0)), ρ), i.e.,

(Sp(Nn(u1)))s ⊂ B(Sp(Nm(u0)), ρ),

which completes the proof of the lemma. ❐
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4.2. The main result in the nonlinear Galerkin case. Next we present our
main theorem of this section.

Theorem 4.1. Let σ > 0 be given, and let p∞m+q∞m be a steady state solution of
the Galerkin approximation equation (4.1) of the closed-loop system (2.18) such that
|p∞m + q∞m| ≤ N1. Then there exists a constant

MNLG(γ,σ ,N1, ν, f ) = max{T3(γ,σ ,N1, ν, f ), T4(γ,σ ,N1, ν, f )},(4.50)

where T3(γ,σ ,N1, ν, f ), T4(γ,σ ,N1, ν, f ) are specified as in (4.70) and (4.74),
such that if

(Sp(Nm(p∞m)))σ = ∅(4.51)

holds for somem ≥MNLG(γ,σ ,N1, ν, f ), then we have
(i) For every n ≥ m, there is a stationary solution p∞n + q∞n of the nonlinear

Galerkin approximation equations (4.1) and (4.2) of order n, for which

(Sp(Nn(p∞n )))σ/2 = ∅,(4.52)

|p∞n + q∞n − p∞m − q∞m| ≤
N13(γ,σ , ν, f )

λ3/2
m+1

,(4.53)

where

(4.54) N13(γ,σ ,N1, ν, f )

= 4
3

[
λ1N4(γ,N3, ν, f )

ν

× (
2C1N3 + γνC1/2

L λ1/2
1
)(
γνC1/2

L + 1
λ1/2

1
+ 2C1N2

4(γ,N3, ν, f )
λ1/2
m+1

)

+ 2C1λ1N2
4(γ,N3, ν, f )

+ λ1
(
(1+ λ1/2

1 )λ1/2
m+1 + 2C1λ

1/2
1 N2

4(γ,N3, ν, f )N10(γ,σ/2, σ ,N3, ν, f )
)

2C1λ
1/2
m+1νN

2
10(γ,σ/2, σ ,N3, ν, f )

× (4C1N3 + γνC1/2
L λ1/2

1
)

+ λ3/2
1

32C2
1νN

2
10(γ,σ/2, σ ,N3, ν, f )

(
λ1/2

1 + 2N10

(
γ,
σ
2
, σ ,N3, ν, f

)

×
(

2C1N3 + γνC1/2
L λ1/2

1 + 1+ 2C1λ
1/2
1 N2

4(γ,N3, ν, f )
λ1/2
m+1

))]
× N9

(
γ,
σ
2
, σ ,N3, ν, f

)
,
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whereN9(γ,σ/2, σ ,N3, ν, f ) andN10(γ,σ/2, σ ,N3, ν, f ) are as (4.39) and
(4.39) respectively.

(ii) There is a stationary solution u∞ of the closed-loop system (2.18) such that

p∞n + q∞n → u∞ as n→∞.(4.55)

Moreover, u∞ is hyperbolic and(
Sp(N∞(u∞))

)
σ/2 = ∅,(4.56)

|u∞ − p∞n − q∞n | ≤
N13(γ,σ , ν, f )

λ3/2
n+1

.(4.57)

Proof. We will use the contraction mapping theorem to show the existence of
p∞n + q∞n .

First let us establish the map. Denote by

w = p∞n + q∞n − p∞m − q∞m, wn = Pnw, w⊥n = Qnw, q̂∞m = Pnq∞m,

q̃∞m = Qnq∞m, un = p∞m + q̂∞m, vn = Φapp(un).

If p∞n +q∞n is a stationary solution of the nonlinear Galerkin approximation equa-
tions (4.1) and (4.2) based on n-eigenmodes, then w should satisfy

νA(un +wn)+ Pn
[
B(p∞m + q∞m +w,p∞m + q∞m +w)− B(q̃∞m +w⊥n , q̃∞m +w⊥n)

+ γPnL(un + vn +wn +w⊥n)
] = Pnf ,

νA(q̃∞m +w⊥n)+Qn[B(un +wn,un +wn)+ γL(un +wn)] = Qnf ,

that is,

(4.58) Nn(un)wn = νAwn + Pn[B(un + vn,wn)+ B(wn,un + vn)

+ B(un, ξ(wn))+ B(ξ(wn),un)+ γL(wn + ξ(wn))] = Ψ(wn),
νAξ +Qn[B(un,wn)+ B(wn,un)+ γLwn] = 0,(4.59)

νA(vn − q̃∞m)+Qn[B(q̂∞m,un)+ B(p∞m, q̂∞m)+ γLq̂∞m] = 0,(4.60)

νAw⊥n = νA(vn − q̃∞m)+ νAξ(wn)−QnB(wn,wn),(4.61)

where
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Ψ(wn)(4.62)

= Pn
[
B(q∞m,q∞m)− B(q̃∞m, q̃∞m)+ B(q̂∞m,w⊥n)

+ B(w⊥n , q̂∞m)+ B(un, ξ(wn)+ vn − q̃∞m −w⊥n)

+ B(ξ(wn)+ vn − q̃∞m −w⊥n ,un)+ B(wn,vn − q̃∞m −w⊥n)

+ B(vn − q̃∞m −w⊥n ,wn)− B(wn,wn)+ γL(ξ(wn)−w⊥n)
]
.

