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ABSTRACT. This paper introduces an explicit numerical crite-
rion for the stabilization of steady state solutions of the Navier-
Stokes equations (NSE) with linear feedback control. Given a
linear feedback controller that stabilizes a steady state solution to
the closed-loop standard Galerkin (or nonlinear Galerkin) NSE
discretization, it is shown that, if the number of modes involved
in the computation is large enough, this controller stabilizes a
nearby steady state of the closed-loop NSE. We provide an ex-
plicit estimate, in terms of the physical parameters, for the num-
ber of modes required in order for this criterion to hold. More-
over, we provide an estimate for the distance between the sta-
bilized numerical steady state and the actually stabilized steady
state of the closed-loop Navier-Stokes equations. More accurate
approximation procedures, based on the concept of postprocess-
ing the Galerkin results, are also presented. All the criterion con-
ditions are imposed on the computed numerical solution, and no
a priori knowledge is required about the steady state solution of
the full PDE. This criterion holds for a large class of unbounded
linear feedback operators and can be slightly modified to include
certain nonlinear parabolic systems such as reaction-diffusion sys-
tems.
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1. INTRODUCTION

There is, recently, a reinforced interest in the important subject of flow control
(see for example the monograph [36] or the proceedings of the recent NSF work-
shop on Control of Flows [56]). This is certainly due to an array of emerging
technologies, such as the microfabrication of minute, programmable (and cheap)
sensors and actuators. Part of the excitement is certainly due to cross-fertilization
at the intersection between physical fluid mechanics and nonlinear partial differ-
ential equations. Indeed, the last few years have seen extensive applications of
systems theory approaches and methods to the control and stabilization of flow

models (see for example [1, 9, 13, 14, 41, 55]).

For physical problems modeled by partial differential equations (as fluid flow
is governed by the Navier-Stokes Equations (NSE),) the szaze in the corresponding
control problem is infinite dimensional. Practical considerations (finite precision,
memory capacity of computers that would implement control action) dictate the
discretization of the distributed parameter system (DPS) to a finite dimensional
dynamical system ([3, 22, 68]). How well this (lumped) discretized system cap-
tures the dynamics of the original PDE is the subject of ongoing research (see,
e.g., [42, 49, 50, 66, 74] and references therein). The dissipative nature of many
evolutionary PDEs forms the basis of arguments for the qualitative validity of such
approximations.

Using existing control methodologies, it is conceptually straightforward to
synthesize finite-dimensional controllers for the finite dynamical systems resulting
from such (finite difference, finite element, spectral) discretizations. A defini-
tive sequence of articles by Balas, Curtain, Sakawa and others over the last 20
years ([3, 4, 5, 6, 7, 22, 68]) states that such finite dimensional controllers can be
used to stabilize /inear infinite dimensional systems from which the discretization
originates. The controllers should of course be based on a sufficiently converged
discretization of the PDE (see [5] and also later [7]). One of our goals in this
article is to prove that such finite dimensional controllers can indeed stabilize un-
stable steady states of the closed-loop NSE, and provide estimates of the necessary
discretization dimension.

High order and ill-conditioning, however, make the routine design of con-
trollers for such problems a difficult issue on its own ([71]); recourse to nontrivial
computational methods is required in order to assess basic properties of the lin-
earized state space models, such as controllability, stabilizability, observability and
stability ([10, 25]). A second level of model reduction then becomes necessary:
after the reduction of the infinite-dimensional system to a (“large”) finite dimen-
sional one, we seck to exploit the dissipativity of the original PDE to construct
(or approximate) accurate, dynamic, “small” finite dimensional models that can be
used in controller design. Such “further reduced” models are often based on modal
representations of the dynamics, the modes coming from the leading part of the
linearized problem ([8]), from their Krylov subspace approximations ([44]), from
empirically determined eigenfunctions ([43], and references therein), or from an
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appropriate (dissipative) part of the linear problem operator, such as the eigen-
functions of the Stokes operator in the case of the Navier-Stokes equations ([17],
(73], [74]). Beyond the qualitative similarity with singular perturbation methods
that construct invariant manifolds and exploit them in controller design for finite
dimensional systems ([57]), there is an extensive interest in the use of inertial man-
ifolds and approximate inertial manifolds for closed loop dynamics analysis and
controller design (see, for example, [12, 15, 69, 70]). Motivated by the theory
of Inertial Manifolds and Approximate Inertial Manifolds, we will also explore a
second (Nonlinear Galerkin, NLG) model reduction step.

In this paper we demonstrate our results and tools on a specific system, the
Navier-Stokes equations of viscous incompressible fluids. We use the NSE as an
illustrative paradigm. However, our results and technique hold for a larger class of
nonlinear dissipative evolution systems of equations.

The Navier-Stokes equations

ou

(1.1) E—vAqu(u-V)quVp:g, in Q,
(1.2) V-u=0, in Q,
(1.3) u=0, on 09,
(1.4) u(x,0) = Ui (x)

are the equations that govern the motion of viscous incompressible flows in a
domain Q, of R? or R3, subject to the no-slip Dirichlet boundary conditions.
Here, u represents the unknown velocity vector, and p is the unknown pressure
scalar; where v > 0, the constant kinematic viscosity, and g, the body forcing
term, are given.

It is well known that in both the two-dimensional and three-dimensional cases
the system (1.1)-(1.4) has a steady state solution ([17], [37], [72], [73]). More-
over, for small Reynolds numbers (for example, large viscosity or small forcing)
the system has a unique steady state solution which is globally stable ([54], [72]).
As the Reynolds number increases, one expects that this steady state loses its sta-
bility and goes through a bifurcation (however, this scenario is not always true,
see, e.g., [21], [62]). Moreover, this system could go through successive bifur-
cation, and exhibit chaotic and turbulent behavior (see, e.g., [59], [73]). Such
turbulent dynamics is not restricted to transient solutions, but it can sustain itself
for infinitely long intervals of time. To study rigorously this long-time turbulent
dynamics one has to make sure that the solutions of (1.1)-(1.4) remain regular
globally in time. This is known to be true in the two-dimensional case. How-
ever, in the case of three-dimensional flows this is still one of the most challenging
open scientific problems. As a result, the study of the long-time behavior of the
solutions and the global attractor for the system (1.1)-(1.4) has been restricted to
the two-dimensional case. Indeed, the first such rigorous study was presented by
Foias and Prodi in [29], where the authors have shown that the global dynamics
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is “determined” by finitely many degrees of freedom. Since then lots of work con-
cerning this issue has been done, and we refer the reader to, for example, [16],
[19], [21], [32], [33], [51] and the references therein, for the best available results
in this regard.

In this paper we are interested in developing a numerical criterion for the
stabilization of steady state solutions of system (1.1)-(1.4), using linear feedback
control operators. The results and techniques presented here are inspired by [20]
and [75].

Our main result states that if we can design a linear feedback controller that
stabilizes a steady state solution to the closed-loop m—state Galerkin approxima-
tion or m—state nonlinear Galerkin approximation, where m is bigger than some
Mgk (in the Galerkin case) or some Mn1G (in the nonlinear Galerkin case), then
there is a nearby steady state solution to the closed-loop Navier-Stokes system with
the same linear feedback controller. Our objective echoes the approach in [55]:
we are concerned with “an entirely new szable system” (the closed loop system).
We provide explicit bounds on Mgk and Mig in terms of the physical param-
eters of the equations. Moreover, we show that in this case the steady state of the
nonlinear Galerkin converges to the exact solutions much faster than the one of
the standard Galerkin.

It is worth mentioning that all the conditions of this criterion are checkable
by the computed numerical solutions, and no other conditions are imposed on the
unknown exact solution. Furthermore, let us stress the fact that in general there
are no error estimates for nonlinear elliptic steady state problem. This is due to
the fact that such equations might have multiple solutions and even a continuum
of solutions ([30], [35]). This is obvious, for instance, in the case of non-constant
steady state solutions of equations with translational symmetry. However, we do
not encounter this problem here because the feedback control operator isolates
the steady state under consideration and makes the use of standard versions of the
implicit function theorem at hand. Here we will present only the two-dimensional
NSE case. Similar results are also valid in the three dimensional case, but with
different dependence on the physical parameters.

This paper is organized as follows: In Section 2 on the facing page we review
preliminaries and functional spaces. In Section 3 on page 44 we give a criterion
for the Galerkin approximation case. In Section 4 on page 60 we provide a similar
criterion for the nonlinear Galerkin approximation. In Section 5 on page 83 we
show that we can use postprocessing Galerkin and nonlinear Galerkin methods
to improve the accuracy. In Section 6 on page 88 we provide an algorithm for
applying our numerical criterion.

This paper is dedicated to Professor Ciprian Foias on the occasion of his re-
tirement from Indiana University, and to Professor Roger Temam on the occasion
of his 60** birthday. We would like to thank them both for their continuous sup-
port and encouragement through all over our careers. Their work is a constant
source of inspiration for us.
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2. PRELIMINARIES AND FUNCTIONAL SETTING

As we mentioned earlier, we consider here only the two dimensional Navier-Stokes
case. Therefore we suppose that Q is a bounded subset of R? with smooth bound-
ary. Let H1(Q) denote the usual Sobolev spaces of index g (cf. [2]). We will
denote by | - | the L?— norm, and (-, -) the L?— inner product. We set

={p e (CF(Q)?: V- =0}

The spaces H, V will denote the closures of V in L? and H! respectively. We
introduce the inner product

((uv))—zj U OV 4o foru,v eV,

0x; 0X;
and denote by || - || the norm induced by the inner product ((-,-)). Thanks
to the Poincaré inequality, the norm || - || is equivalent to the H!-norm on V.

Let P : L? — H be the orthogonal projection, and let A = —PA be the Stokes
operator, subject to the homogeneous Dirichlet, no-slip, boundary condition. It
is well known that A™! is a self-adjoint positive compact operator from H onto
D(A) = H>nV (cf. [17], [37], [58], [73]). Let 0 < A} < Ay < --- be the
eigenvalues of A, repeated accordmg to their multiplicities, and let {wi}y_; be
the corresponding eigenfunctions. We denote by Hy, the linear space spanned by
{wi,...,wm}, by Py : H — Hyy, the orthogonal projection, and by Q, = I —Piy,.
Moreover, we observe that V' = D(A~1/2) is the dual space of V.

It is well known that the Navier-Stokes equations (NSE) (1.1)-(1.4) are equiv-
alent to the functional differential equation (see, e.g., [17], [72])

du
2.1) E+vAu+B(u u) =
2.2) u(0) = Uiy,

where B(u,u) = P((u - V)u), the nonlinear (bilinear) term.
The following are well-known facts (cf. [17], [37], [58], [73])

(2.3) vl =A%), vveV,

(2.4) lAv| = A3 vll, Vv e D(A).

There is a constant Co > 0 such that (cf. [64])

m Am
(25) CO =\ < Coym.
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(2.0) (B(u,v),w) = -(B(u,v),w); (B(u,v),v) =0, VYu,v,wevV,
(2.7) |[(B(u,v), w)| < Crlul2lull'?|v] [w'?|w|'?, Vu,v,weV,
(2.8) |(B(u,v), w)| < Cylul'?|Aul'?|v| |lw,

YueDA),YVv eV, Vw € H,

(2.9) |(B(u,v), w)| < Cilul vl lw|'?|Aw |12,
YueH, Vv eV, YVwe D),

(2.10) |(B(u,v),w)| < Cilul'?[lull'?|v]'?|Av 2w,
YueV,VveDA),YVw e H,

(2.11) |(B(u,v), w)| < C(llull?1Au|?||v||'/?|Av|!/?
X +ul2|Au| | Av|) [A7V 2w,
Yu,v € D(A), YVw € D(A1/2),

Next we recall the following two-dimensional version of the Lieb-Thirring in-
equality (cf. [60], see also [74]), for the two dimensional case.

Proposition 2.1. (Lieb-Thirring inequality) Let {@;}; C V be a subset of

orthogonal functions in H with | @(x)|l12 = v, for j = 1, 2, ..., N. Then there is
an absolute constant Cy, which is independent of N, such that

N 5 N

(2.12) | [ 1@i0r] dx < v 3 ey,
j=1 J=1

where |Qj(x)| denotes the absolute value of @ j(x).

The Galerkin approximation to the Navier-Stokes equations (NSE) (2.1) and
(2.2), which is based on the first m—eigenmodes of the Stokes operator A, is given
by the system of ordinary differential equations

(2.13) d;‘—:“ + VAUm + PrB (i, Um) = Pmd,
(2.14) Um(0) = PpUin,
where U, (t) € Hy = Span{wy, ..., Wn}.

Suppose that the equations (2.13) and (2.14) have a stationary solution u;;,,
which is unstable. Let Ly, : Hyy — Hy be a linear feedback stabilizing operator.
That is, uf, is a stable steady state solution to the closed-loop

d
(2.15) % + VAU + PmB(Um, Um) + Lin(Um — Uy) = Png.
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The above equation can be viewed as the m —state Galerkin approximation to the
following closed-loop Navier-Stokes system

(2.16) ii—?+vAu+B(u,u)+Lm(u—u;‘n) =g.
As a result, the n—state Galerkin approximation associated with (2.16), for n >
m, is given by

(2.17) % + VAUy + PyB(Un, un) + Pyl (Uy —ujy,) = Png.

The question is: provided that m is large enough, is Ly, stabilizing a steady
state solution u}; of (2.17) which is nearby u};? In this chapter we will give an
affirmative answer to this question, provided Ly, belongs to a certain class of linear
operators. Moreover, we will provide an explicit estimate on how large m should
be in order for the answer to be affirmative.