From (4.61), we get

w⊥n = vn − q̃∞m + ξ(wn)− (νA)−1QnB(wn,wn).(4.63)

In other words, if we can show the existence of wn, then we get w⊥n by
(4.63). By Lemma 4.8 on page 72, we have (Sp(Nn(un)))σ/2 = ∅, when m ≥
T2(σ,σ/2, ν,N3). SoNn(un) is invertible. Denote by

F(wn) = (Nn(un))−1Ψ(wn),(4.64)

where Ψ(wn) is as in (4.62).
Next we will show that F maps

Bn(r) = {wn ∈ Hn : |Awn| ≤ r}(4.65)

into Bn(r), where

r = λ1

4C1N10(γ,σ/2, σ ,N3, ν, f )
.(4.66)

By the estimate (3.28) of the Lemma 4.7 on page 69, we get

|AF(wn)| ≤ N10

(
γ,
σ
2
, σ ,N3, ν, f

)
|Ψ(wn)|.

Now we will get an estimate for |Ψ(wn)|. First, by using (2.7)-(2.11) and (2.20)
with β = 1

2 , we get the following estimates

|Aξ(wn)| ≤
4C1N3 + γνC1/2

L λ1/2
1

νλ1/2
m+1

|Awn|(4.67)

|A(vn − q̃∞m)| ≤
λ1/2

1 N4(γ,N3, ν, f )(2C1N3 + γνC1/2
L λ1/2

1 )
νλ1/2

m+1
(4.68)

|Aw⊥n | ≤
1

νλ1/2
m+1

(
λ1/2

1 N4(γ,N3, ν, f )(2C1N3 + γνC1/2
L λ1/2

1 )(4.69)

+ (4C1N3 + γνC1/2
L λ1/2

1
)|Aw1| + 2C1|Aw1|2

λ1/2
1

)
.
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Moreover, we use (2.7)-(2.11), (2.20) with β = 1
2 , and the above estimates to

obtain

|Ψ(wn)|
≤ 2C1N3|A(ξ(wn)+ vn − q̃∞m −w2)|

λ1/2
m+1

+ 2C1λ1N2
4(γ, ν, f )
λm+1

+ 2C1λ
1/2
1 N4(γ,N3, ν, f )|Aw⊥n |

λm+1
+ 2C1|Awn|
λ1/2

1 λ1/2
m+1

|A(vn − q̃∞m −w⊥n)|

+ C1|Awn|2
λ1

+ γνC1/2
L λ1/2

1 ‖ξ(wn)−w⊥n‖

≤ 4C2
1

νλ1λm+1
|Awn|3 +

2C1λ
1/2
1 N4(γ,N3, ν, f )
νλ3/2

m+1
(4C1N3 + γνC1/2

L λ1/2
1 )|Awn|

+ C1|Awn|2
λ1

[
1+ 1

λm+1

(
12C1λ

1/2
1 N3

ν
+ 2γC1/2

L λ1

+ 4C1λ1N4(γ,N3, ν, f )
νλ1/2

m+1

)]

+ λ1N4(γ,N3, ν, f )
λm+1

(2C1N3 + γνC1/2
L λ1/2

1 )

×
(

2C1N4(γ,N3, ν, f )
νλ1/2

m+1
+ γC1/2

L

)
+ 2C1λ1N2

4(γ,N3, ν, f )
λm+1

.

Therefore when |Awn| ≤ r , r is as in (4.66), and

m ≥ T3(γ,σ ,N1, ν, f ) = max
{
T2

(
σ,
σ
2
, ν,N3

)
, T5, T6

}
,(4.70)

where

T5 =
[

16C1N2
10(γ,σ/2, σ ,N3, ν, f )N14(γ,σ ,N1, ν, f )

3C0λ1

]
,

T6 =
[

3N15(γ,σ ,N1, ν, f )
C0

]
,

and
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N14(γ,σ ,N1, ν, f )(4.71)

= λ1

16C1νN3
10(γ,σ/2, σ ,N3, ν, f )

+ 2C1N2
4(γ,N3, ν, f )

+ 12C1λ
1/2
1 N3 + 2γνC1/2

L λ1 + 4C1λ
1/2
1 N4(γ,N3, ν, f )