Motivated by the above discussion we will consider, by analogy with (2.16),
the more general closed-loop NSE

(2.18) %+vAu+B(u,u)+yLu=f,

(2.19) u(0) = Uiy,

where y > 0, is a tracking parameter, and L is a linear operator which satisfies the
following properties:
(i) There is a fixed & € [0, 1) such that L : D(A%) — H.
(i) There is a dimensionless constant C; > 0 such that for any 8 € [0, 1] we
have

(2.20) |AB=%Lu| < vAl=*C}=%|ABul, Vu e D(AP).
In particular, when f = max{0, x — %} in (2.20) we have
(2.21) [(Lu,u)| < vAITXCI % u 2 2%|u|**, YueV.

Notice that for y = 0, the equation (2.18) is the NSE (1.1), and that f contains
the term Ly, uj;,.

The feedback linear operator L is designed to stabilize the steady state of
the Galerkin approximation. Therefore, roughly speaking, it stabilizes the lower
modes. However, when it is introduced into the full PDE it could destabilize (ex-
cite) the higher modes (a phenomenon known as spillover). The above technical
conditions on the operator L simply mean that the viscous linear term VA in the
closed-loop system is stronger than yL, and hence will “suppress” this potential
spillover phenomenon.
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3. A STABILIZATION CRITERION FOR THE STANDARD GALERKIN
APPROXIMATION CASE

The Galerkin approximation equation of the closed-loop NSE based on m-
eigenmodes of the Stokes operator is (cf. [17], [37], [58], [73])

d
(3.1) % + VAU + PmB(m, Um) + YPmLitm = P f)

3.2) Um (0) = PpUin,

where U, € Hyy.

Following the notation in [20] and [75] we denote, for 1 < m < oo, by uj,
the stationary solution of the equations (3.1), and by u® = ug the steady state of
the equations (2.18). Furthermore, we also denote by A, (ug) : Hn — H the
linearized operator about ug € D(A), defined as

(3.3) Apm(ug)v = VAV + Py (B(ug,v) + B(v,up)) + yPpLv, Vv € Hy,.

When m = oo, we will denote by A = A,. We will denote Sp( A, (1p)) the
spectrum of Ay, (uo); B(E,p) = {z € C:dist(z,E) < p}, for any subset E C C;
and by (E)s = {z € E : |Rz| < o}. Notice that our definition of (E)s is
different than the one in [20] and [75].

In the following Lemma we follow closely the papers [20] and [75]. However,
we adjust the details to take into consideration the effect of the feedback operator
L.

Lemma 3.1. Ler1 < m < oo, let uyy, € V be a steady state solution of the
equation (3.1).
G If
(34) |'l/L;:.;,L| < Kl,

then

A1GKp\ 2
(3.5) lusll < Ky = (%) n yl/[z(l—o()]CLl/Z)\i/zKll

_8vAIG | 32'2CIK K3
T l-« v2(1 — x)2?

where G = | f|/(A1V?), the Grashoff number.
(i) IfyCi'* <1, then

(3.6) |AuS| < A)’K; + 812y l0-0 A K,

L f]

val2(a - yci’?y’
8VAIG 3212CK3
I—o  y2Al2(1 - )2

3.7) llupll <K

(3.8) |AuZ| < A)*Ks = + 8172y /1= AR
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Notice in particular that'y = 0, i.e., the open-loop case falls into this situation.

Proof. Let ujy, be a stationary solution of the equation (3.1) with |ugpy,| < K.
Taking the inner product of the equation (3.1) with uj;, in Hy,, and using (2.6),
we get

-y 1- -
viug I? < 1fHugm | + yvCr AT ug, 272 lug, [1°*.
By Youngs inequality, we obtain

|f1K1

1/(1-x) 2
V(l—O()+y CLAlKl.

[l <

Thus we have proved the estimate (3.5). Taking the inner product of equation
(3.1) with Augy, in Hy, gives us

VIAug I < IfHHAug |+ [(B(ug, ug), Aup) | + y[(Lugy, Augp)|.

By using the Cauchy-Schwarz inequality, and (2.8) and (2.20) with 8 = «, we

reach
vIAug? < |11 Aug | + Crlup V2 lugy || [Augy, |77
+yvC AT N ug 'Y Augy |
Thanks to Young’s inequality, we get

Aus| < SUFL | 32PCHKK
m

1/2,,1/(1-x)
=J0-a VZ(I—O()Z + 8 Y D(CLAlKl,

which completes the proof part (i) of the lemma. The proof of the part (ii) of the
lemma is similar to the one in the case of y = 0, i.e., the NSE. We refer to [17],
[73] for details. O

Remark. The condition yC Ll/ 2 < 1in part (ii) of the above lemma means
that the linear instabilities (about zero) that might be caused by the linear feedback
operator, L, are weak and can be suppressed by the viscous term A.

Lemma 3.2. Let R > 0, uy € D(A) with |Augl < A{/zR. Ifw is an eigen-
Sfunction of Am (W), thenw € D(A). Moreover, if [w| = v and Am (Uo)w = Aw
for some A € C, then we have

3.9) lwll < K4(y,A,v,R),
(3.10) |Aw| < Ks(y, A, v,R),
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where

2vI|A| 1/(1-c0),,2 L GR
(3.11)  K4(y,A,v,R) = (—1 _— +2y v AlCL> N
and

_IAl | GiRK4(y,A,V,R)
(3.12)  Ks(yu AV, R) = 7= 0+ =575
CAVRK?(y, A, v, R
L OAl 14_(2(/ A )+y1/(1_"‘)VCL7\1-

Proof. Let lw| =v and
(3.13) Am(uo)w = Aw.

Taking the inner product of the above equation with w in Hy,, and using (2.6)
leads to

vilwll? < IAllw]? + [ (B(w, uo), w) | + y| (Lw, w)].
The inequalities (2.7) and (2.21) give us
viwll* < Alw]? + Cllugll [wl lwll + yvCp = A1 % w72 Jw ]|
By Young's inequality and the Cauchy-Schwarz inequality, we get

12 < 2vIAl  CiR?

1 « + (1- )2 +2y”(1’°‘)v22\1CL,

llw

which leads to (3.9). Now by taking the L?—norm in the equation (3.13), we
reach

vIAw| < [Allw| + [B(uo, w)| + [B(w,uo)| + y|Lw]|
By using (2.8), (2.10), and (2.20) with B = &, we get
vIAw| < [Al [w] + Crluo "2 Auel 2wl + Crlw M2l wV2 [[uo V2| Aug T2
+ yVCITOAI X 17X A | &,

Following Young’s inequality, we conclude that

Al CiRK4(y, A, v,R) CAVRKY 2 (y, A, v, R)

A <
[Aw| 1 -« v(l — x) 1 -«

+ yl/(l_a)VCL?\l. O
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Lemma 3.3. LetR > 0, ug €V with |[ugll < R and s € R, and let M, (s) be
the number of the eigenvalues of Ay (Wo) whose real parss are less than or equal to s,
ie.,

M (s) = #of {A € Sp(Am(up)) : RA < s}.

Then we have

(3.14) M;(s) < Ke(y,s,V,R),
where
1 4sCy ) [( 4sCo )2
(3.15) Kgs(y,s,v,R) = 2{(\/2\1(1 e 1)+ A1 1
8CyC,R? 1/(1-o0) ]1/2}
+ 7\/22\1(1 )2 + 16y CoCr .