16C1νN2
10(γ,σ/2, σ ,N3, ν, f )

+ N4(γ,N3, ν, f )(2C1N3 + γνC1/2
L λ1/2

1 )

×
(

2C1N4(γ,N3, ν, f )
νλ1/2

1

+ γC1/2
L

)

+ N4(γ,N3, ν, f )(4C1N3 + γνC1/2
L λ1/2

1 )
2νN10(γ,σ/2, σ ,N3, ν, f )

,

N15(γ,σ ,N1, ν, f )(4.72)

= 2γC1C
1/2
L + 3C1

4νN10(γ,σ/2, σ ,N3, ν, f )

+ 2C2
1

νλ1/2
1
(3N3 +N4(γ,N3, ν, f ))

+ 2C2
1N4(γ,N3, ν, f )N10(γ,σ/2, σ ,N3, ν, f )

νλ1

×(4C1N3 + γνC1/2
L λ1/2

1 ),

we have |AF(w1)| ≤ r , that is, F maps Bn(r) into Bn(r).
Finally, we will show that the map F is a contraction map on Bn(r). Suppose

wn, w̃n ∈ Bn(r). Then

F(wn)−F(w̃n)
= (Nn(un))−1Ψ(wn)− (Nn(un))−1Ψ(w̃n)
= (Nn(un))−1Pn

[
B(un, ξ(wn)− ξ(w̃1)−w⊥n + w̃⊥n)+ B(q̂∞m,w⊥n − w̃⊥n)
+ B(ξ(wn)− ξw̃n −w⊥n + w̃⊥n ,un)
+ B(w⊥n − w̃⊥n , q̂∞m)− B(w̃n,w⊥n − w̃⊥n)
− B(w⊥n − w̃⊥n , w̃n)+ B(wn − w̃n, vn − q̃∞m −w⊥n)
+ B(vn − q̃∞m −w⊥n ,wn − w̃n)− B(wn − w̃n,wn)
− B(w̃n,wn − w̃n)+ γL(ξ(wn)− ξ(w̃n)−w⊥n + w̃⊥n)

]
,
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νA(ξ(wn)− ξ(w̃n))

+ Qn[B(un,wn − w̃n)+ B(wn − w̃n,un)+ γL(wn − w̃n)] = 0,

νA(w⊥n − w̃⊥n)

= νA(ξ(wn)− ξ(w̃n))−Qn[B(wn − w̃n,wn)+ B(w̃n,wn − w̃n)].

Then by using (2.7)-(2.11) and (2.20) with β = 1
2 , we obtain

|A(ξ(wn)− ξ(w̃n))| ≤
4C1N3 + γνC1/2

L λ1/2
1

νλ1/2
m+1

|A(wn − w̃n)|,

|A(w⊥n − w̃⊥n)| ≤
4C1λ

1/2
1 N3 + γνC1/2

L λ1 + 4C1|Awn|
νλ1/2

1 λ1/2
m+1

|A(wn − w̃n)|.

As a result of the estimates above, (2.7)-(2.11), and (2.20) with β = 1
2 , we have

|A(F(wn)−F(w̃n))|

≤ C1N10

(
γ,
σ
2
, σ ,N3, ν, f

)[
2|Awn|
λ1

+ 12C2
1 |Aw1|2

νλ1λm+1
+ 8C1γC

1/2
L |Awn|
λm+1

+ 8C2
1 |Awn|
νλm+1

(
3N3

λ1/2
1

+ N4(γ, γ,N3, ν, f )
λ1/2
m+1

)

+ 2C1λ
1/2
1 N4(γ,N3, ν, f )
νλ3/2

m+1

(
4C1N3 + γνC1/2

L λ1/2
1

)]
.

Therefore, by (4.66) and (4.70), we get

|A(F(w1)−F(w̃1))| ≤
5
6
|A(w1 − w̃1)|.

Thus, F is a contraction map on Bn(r). By the contraction mapping theorem,
there are a unique w∗n ∈ Bn(r) and a unique w∗n

⊥ given by (4.63), such that

p∞n + q∞n = p∞m + q∞m +wn +w∗n⊥

is a steady state of the nonlinear Galerkin equations (4.1) and (4.2) of order n,
and

|A(p∞n + q∞n − p∞m − q∞m)| ≤
λ1

4C1N10(γ,σ/2, σ ,N3, ν, f )
,(4.73)
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whenm ≥ T3(γ,σ ,N1, ν, f ) and T3(γ,σ ,N1, ν, f ) is as in (4.70).
Now we will show the estimate (4.53). First notice that, by using the

same argument as in the proof of (3.56) and (3.57), for all w1,w2 ∈ Hm, we
obtain

|(Nm(p∞m))−1B(w1,w2)| ≤ C1N9

(
γ,
σ
2
, σ ,N3, ν, f

)
|w1|1/2|Aw1|1/2|w2|,

|(Nm(p∞m))−1B(w1,w2)| ≤ C1N9

(
γ,
σ
2
, σ ,N3, ν, f

)
|w1| |w2|1/2|Aw2|1/2.