Proof. Letm < oo be finite, and let Ay, ..., Ak be the eigenvalues of A, (o),
repeated according to their multiplicities, such that RAj < s, for j =1,2,..., K.
We will denote by Ex the linear space spanned by the generalized eigenfunctions
of A (uo) corresponding to the eigenvalues Ay, ..., Ag. Let 1, ..., Yk be an

orthogonal basis of Ex with || = vforj=1,2,...,K, and letIlg : Hy — Ex
be the orthogonal projection. Then we get

R( D KA;j) = Ritrace(Mg Am (uo)IK)} = V2R ( S K(Am (o), ;).
j=1 j=1
By using (2.6) and (2.21), we reach
R( D KA)
j=1
= V2R Y KIVIAW;, w)) + B, ue), wy) +y(Lys,wpll

Jj=1

> V2 Y K [VIg,I2 = 1B, uo), w)| = yvCE A w2212
j=1

By using the Cauchy-Schwarz and Lieb-Thirring (2.12) inequalities, we obtain

K
Y@ < ([, (3 xe3e0) ax) ol
j=1 j=1

IA

(v 3 Kl 1) luol
j=1

v(l - ) 2\, Coviluell?
< K i + -
5 (; 1wl) + 50— o
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On the other hand, and by Youngs inequality, we have

YV ATy P2 1P* < vadlyll? + v — o)y O CrA 13,
that is

YVCL O AT g P2 g 1Y < vadlyl? + v3 (1 - )y YA,

Moreover,
D Klwill* = > KAy, @) = v? 3 KA.
j=1 Jj=1 Jj=1
Therefore,
’ v(l - x)  Gllugll?
KSZ%(JZIKAJ) > = ;KAJ )

- > Kv(l - )y 1=0CA.
j=1

By using(2.5), we get

vAI(l - K(K+1)  Gllugll?

Ks > -
3 2C, 2 2v(l - )

—v(l - x)y"1=®CA K,

which implies (3.14). O

Remark. In a sense, the estimate (3.14) is sharp because the constant
K¢(y,s,v,R) is growing linearly in 5. For example, in the case when 1y = 0
and y = 0 we have A(uy) = VA, and in this case the A; = Aj behaves like j
asymptotically (see (2.5)). Thus, in this special case, M (s) ~ s.

3.1. Estimates for the resolvents in the Galerkin case. For every R > 0 we
define with Prodi [67] the parabola-like set o (R) C C by setting

(3.16) o(R)={ze C:3Ix = Ay, |z—-vx| < CiRx'? + yvAl~*C}l-*x*},

where C; and Cp, are as in (2.7) and (2.21) respectively. It is worth mentioning that
when one deals with three dimensional Navier-Stokes equations, the set o (R) is
bigger, but it has the same properties as far as the spectra of the operator A, (o),
for |lugll < R and 1 < m < oo, is concerned.

As in [20] and [75], one can show that the spectrum of A, (1) consists of
isolated eigenvalues of finite multiplicities. The following lemmas are similar to
those of [20] and [75], but we add the contribution of the linear control operator
L. The proofs will be omitted here, and can be found for the case where L = 0 in
[20].
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Lemma 3.4. LetR > 0, ug € V with ||ugll < R. Then

o the spectra of Am(Ug), m =1, ..., o, are in 0 (R),
o for every z & 0 (R) the following inequalities hold:

(3.17)  [(Am(uo) — z) | < dist(z,0(R)) 'v| = Ku(y,v,R,2)|v],
(3.18) (Am(uo) —2) 'l < Kv(y,v,R,2)|v|, Vv € Hp,
(3.19) [A(Am(uo) —z2) 'l < Kaly,v,R,2)|V|, Vv € Hp,

where

CiR?

_ 1/A-e) , _ ~17%

(320)  Ky(y,v,R,2) [(mﬂ TSR
2|z|

ZKH(y,v,R,z>]”2
(1-o)v ’

)K%I(y,V,R,Z)'F 1 - v

(3.21) Ki(y,v,R,z) = KH(y,v,R,z)[ 4 + < 82|

v(l — &) (1-o)v
16C}R?

1/2
m +4y2/(17°‘)Cf7\%> KV(Y,V,R,Z)].

Following [75], we will use Carleman’s inequality for the Hilbert-Schmidt (H-
S) operators to prove this section’s main result, Lemma 3.6 on the next page. First
let us recall some well known facts about H-S operators (cf. [24])

Theorem 3.1. Let H be a Hilbert space, F : H — H be an H-S operator with

non-zero eigenvalues Uy, o, ..., repeated according to their multiplicities. Then

(i) the following infinite product

a(F) = [T (1- 5] emit

k>1

converges and defines an analytic function for every X + 0, A & Sp(F);
(ii) (Carleman’s inequality) the following inequality

@A (F)AL = F) Ul rar,00) < |A]e! 2+ UIEIR/IAD]

holds for every A + 0, A & Sp(F), where ||F ||, denotes the H-S norm;
(iil) for every T € L(H ,H ), TF and FT are H-S operators. Moreover,

max{[|FTl2, [TFll2} < IFI20Tll £e30,910)-
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We recall the following Lemma, which was presented in [75]. We refer to [75]
for details of the proof.

Lemma 3.5. LetR > 0, ug € V with |uoll < R. Then for every z ¢ o (R) the
operators (Am (Ug) — Z)’l,form =1, ..., o, are H-S operators. Moreover,

(3.22) [ (Am(uo) —2) 2 < Kus(y, v, R, ),

where

(3.23) Kpgs( sz)—G)JK( V,R, z)
. HS Y, ’ ’ - \/EAI A Y, ’ il )

where Ky (y,Vv,R,z) is as in (3.21).

Lemma 3.6. LetR > 0, ug € D(A), with |Aug| < /\}/ZR and p, s = 0, and
let A € C and satisfy IA| < s. Let

(3 24) A = _i_yl/(l—a)v(l_a)CLA

‘ T 4v(l-w) b
Then for every m < oo, if
(3.25) dist(A, Sp(Am(uo))) = p,
then we have
(326) |(Am(u0)_A)71’U| SK7(ylp!S!v!R)|v|l VU EHm,
(3.27) [(Am(ue) =)l < Kg(y,p,s,v,R)|v], Vv € Hp,
(3‘28) |A(ﬂm(u0)—2\)_lv| 5K9(Y’p,S,V,R)|v|, Vv EHml
where
(3'29) K7(Y,P,S,V,R)

KH(Y,R,V,f,Z), Aéo—(-R_AC/z)

_ exp{% + %|S - 2Ac1?Kig(y, v, R, |s —27\c|)}

M
1 21s — Acl
X AN 2N ( ’ ) , Aeog(R-A:/2),
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(3.30) Ks(y,p,s,v,R)

CiR? 2s
_ | (oA, y110- i )Kz R
|:( 1}’ + (1_0()2V2+ +(1_0()V 7(y1vi Jz)
2K7W,V,R,z>]”2
(1-x)v ’

(3.31) Ko(y,p,s,v,R)

2p2 1/2
=[< 8 + 16CiR +4y2/“°‘)CL22\%> Kg(y,V,R,z)

1-0)v vl -x)?

4
+ m] K7(Y,V,R,Z),

where
~ 2

M = Kg <y,2?\c + —,v,R) ,

[Acl

Ac is defined earlier in (3.24), and Kys is as in (3.23).

Proof. By applying Lemma 3.4 on page 49, we only consider the case of A €
0 (R — A¢/2). One can check that 2A. ¢ o (R). Thus, by Lemma 3.5, Fy, =
(Am(ug) —2A.) 7! is an H-S operator. On the other hand, we can write

(Am(ug) —A) 7" = (A =2A0) " (Am(ug) —22.) 7!
X ((A=22Ac) 7' = (Am(ug) —22c)7H 7

Notice that (A — 2A.)"! & Sp(Fm). We apply Lemma 3.4 on page 49 and the
Carleman inequality to get

1 Am (10) = A) "Ml 23, 54m)

1 , ,
< P (Fy) | lel 2N I BA=2A P
AC|)\ ZAC|2| A ZAC( ‘VI’L)'

Now we apply Lemma 3.5 on the facing page and the estimate for [@a—2a. (Fm)|
in [75] (see [75] for details), and we have

[(Am(uo) =)~ 'v| < K7(y, p,s,v,R)|v],
where K7(y, p, s,V,R) is as in (3.29).

Now we show the estimates (3.27) and (3.28). Foreach g € Hy,, let (A4, (1g) —
M7 lg=v,ie,
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(3.32) VAV + Py (B(uo,v) + B(v,Ug) + yPmLv) — Av = g.
Taking the inner product of equation (3.32) with v in H, we obtain
vIvIZ < AT vI? + [(g, v)] + [(B(v, uo), v) | + yI(Lv,v)].
By using (2.8) and (2.21), we reach
vivl? < slvl?l+ gl vl + Cllugll lv | vl + yvCE oA v 2% lv |12*.
Thanks to Young’s inequality and the estimate (3.26), we get

v(l — x)
2

2
Cilluol?|v[?

1/(1-x) 1— A 2
vil-o Y V(I =) CrA |V

lvl? <slvl* + gl lv] +

< [(s + _CGiR? + yl/“*"‘)vCLM)KZ(y p,5,v,R)
2V(1 _0() 7 yHy2s vV

+K7(y,p,s,v,R)]IgI2,

which implies (3.27). Moreover, taking the inner product of (3.32) with Av in H
gives us

vIAVIE < ALIVI2 + [(g, Av)| + [(B(v, up), AV) |
+ [ (B(ug,v),Av)| + yl(Lv, Av)|.
By using (2.9), (2.10), and (2.20) with B = &, we get
VIAV* < sllvli? + Igl LAV ] + Cilluoll' 21 Auel V2 v V2 (v |2 Av|
+ Crluo 2| Auo "2Vl JAV| + yvCl A% |v || Av [ THe,
By Young’s inequality again, and the estimates (3.26) and (3.27), we reach

va-o) e 2, 20g1* 2CTuoll [Auol vl v
: |[Av|? < s|lv || +v(1—0<)+ v(l — &)

2C3 gl [ AU V1P |1y, (1= )
vl - x) Y 2

2 4CER? 2/(1-0y, 1= &) 252
S[v(l—(x)+<5+2v(1—o<)+’/ M

xKé(y,p,s,v,R)] g%,

X )
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which implies (3.28) and completes the proof. O

We now show that the spectra of A, (1) are, in some sense, close to each
other when m is large enough.

Lemma 3.7. Let R > 0, ug, u; € D(A) with |Augl < AJ?R, |Auy| <

A?R, and let s, p > 0. Then there exist a constant

A%
3C1K:*(y,s,v,R)K7(y,p,s,V,R)

(3.33) n(y,s,p,v,R) =

Al
X ,
Ky (y,s,v,R) + A}/

and a constant

(3.34) My(y,p,s,V,R)
C _
=max{c—ﬁ<4y1<s(>/,s,v,R>K7(y,p,s,v,R>>”“ @

2C

T (ZCIRKS(}/;S,\’,R)K7(Y’pysyv,R) + K4(}/JSJV1R))} )

where K4(y, s, v,R), Ks(y,s,V,R), and K;(y,p,s,V,R) are as in (3.11), (3.12),
and (3.29), respectively, such that if |uo — w1l < n(y, p,s,v,R), and the condition

(3.35) (Sp(Am(up))), =@
holds for some m € [My(y, p,s,V,R), ), then for every n € [m, o] we have
(3.36) (Sp(An(u1)))s € B(Sp(Am(uo)), p).

Proof. Let n = m, and let A € (Sp(An(u1)))s, ie., there is a w € Hy,
|lw| = v such that A, (u;)w = Aw and |RA| < 5. Denote by

u}m = me and Wm = Qmw,

where Py, and Q, are the orthogonal projections defined in Section 2 on page 41.
Suppose that A ¢ B(Sp(Am(ug)),p), ie., dist(A, Sp(Am(ug))) = p. Then by
Lemma 3.6 on page 50, we get

W |

CAwy| > Wml
| Am (o) wm = AW = K7(y,p,5,V,R)
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Since
(Wil = [w| — (W,
then by applying Lemma 3.3 on page 47, we have

AI/Z - AI/Z ’

m+1 m+1

Wi <
where K4(y,s,v,R) is given by (3.11). From the above we reach

[Am (Uo) Wi — Awyy| =

1 ,_ Ki(y,s,v,R)
K7(y,p,s,V,R) A2 '

m+1

where K7 (y, p,s,v,R) is as in (3.29). On the other hand,

AmUo)Wm — AWy, = A (o) Wm — P (An(u)w)
= P [B(uo — U1, wm) — B(uy, W) — B(Win, Uo)
+ B(w,ug — uy) — yLwy,].

By using the inequalities (2.8)-(2.10) and (2.20) with B = «, we obtain
[(Am(Uo) — D)Wy

Ug— U ~
<¢ (%nwmn“zmwmwz + |u1|1/2|Au1|1/2||wm||)
1

+ C1 (IluolM2 1 Auo M2 (Wi |21 1172 + ug — w | [w |12 Aw]1/2)

Y VO OAL Wy || AT |

K{*(y,s,v,R)
< CiK5"”(y,5,v,R) (% +1 ) lluo - wi
1
2C1RKs(y,s,v,R)  yvCi *Al"®Ks(y,s,v,R)
+ /2 + PURE ,
)\m+1 m+1

where K4(y,s,v,R) and Ks5(y,s,Vv,R) are given by (3.11) and (3.12), respec-
tively.
Now if we let

luo —will = n(y,p,s,v,R) and m = M,(y,p,s,v,R),

where n(y,p,s,v,R) and My(y,p,s,v,R) are as in (3.33) and (3.34), respec-
tively, then
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K;*(y,s,v,R)

y
> C1K3%(y,s,v,R) [42\1,4 - 1] o — ui
1

K7(y,p,s,V,R)

2C1RKs5(y,s,Vv,R) K4(y,s,v,R)
+ 172 + 72
2\1/}’1-%—1 K7(}/,P’5,V,R)/\m+1

L YWVCTA K (5, v, R)

1-«x
2\m+1

This leads into a contradiction. Thus, A € B(Sp(Am(uo)), p), i.e.,

(Sp(An(u1)))s € B(Sp(Am(uo)), p).