Then we apply the above estimates and the estimate (4.36) of the Lemma (4.7) to
(4.64), and obtain

|w∗n | = |F(w∗n)|

≤ C1N9

(
γ,
σ
2
, σ ,N3, ν, f

)[
2N3|ξ(w∗n)+ vn − q̃∞m −w∗n⊥|

+ 2λ1N2
4(γ,N3, ν, f )
λ3/2
m+1

+ 2λ1/2
1 N2

4(γ,N3, ν, f )|w2|
λ1/2
m+1

+ 2r(|vn − q̃∞m −w∗n⊥|)
λ1/2

1

]

+ C1N10(γ,σ/2, σ ,N3, ν, f )|w∗n |3/2‖w∗n‖1/2

λ1/4
1

+ γνC1/2
L λ1/2

1 N9

(
γ,
σ
2
, σ ,N3, ν, f

)
|ξ(w1)−w2|.

Since |w∗n |1/2‖w∗n‖1/2 ≤ |Aw∗n |/λ3/4
1 and

(
C1rN10(γ,σ/2, σ ,N3, ν, f )

)
/λ1 =

1
4 , we get

|w∗n | ≤
4
3
N9

(
γ,
σ
2
, σ ,N3, ν, f

)[
2C1N3|(νA)−1QnB(w∗n ,w

∗
n)|

+ 2C1λ
1/2
1 N2

4(γ,N3, ν, f )|w∗n⊥|
λ1/2
m+1

+ 2rC1(|ξ(w∗n)| + |(νA)−1QnB(w∗n ,w∗n)|)
λ1/2

1

+ 2C1λ1N2
4(γ,N3, ν, f )
λ3/2
m+1

+ γνC1/2
L λ1/2

1

(
|vn − q̃∞m| + |(νA)−1QnB(w∗n ,w

∗
n)|

)]
.
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Therefore, by using the estimates (4.67), (4.68), (4.69), and (4.73), we obtain

|w∗n | ≤
N16(γ,σ ,N1, ν, f )

λ3/2
m+1

,

where

N16(γ,σ ,N1, ν, f ) = 4
3
N9

(
γ,
σ
2
, σ ,N3, ν, f

)

×
[
λ1N4(γ,N3, ν, f )(2C1N3 + γνC1/2

L λ1/2
1 )

ν

(
γνC1/2

L + 2C1N2
4(γ,N3, ν, f )
λ1/2
m+1

)

+ 2C1λ1N2
4(γ,N3, ν, f )

+ λ
3/2
1 (λ1/2

m+1 + 2C1N2
4(γ,N3, ν, f )N10(γ,σ/2, σ ,N3, ν, f )

2C1λ
1/2
m+1νN

2
10(γ,σ/2, σ ,N3, ν, f )

× (4C1N3 + γνC1/2
L λ1/2

1 )

+ λ3/2
1

32C2
1νN

2
10(γ,σ/2, σ ,N3, ν, f )

(
λ1/2

1 + 2N10

(
γ,
σ
2
, σ ,N3, ν, f

)

×
(

2C1N3 + γνC1/2
L λ1/2

1 + 2C1λ
1/2
1 N2

4(γ,N3, ν, f )
λ1/2
m+1

))]
.

The estimate (4.53) follows after this estimate and (4.69).
Let

T4(γ,σ ,N1, ν, f ) =
[

N16(γ,σ ,N1, ν, f )
C0λ1η(γ,σ ,σ/2, ν,N3)

]
,(4.74)

where η(γ,σ ,σ/2, ν,N3) is as in (4.42). When m ≥ MNLG(γ,σ ,N1, ν, f ), it
is clear that ‖w∗n‖ ≤ η(γ,σ ,σ/2, ν,N3), so the second part of the theorem has
been proved. ❐

5. POSTPROCESSING THE STABLE GALERKIN STEADY STATES

In previous sections we have provided an explicit numerical criterion for the stabi-
lization of steady state solutions of the Navier-Stokes equations with a certain class
of linear feedback control operators. In this section we use an efficient numerical
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method, the postprocessing Galerkin method, which was introduced in [38], [39],
[40], [65], to improve the error estimates (3.47) and (4.57).

Here we consider only the Galerkin case. One can obtain similar results for
the nonlinear Galerkin case. Suppose u∞m, m ≥ MGLK is the stable steady state
solution of the Galerkin equations. u∞ is the steady state solution of the closed-
loop Navier-Stokes equations which we obtained by Theorem 3.2 on page 55. By
using the postprocessing technique, we are able to get the following result.