Since f € H, then there exist a constant M3(y, 0, v, f,K3) such that

Ay

(3.37) 1Qm.f1 < 8C1Ky(y,0/2,0,v,K3)

vm = M;(y,o,v, f),

where K3 is as in (3.6) and K9(0 /2,0, Vv,K3) is as in (3.31).

Indeed, given f, we can compute K3 and K9(0/2,0,v,K3), and then esti-
mate M3(y, o0, v, f,K3). However, we do not have a priori knowledge about the
magnitude of M3(y, 0, Vv, f,K3). For the case f € V, we have an explicit a priori
estimate

(8C1 ||f||K9(% 0-/2’ g, V’K3))2 )

Ms(y,o,v, f,K3) =
3 3 C()/\?

3.2. The main result in the Galerkin case. Next we present our main the-
orem of this section.

Theorem 3.2. Let 0 > 0 be given, and let wyy, € V be a steady state solution
of the Galerkin approximation (3.1) of the closed-loop NSE (2.18) with |ugy,| < K;.
Then there exists a constant

(338) MGLK(y,O-!V!szl) = maX{M4(Y,U,V,f,K1), MS(Y,O"V,f,Kl)},

where My(y,o,v, f,K1), Ms(y,o,v, f,K1) are specified in (3.49) and (3.59),
respectively, such that if the condition

(3.39) Sp(Am(Uum)))e =@

holds for some m = MarLx (y, 0, Vv, f,K1), then we have
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(i) Foreveryn € [m, co] there is a hyperbolic stationary solution Wy, of the Galerkin
approximation equation (3.1) of order n, for which

(3.40) (SPAWE))) o2 = D,
(341) |u;‘i"_u1°/l°| < KlO(y,U,V,f,Kl)’
Am+1
(3.42) |A(upy, —uy) <K (y,o,v, f,K1),
where
(343) KlO(y;O—,V,f,Kl) — 1 + 4C1K3K8(Y’A?;42’0—’V’K3)
1
1-«x
+ 2yv (AICL) Rk
Am+1

AiKo(y,0/2,0,v,K3)

(3.44) Ku(y,o,v, f,K1) = 20,

where Kg(y,0/2,0,v,K3)) and Kg(y,0/2,0,v,K3)) are as in (3.30) and
(3.31), respectively.
(ii) There is a stationary solution U™ of the closed-loop system (2.18) such that

(3.45) u; - u® asmn — co.
Moreover, U™ is hyperbolic and
(3.46) (Sp(AUZ)))o/2 = O,

Kio(y,o,v, f,K1)

(3.47) [u® —uyl <
An+1

Proof. First we will show the existence of usyy. Let v = upy, — ugy. If ujy is
a stationary solution of the Galerkin equations (3.1) of order n, then v should

satisfy
(3.48) VAUV + PyB(upy, + v, Uy +v) — PuB(us,, us,
+ yPpL(u;, +v) — yPyuLu;, = Ppf — P f.
Thus,
An(up)v = VAU + Py[B(up,v) + B(v,uy) + yLv]
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By Lemma 3.7 on page 53, we have (Sp(An(up)))g/2 = &, when m =
M,(o,0/2,v,K3). Therefore, A, (usy,) is invertible. Denote by

Fw) = (ﬂn(u%))_l(QmPnf = QmPnB(Up,up) — PnB(v,v) — yQmPnLuy,).

By Lemma 3.6 on page 50, we get

|Af(v)| = K9 <)’,%,0',K3:V’f)

X |QmPnf — QmPnB(upy, uy) — PuB(v,v) — yQmPnLuy,|.

By using (2.9), (2.11), and (2.20) with B = «, we obtain

o 2CK?
|AF (V)] = Ko <y,§,0',v,K3> [ImeI + i
2\1 Amﬂ

+

yvCi*Alm*K; . Ci|Av|?
Al*O( Al :

m+1

Therefore, if m > M4(y,o,v, f), where
(3.49) My(y,o,v,f,K1)

1024CHK5Ks(y, 0/2,0,v,K3)
CoA?

= max {MZ <0-| %lviKa) ’ M31

93 (16C1va3K§(y,0/2,0,v,K3))”“_“)}

Co Ay
then
|Q f|+ 2C1K§ yVCLl_IXA%_aK3 Al
A, A s 4CiKE(y,0/2,0,v,K3)

As a result, F maps
(3.50) B, ={veH,: |Av| <7}

into By, where

C1K? VvC}T¥AlT*K o
(3.51) r:2[|me|+ i+ Y e K9(y,5,o,v,1<3)
2\1 2\m-¢—1 m+1

Aq
S 2CKo(y, 012, 0,v,K3)
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Moreover,

2C1vKy(y,0/2,0,v,K3)
A1

[A(F(v1) — F(v2))l < [A(vy — Vi),

and

2CirKy(y,0/2,0,v,K3)
AL < 1.

Therefore, F is a contraction map on By, given by (3.50), and as a result it has a
unique v* € {v € Hy : |Av| < v} such that uy; = ujy, + v* is a steady state of
the Galerkin equations (3.1) of order n, and

A1
2C1K9(y, O'/Z,O',V,K3)’

when m = M4(y,o,v, f,Ki1), and M4(y,o,v, f,K1) and K9(y,0/2,0,v,K3)
are as in (3.49) and (3.31), respectively.

Next we will show the estimates (3.41). Let vy = Ppuuyy — usy, and Uy =
Qmusjy. Subtract the Galerkin equations (3.1) of order m from the one of order
n, to get

(3.52) JA(uy; —usy)| <r <

(3.53) VAU + P (B(uy, upy) — B(up, upy) + yPmL(u;, — usy,)) =0,
(3.54)  VAUm + QmPuB(uy,uy) + yLuy) = QmPnf.
As a consequence of the equation (3.53) we obtain
Am (Um) Vi
= VAV + Py (B(Uyy, Um) + B(Um, Uyy) + YLU )
= —Pmn[B(Vm + U, Um + Um) + B(Usy, Um) + B(Um, usy) + YLV ]
= —Pp[B(Vm, Vm) + B(upy, Um) + B(Um, uy) + yLUm].
By using (2.6) we have for every wi, ws, w3 € Hp,
(3.55) [((Am(up)) 'B(wi, w), ws)| = [(B(wr, w2), (Am(upm)) ") *ws)|
= [(B(w1, (Am (upy)) ™) *ws), wa)l.
By using (2.8) and (3.27), we get
|((Am (uy) " ' Bwy, ws), w3)]

< Crlw "2 Aw V2| (A () "D ¥ ws) || [w;|

g
—,o,v,Kg) w21 Aw, V2w, | s,

< (K3 (Y, >
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where Ks(y,0/2,0,v,K3) is given by (3.30). Now by using (2.9) and (3.27) in
(3.55), we obtain

| (A (uiy)) "' B(wy, wy), ws)|

< Clwi H((Am (ug) ™) ws) || w2 Aw, |12

g
< CiKs (y, —,O',V,Ka) wi ] [wal 2] Aws )2 ws .

2

Therefore, we reach

(3.56) (A (us)) ' Bwy, w)|

< CiKs (y, %,o,v,Ks) w1 112 Aw, V2w,
(3.57) (A (us)) ' B(wy, w)l.

< CiKg (y, %,O',V,Ka) wy] w172 Aw, |12

As a result of these estimates, Lemma 3.6 on page 50, and the inequalities (2.7)-
(2.11) and (2.20) with B = 0, we obtain

[vm| < |(Am(u%))_lpm[3(vm,vm) +B(u;’l°,ﬁm) +B(ﬁm|u;§) + LUp]|

C o
= —A1}4K9 (2/, g,a,v,Ka) A 2
1

2CiKs (y, 7 o, v,Kg) KK (5]

2

. yvCi Al Ky (y,0/2,0,v,K3)
A

[Tl

Notice that

1/2 12 _ |AUM|
[Um | lom 77 < A?/Z‘ ,
and
Sy (1,2, 00,k 1
A1K9 Y 2,(f,v,K3 [Avm,| < 7

Therefore, by using the estimates (3.52), we get

Kix(y,o,v, f,K1)
Aerl

[Um| <
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where

(3.58) Kiz(y,o,v,f,Ki) =

4CiK3Ks(y,0/2,0,v,K3) | v (AICL )1‘“_

AL At

Then the estimate (3.41) is achieved.
Let

Ki(y,o,v, f,K1)
CoAin(y,o,0/2,v,K3)’

(3.59) Ms(y,o,v, f, K1) =

We apply Lemma 3.7 on page 53, when m > Mgk (y, 0, Vv, f, K1), to conclude
(Sp(A(U™)))g/2 = D. O

4. A STABILIZATION CRITERION FOR THE NONLINEAR GALERKIN
APPROXIMATION

Without loss of generality, we will assume that & = % in the condition (2.20) in
this section. By now, it is a well established fact that, for the dissipative parabolic
evolution equations, the nonlinear Galerkin method, which is based on the theory
of Inertial Manifolds [32] and Approximate Inertial Manifolds (AIM) (see, e.g.,
(271, [33], [53], [63], [76] and references therein), is a more accurate numerical
method than the standard Galerkin method (cf. [23], [39], [47], [48]). Motivated
by this superiority in accuracy of the nonlinear Galerkin method, we show here
that a similar criterion, yet stronger than the one stated in the previous section, is
available in the context of nonlinear Galerkin method.

Here, we will restrict ourselves to the nonlinear Galerkin method that is based
on one of the simplest AIM, the one introduced in [27]. That is, for the closed-
loop NSE (2.18) and (2.19) we have the following nonlinear Galerkin approxima-
tion:

d
4.1) %"‘VAPWL +Pm[B(pm+Qm,pm+Qm)—B(Qm,Qm)
+ yL(pm + Qm)] =P f,
(4.2) VAGm + Qm[B(Pm, Pm) + YLPm] = Qmf,
(4.3) Pm(0) = Ppin,

where py € Hy, and @iy € Q.

For 1 < m < o we denote by py, + q;, the stationary solutions of the
equations (4.1) and (4.2). Specially, g% = 0 and u® = pg is a steady state of the
equation (2.18). We will denote by

(4.4) Popp (Um) = (VA)il[me - QmBum, um) — yQmLuml,
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for any um € Hyp, the Foias-Manley-Temam AIM [27]. Furthermore, we also
denote by N (Um) : Hm — Hp the linearized operator of the nonlinear Galerkin
closed-loop operator given in (1.1) and (4.2) about U + Papp (Um), defined as

(4.5) Nm(um)w = VAW + Py [B(Um + Papp (Um), W)

+B(W, Um + Papp (Um)) + B(Um, E(W)) + B(E(W), um) + yL(w + E(w))],
for all w € Hy,, where E(w) € Qy, satisfies
(4.6) VAE + Qum[B(Uum,w) + B(w,uy) + yLw] = 0.

When m = 0, N (Ue) = A(Ue).

Lemma 4.1. For any m € [1, o), if there is a steady state py;, + ay, € V of
equations (4.1) and (4.2) with

(4.7) P +a%) < Ny,
then (pgy, + asy) € D(A), and
(4.8) lps + amll < Na = QvAIGN)Y2 + 2y ¢l A1 2Ny,

12C? 1/241/2
Vzl NIN? + 8yC;/2A12N,

4.9) 1A +ap)| = APN3 = 4vAG +

where again G = | f| /] (V2A1) is the Grashoff number.

Proof. Let pyy, + q;y, be a stationary solution of the equations (4.1) and (4.2),
with |py;, +qpy| < Ni. Taking the inner product in Hy, of the equation (4.1) with
P and the equation (4.2) with g, in Qm, and using (2.6), we get

VIPmlI> + B(po, am) p) + ¥ (Lo + am), pm) = (f, o),
viiamll® + (B(pm, pi)s am) + ¥ (L(pm, am)) = (f, am)-
Adding the above equations up and using (2.6) again, we obtain
vipm P+ viaml? = (f.pm + am) — Y(L(poy + ap), P + am) + ¥ (Lag,, dy,).
By using (2.21), we obtain
0 |12 00 (|2 00 00 1/241/2 00 0 00 00
VIpmllZ + viamll® < 1f1pm + aml + 2yvC AV [ pm + dm| 1P + dml.

By the Cauchy-Schwarz inequality, we reach

%
E(Illﬂ;';’lll2 +llaml*) < IfINi + 2y*vCLAINT,
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and the estimate (4.8) follows. Taking the L?—norm of the equations (4.1) and
(4.2) leads to

VIA(pm +am)| < |f1 + [B(pm, po) | + 1B(pm, am) |
+ [B(@m> )| + YLy | + [ Lgpy ]
By using (2.7)-(2.10) and (2.20) with 8 = %, we conclude
VIA(pg +ag)| < |f1 + Cilpg " lpmll 1Apg Y2 + Cilpg P llag | |Apg |12
+ Cilag P lpsll 1Aam Y2 + yvC PA P Lipsl + lag .

Thanks to the Cauchy-Schwarz inequality, we get

I 12

£|A<p$ﬁ +ag)l < |fl+ %lzup;'m g2 + pillagl? + lag| 1pgsl2]
+ yvCPAPLIpEl + llag ],
which implies the estimate (4.9). O
Lemma 4.2. Let Wy, € Hyy with |Aum| < A{/zR. Then
(4.10) |A®apy (Wm) | < A2 N4(y, R, v, f),

where

Qumfl  2CR?  C*VAR

vl v A

Suppose that w € V and E(w) satisfies (4.6). Then

2CiR

(4.12) IE(w) < lwl +yC A1 wl.