Theorem 5.1. We denote by Φs : Hm → H⊥m the so called steady Approximate
Inertial Manifold ([76], see also [30], [35]), which is defined implicitly by

(5.1) Φs(um) = (νA)−1Qm{f − B(um + Φs(um),um + Φs(um))
− γL(um + Φs(um))}

for um ∈ Hm, providedm is large enough (see [76]). We define v∞m implicitly by

v∞m = −(Am(u∞m))
−1Pm[B(u∞m,Φs(u∞m + v∞m))+ B(Φs(u∞m + v∞m),u∞m))

+ γLΦs(u∞m + v∞m)],
and denote by

u∗ = u∞m + v∞m + Φs(u∞m + v∞m).
Then under the same assumptions as in Theorem 3.2 on page 55, we have

|u∞ −u∗| ≤ KPP(γ,σ , ν, f ,K1)
λ2
m+1

[
1+ 1

2
log

(
λm+1

λ1

)]1/2
,(5.2)

where

KPP(γ,σ , ν, f ,K1) = KP(γ,σ , ν, f ,K1)
(

1+ K∗

λ1/2
m+1

)
,(5.3)

where K∗ and KP(γ,σ , ν, f ,K1) are specified as in (5.11) and (5.13).

Proof. We rewrite u∞ = p∞m + q∞m with p∞m ∈ Hm and q∞m ∈ Qm. They
satisfy the following equations

νAp∞m + Pm[B(p∞m + q∞m,p∞m + q∞m)+ γL(p∞m + q∞m)] = Pmf ,(5.4)

νAq∞m +Qm[B(p∞m + q∞m,p∞m + q∞m)+ γL(p∞m + q∞m) = Qmf ,(5.5)

νAu∞m + Pm[B(u∞m,u∞m)+ γLu∞m] = Pmf .(5.6)
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Thus, we have

p∞m −u∞m = −(Am(u∞m))
−1Pm[B(p∞m −u∞m,p∞m −u∞m)+ B(p∞m,q∞m)

+ B(q∞m,p∞m)+ B(q∞m,q∞m)+ γLq∞m].

Therefore, we get

p∞m −u∞m − v∞m
= −(Am(u∞m))

−1Pm[B(p∞m −u∞m,p∞m −u∞m)+ B(p∞m,q∞m)

+ B(q∞m,p∞m)+ B(q∞m,q∞m)+ γLq∞m − B(u∞m,Φs(u∞m + v∞m))
− B(Φs(u∞m + v∞m),u∞m)− γLΦs(u∞m + v∞m)].

Notice that, by using a similar technique as in the proof of (3.56) and (3.57), for
all w1, w2 ∈ H, and w3 ∈ Hm, we obtain

|((Am(u∞m))−1B(w1,w2),w3)| ≤ C1|w1| |w2| |A1/2(Am(u∞m))−1w3|L∞ .

Now let us recall the following inequality, which holds in the two dimensional
case, from [11]

‖u‖L∞ ≤ C2‖u‖
[

1+ log

(
|Au|
λ1/2

1 ‖u‖

)]1/2

.(5.7)

Therefore,

|A1/2(Am(u∞m))
−1w3|L∞

≤ C2|A(Am(u∞m))
−1w3|

[
1+ log

(
|A3/2(Am(u∞m))−1w3|
λ1/2

1 |A(Am(u∞m))−1w3|

)]1/2

.

By using (3.28) with λ = 0, ρ = σ , s = σ , R = K3, and the fact w3 ∈ Hm, we
conclude

|A1/2(Am(u∞m))
−1w3|L∞ ≤ C2K9(γ,σ ,σ , ν,K3)|w3|

[
1+ log

(
λ1/2
m+1

λ1/2
1

)]1/2

.

Moreover,

|(Am(u∞m))
−1B(w1,w2)|

≤ C1C2K9(γ,σ ,σ , ν,K3)
[

1+ 1
2

log
(
λm+1

λ1

)]1/2
|w1| |w2|.
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As a result of the inequality above, we have

|(Am(u∞m))−1B(p∞m −u∞m,p∞m −u∞m)|

≤ C1C2K9(γ,σ ,σ , ν,K3)
[

1+ 1
2

log
(
λm+1

λ1

)]1/2
|p∞m −u∞m|2,

|(Am(u∞m))
−1B(p∞m −u∞m,q∞m)|

≤ C1C2K9(γ,σ ,σ , ν,K3)
[

1+ 1
2

log
(
λm+1

λ1

)]1/2
|p∞m −u∞m| |q∞m|,

|(Am(u∞m))
−1B(q∞m,p

∞
m −u∞m)|

≤ C1C2K9(γ,σ ,σ , ν,K3)
[

1+ 1
2

log
(
λm+1

λ1

)]1/2
|p∞m −u∞m| |q∞m|,

|(Am(u∞m))−1B(u∞m,q∞m − Φs(u∞m + v∞m))|
≤ C1C2K9(γ,σ ,σ , ν,K3)

[
1+ 1

2
log

(
λm+1

λ1

)]1/2
|u∞m| |q∞m − Φs(u∞m + v∞m)|,

|(Am(u∞m))
−1B(q∞m − Φs(u∞m + v∞m),u∞m)|

≤ C1C2K9(γ,σ ,σ , ν,K3)
[

1+ 1
2

log
(
λm+1

λ1

)]1/2
|u∞m| |q∞m − Φs(u∞m + v∞m)|,

|(Am(u∞m))
−1B(q∞m,q

∞
m)|

≤ C1C2K9(γ,σ ,σ , ν,K3)
[

1+ 1
2

log
(
λm+1

λ1

)]1/2
|q∞m|2,

|(Am(u∞m))−1γL(q∞m − Φs(u∞m + v∞m))|
≤ γνC

1−α
L λ1−α

1

λ1−α
m+1

K9(γ,σ ,σ , ν,K3)|q∞m − Φs(u∞m + v∞m)|.
Therefore,

|p∞m −u∞m − v∞m|

≤ C1C2K9(γ,σ ,σ , ν,K3)
[

1+ 1
2

log
(
λm+1

λ1

)]1/2

× [|p∞m−u∞m|2+ 2|p∞m−u∞m| |q∞m| + 2|u∞m| |q∞m−Φs(u∞m+v∞m)| + |q∞m|2]
+ γνC1−α

L λ1−α
1

λ1−α
m+1

K9(γ,σ ,σ , ν,K3)|q∞m − Φs(u∞m + v∞m)|.
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Now we assume thatm is large enough such that

|A(p∞m + q∞m)| ≤
3
2
λ1/2

1 K3,(5.8)

∣∣A(u∞m + v∞m + Φs(u∞m + v∞m))∣∣ ≤ 3
2
λ1/2

1 K3,

ν − 3C2K2

2λm+1

[
1+ 1

2
log

(
λm+1

λ1

)]1/2
− 3C1K3

2λm+1
− νγC

1−α
L λ1−α

1

λ2−2α
m+1

≥ ν
2
.(5.9)

Notice that all the above assumptions are true if m is at least of order G, the
Grashoff number. In fact, to implement the results of our previous sections we
require m to be much larger, namely, thatm ≥MGLK.

Next we get an estimate for |q∞m − Φs(u∞m + v∞m)|. Denote by wm = p∞m −
u∞m − v∞m and by w⊥m = q∞m − Φs(u∞m + v∞m). Following the equations (5.1) and
(5.5), we obtain

νAw⊥m +Qm[B(p∞m + q∞m,wm +w⊥m)

+ B(wm +w⊥m,u∞m + v∞m + Φs(u∞m + v∞m))+ γL(wm +w⊥m) = 0.

Following the inequalities (2.7)-(2.11) and (5.7), and (2.20) we get

(
ν − 3C2K2

2λm+1

[
1+ 1

2
log

(
λm+1

λ1

)]1/2
− 3C1K3

2λm+1
− νγC

1−α
L λ1−α

1

λ2−2α
m+1

)
‖w⊥m‖

≤ C1C2‖p∞m‖ |wm|
λ1/2
m+1

[
1+ 1

2
log

(
λm+1

λ1

)]1/2

+ C1|wm|1/2‖wm‖1/2|q∞m|1/2‖q∞m‖1/2 + C1|u∞m|1/2|Au∞m|1/2|wm|

+ C1|wm|1/2‖wm‖1/2|Φs(u∞m + v∞m)|1/2‖Φs(u∞m + v∞m)‖1/2

+ γνC
1−α
L λ1−α

1

λ1/2−α
m+1

|w|.

Therefore, by using the assumptions (5.8) and (5.9) we conclude

|w⊥m| ≤
K∗

λ1/2
m+1

|wm|,(5.10)

where
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(5.11) K∗ = 2
ν

[
3C1C2λ

1/2
1 K3

2λ1/2
m+1

[
1+ 1

2
log

(
λm+1

λ1

)]1/2

+3C1λ
1/2
1 K3

λ1/2
m+1

+ C1K3 +
γνC1−α

L λ1−α
1

λ1/2−α
m+1

]
.

Thus, ifm is large enough such that

K∗K9(γ,σ ,σ , ν,K3)(5.12)

×
[

2C1C2K1

λm+1

[
1+ 1

2
log

(
λm+1

λ1

)]1/2
+ γνC

1−α
L λ1−α

1

λ3/2−α
m+1

]
≤ 1

2
,

we get

|p∞m −u∞m − v∞m| ≤
KP(γ,σ , ν, f ,K1)

λ2
m+1

[
1+ 1

2
log

(
λm+1

λ1

)]1/2
,

where

(5.13) KP(γ,σ , ν, f ,K1) = 2C1C2K9(γ,σ ,σ , ν,K3)

×
(
K10(γ,σ ,σ , ν,K3)+

3
2
K3

)2

.

Notice that, whenm ≥MGLK, (5.12) is true. Moreover, we have

|q∞m − Φs(u∞m)| ≤ K∗KP(γ,σ , ν, f ,K1)
λ5/2
m+1

[
1+ 1

2
log

(
λm+1

λ1

)]1/2
.

Then the estimate (5.2) follows. ❐

6. CONCLUSION

In this paper we have presented an explicit numerical criterion for the stabiliza-
tion of steady state solutions of the Navier-Stokes equations with linear feedback
control. We will summarize below our results and the steps of how to implement
this criterion.

Suppose u∗ is an unstable steady state solution of the NSE. It is not practical,
computationally, to stabilize the infinite dimensional system. However, by using
numerical methods we can find a stationary solution of the Galerkin approxima-
tion equations, or the nonlinear Galerkin approximation equations, which is an
approximation of u∗. Suppose that we can design a linear feedback control L,
whose Galerkin (or nonlinear Galerkin) truncation stabilizes this approximate so-
lution. The question is whether this same linear feedback control, L, stabilizes
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u∗. In this paper we have shown that the answer to this question is affirmative,
provided we use enough eigenmodes, and the linear feedback operator L belongs
to a certain class of linear operators which are dominated by the viscous term νA.
This restriction on the feedback controllers is essential in order for the viscous
term to suppress the potential spillover that L might cause, by destabilizing the
higher eigenmodes. This approach is practical because we are now working with a
finite dimensional system.

A general abstract algorithm. Our general algorithm is as follows:
(i) Find a steady state u∗m of the m−state Galerkin approximation equations,

or a steady state p∗m+q∗m of them−state nonlinear Galerkin approximation
equations, by numerical simulation for somem, such that u∗m, or p∗m+q∗m,
is close to u∗, respectively. More precisely, we assume that, in the Galerkin
case,

|u∗ −u∗m| ≤ ε� 1,

or in the nonlinear Galerkin case,

|u∗ − (p∗m + q∗m)| ≤ ε� 1.

(ii) Design a linear feedback controller L, which might act on finite or infinitely
many modes, and which belongs to the class of linear operators described
in Section 2, such that u∗m is a stable stationary solution of the closed-loop
system

dum
dt

+ νAum + PmB(um,um)+ PmL(um −u∗m) = Pmg

in the Galerkin case, or p∗m+q∗m is a stable stationary solution of the follow-
ing closed-loop system

dpm
dt

+ νApm + PmB(pm + qm,pm + q)− PmB(qm,qm)

+ PmL(pm + qm − p∗m − q∗m) = Pmg,

νAqm +QmB(pm,pm)+QmL(pm − p∗m) = Qmg

in the nonlinear Galerkin case.
(iii) Let σ > 0 be the lower bound of the real part of eigenvalues of the lin-

earized operator, Am(u∗m) in the Galerkin case, or Nm(p∗m) in the non-
linear Galerkin case (Am(u∗m) and Nm(p∗m) are defined in Sections 3 on
page 44 and 4 on page 60, respectively).
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(iv) Let MGLK and MNLG be as in Section 3 and Section 4, respectively. If m ≥
MGLK in the Galerkin case, or m ≥ MNLG in the nonlinear Galerkin case,
then the feedback controller L will stabilize a steady state solutionu∗∗ of the
closed-loop Navier-Stokes equations

du
dt
+ νAu+ B(u,u)+ L(u−u∗m) = g.

Moreover, one has the following error estimate for the Galerkin case

|u∗∗ −u∗m| ≤
C
λm+1

and |u∗∗ −u∗| ≤ C
λm+1

+ ε,

or in the nonlinear Galerkin case,

|u∗∗ − p∗m − q∗m| ≤
C
λ3/2
m+1

and |u∗∗ −u∗| ≤ C
λ3/2
m+1

+ ε.

Furthermore, one can use the postprocessing procedure [38, 39, 65] to im-
prove the accuracy of both (Galerkin as well as nonlinear Galerkin) methods
as it has been discussed in Section 5 on page 83. As a result the above error
estimates, one may conclude that u∗∗ is very close to the original solution
u∗, providedm is large enough, and that p∗m + q∗m converges to u∗∗ faster
than u∗ does.

(v) Otherwise, if either step 3 or step 4 does not hold we either design another
linear feedback control that allows for a larger σ , or increase m and repeat
the above procedure.

In this way one is guaranteed that the linear feedback control L for the finite
system ODEs will stabilize a steady state solution u∗∗ of the closed-loop NSE,
and u∗∗ is nearby the unstable steady state u∗ of the NSE.

A specific implementation of the algorithm. Next, we present a special case
of the above general algorithm, which will guarantee ana priori upper estimate for
ε, given in step 1 of the above general algorithm, of orderO(λ−1

m+1) in the Galerkin
case, and of order O(λ−3/2

m+1) in the nonlinear Galerkin case.
Let u∗ be, as before, an unstable steady state of the NSE (open-loop)

du
dt
+ νAu+ B(u,u) = g,

which we are interested in stabilizing. Set u∗ = ξ∗m + η∗m, where ξ∗m = Pmu∗
and η∗m = (I − Pm)u∗. It is clear that um = ξ∗m is a steady state of the following
Galerkin system

dum
dt

+ νAum + PmB(um,um)+ γPmLum

= Pm[g + B(ξ∗m,ξ∗m)− B(u∗, u∗)+ γLξ∗m].
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The equation above is the Galerkin procedure at levelm of the closed-loop system:

du
dt
+ νAu+ B(u,u)+ γLu = f ,

where f = g + B(ξ∗m,ξ∗m)− B(u∗, u∗)+ γLξ∗m.
Notice that the above equation is within our frame of work. In order for us to

derive explicit values to the constants MGLK and MNLG we would need to provide
an explicit bound for ‖f‖ (see the end of Section 3.1 on page 48). Indeed, it is
sufficient to estimate the right hand side of the following

‖f‖ ≤ ‖g‖ + ‖B(ξ∗m,ξ∗m)‖ + ‖B(u∗, u∗)‖ + ‖γLξ∗m‖.

First, notice that by (2.11)

‖B(u∗, u∗)‖ ≤ 2C1|u∗|1/2|Au∗|3/2,

and

‖B(ξ∗m,ξ∗m)‖ ≤ 2C1|ξ∗m|1/2|Aξ∗m|3/2 ≤ 2C1|u∗|1/2|Au∗|3/2.

Based on part (ii) of Lemma 3.1 on page 44 we have

|u∗| ≤ |g|
λ1ν

and |Au∗| ≤ K(|g|) = 2|g|
ν
+ C

2
1 |g|3
λ2

1ν5
.

Thus, we obtain

‖B(u∗, u∗)‖ + ‖B(ξ∗m,ξ∗m)‖ ≤ K̃(|g|),

with K̃(|g|) = [4C1K3/2(|g|)|g|]/(λ1ν).
As in Section 2 on page 41, we assume that (2.20) holds for α = 0 and β = 1

2 .
Therefore, we have

γ‖Lξ∗m‖ ≤ νλ1CL|A1/2ξ∗m| ≤ νλ1CL|A1/2u∗| ≤ λ1/2
1 CL|g|.

From the above we conclude that

‖f‖ ≤ K̄(|g|,‖g‖, γ, CL) = λ1/2
1 CL|g| + K̃(|g|)+ ‖g‖.

One can restrict further the class of linear feedback operator L by imposing an
upper bound on CL, and hence give an explicit a priori determined upper bound
to ‖f‖.
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Now, we return to apply the general algorithm under these specific choices
for u∗m and f . Indeed, in step 1 of the general algorithm we have u∗m = ξ∗m and
therefore

|u∗ −u∗m| = |η∗m| ≤
1

λm+1
|Aη∗m| ≤

1
λm+1

|Au∗| ≤ K(|g|)
λm+1

.

Then we take ε = K(|g|)/λm+1, which is very small provided m is large enough.
Following the same steps as in the general algorithm for this choice of f and u∗m,
we obtain in step 4 that

|u∗ −u∗∗| ≤ C
λm+1

+ K(|g|)
λm+1

.

Hence, the stable steady state solution u∗∗ of the closed-loop is not far away from
the original unstable steady state of the open-loop u∗.

We can design a similar algorithm for the nonlinear Galerkin case with a new
specific f which satisfies the right estimates so that

ε = O(λ−3/2
m+1)

in the nonlinear Galerkin case, and hence step 4 in this situation would lead to

|u∗ −u∗∗| = O(λ−3/2
m+1).
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sous-espaces, J. Math. Pures Appl. 57 (1978), 133-156.

[65] J. NOVO, E.S. TITI & S. WYNNE, Efficient methods using high accuracy approximate inertial
manifolds, submitted.

[66] V.A. PLISS & G.R. SELL, Perturbations of attractors of differential equations, J. Differential Eq.
92 (1991), 100-124.

[67] G. PRODI, Teoremi di tipo local per il sistema di Navier-Stokes e stabilità delle soluzioni stazionarie,
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