Proof. Let Vi = ®app (Ui ). Then vy, satisfies

VAUm + Qm[BWUm, Um) + YLum] = Qmf.

Thus
1 |VB(Um, Um)] |A1/2Lum|
|[Avp | < — [IQ | + +
ml =y e AT Y RE,
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By using (2.11) and (2.20) with B = 1, we get

Qmfl | 2C1Auml® | C"*vAIR
v VA}/ZAl/z )\1/2 .

m+1 m+1

AUy | <

Then (4.10) follows. Now, taking the inner product in H of equation (4.6) with
w, we get

VIE(wW)I? < [(B(Um, ), E(w))] + [ (B(Um, w), E(w))| + y|(Lw, E(w))].
By using (2.7)-(2.10) and (2.21), we obtain
VIE() 2 < 2C1 um 2 Aum " IE(w) | 1| + yvCPAPIE() | w.

Therefore, (4.12) holds. O

Lemma 4.3. Let Wy € Hy with |Aum| < A{*R. Ifw is an eigenfunction of
N (Um), thenw € D(A). Moreover, if lw| = v and.’]\fm(um)w = Aw for some
A, then we have

(413) ”w” SN5(y,A,R,V,f),
(4.14) |[Aw| < Ng(y,A\,R,V, f),
where

(415) Nﬁ(y’A!R!v’f)

221/2p2
=<4|A|v>”2+2cl<R+N4(y,R,v,f))+Cl;‘mR +VT2yvelal?,
v

m+1

(4.16) Neo(y,A,R,v, [f)
= |A| + yC*AV2IN. 1/z(y $,R,v,f) +2CiR + yvC;*Al?]

T[R + Na(y, R, v, /)1[Ns(y, A,R, v, f) + 2CiR + yvCi2A12].

Proof. Let Viy = ®app(Um), and let w be an eigenfunction of Ny, (W) with
corresponding eigenvalue A such that [w| = v, i.e.,

(4.17) VAW + Py [B(Uyy + Uiy, W) + B(w, Uy, + Vi) + By, E(W))
+B(&(w), um) + yL(w + &E(w))] = Aw,
(4.18) VAE + Qum (B(Um, w) + B(w, Uy) + yLw) =0



64 CHONGSHENG CAO, IOANNIS G. KEVREKIDIS ¢ EDRISS S. TITI

Taking the inner product in H of the equations above with w and & respectively,
gives

(4.19) viwl? + (B(w, um + vm), w) + (B(Um, &), w)
+ (B(&, um),w) +y(L(w + &), w) = Alwl?,
(4.20) VIEI? + (B(um, w), &) + (B(w,um), &) + y(Lw,&) = 0.
Adding up these two equations,
viwll> + vIEN? < IAllw]* + [(B(w, um + V), w)| + [(BE(W), um), w)|
+ (B(w,um), )| + yl(Lw, w)| + yl[(Lw, )| + y (LE, w)].
By using (2.7)-(2.10) and (2.21), we obtain

vIwll? + vIEI? < IAlw]? + Cillum + vl lw] 1wl

2C, 1/241/2
+ S At w2 w28 + yvC PA P w] lw])
1

+ 2yvC AP wl TE.
By Young’s inequality and the Cauchy-Schwarz inequality, we reach

v 2 2 C14A%R4 2 2 2.,3
Slwll” < viIAl + 5— + VCi[R + N4(y,R, v, )17 + 3y“v’CLA;.
2 4V

Therefore, the estimate (3.9) is proved. Moreover, by taking the L2—norm of the
equation (4.17), we get

vIAw| < VIA| + |B(Uwm + Vi, W) + B(W, U + Vi)
+ B(um, &) + B(E, um) + yL(w + &)|.

By using (2.7)-(2.10) and (2.21) again to the above estimate and equation (4.20),
we have

C C
vIAw| < VIA| + Al—}zm(um + )| lwl + Al—}4|w|”2||w||”2|A<um +Um)|
1 1

C C
+ A + V) L IEN + 7 NEINA Qe + V)|
Al ALAA

1 m+1

+ yvC A w + €.
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From the estimate (4.12), we obtain
IEIl < 2CiR + yvC Ay,

As a result of these estimates we get (4.14), which completes the proof of the
lemma. -

Lemma 4.4. LetR > 0, uym € D(A) with |Auy| < Ai/zR, and s € R, and
let T\ (S) be the number of the eigenvalues of Ny (W) whose real parts are less than
orequal to s, i.e.,

Ti(s) = # of {A € Sp(Nm(um)) : RA < s}.
Then
(4.21) Ti(s) < N7(y,s,R,v, f),
where

45Co 8C}R?

+
VAL v,

(422) N7(Y,S,R,V,f) = %{( + 12)/2CLC() — 1)

+

[ (45C0 8CZR?

+
VAL v A,

2
+12y2C1Co - 1)

16CoC> (R + Na(y, R, v,f))z} ”2}
+ .
Vz)\l

Remark. Here again, in a sense, the estimate (4.21) is sharp since the constant
N7(y,s,R,v, f) is growing linearly in 5. For example, when i, = 0and y = 0
we have A (uin) = VA, and in this case the Aj = A; behaves like j asymptotically
(see (2.5)). Indeed, T1(s) ~ s in this special case.

Proof. Letm < oo be finite, and let Ay, ..., Ak be the eigenvalues of Noy ()
repeated according to their multiplicities such that RAj < sforj =1, 2, ..., K.
We will denote by Ex the linear space spanned by the generalized eigenfunctions
of N (Um) corresponding the the eigenvalues Ay, ..., Ag. Let ¢y, ..., ¢k bean
orthogonal basis of Ex with || = v forj=1,2,...,K, and letIlg : Hy, — Ex
be the orthogonal projection. We set vy, = Papp (U ) and observe that
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(423)  ®R( > KA;) = Ritrace(Ix Nom ()T}
j=1

= V2R D K (N ()W, )

Jj=1

=v2RE S K[VAW;, W) + (B, Um + VUm), @)
j=1

+ (B(um, E(Wj)), ;) + (BEW; ), um), ;)

+y(Ly; + Ew,wpll.

Since
VAE(W;) + Qm[Bum, @) + B(yj,um) + yLy;] =0,

by taking the inner product in H of the above equation with &(y ), and by using
(2.6), we have

Bum, E(Wj)), ;) = vIAE(W;), E(Y;) + (B(Yj, um), E(Y;))
+y(Ly;, E(yj)).

Substituting (B(um, (@), @;)) in (4.23) gives us

R( D KAj) = v72IR{ D K[VAW,, w)) + VAE(W), E(w))) +y (L, E(W))
j=1 j=1

+ BEW ), um), ;) + (B(yj, um),E(Y;))

+ B, um +Um), ) + y (L + EW)), e}

By (2.21), we obtain

R(DKAj) = v 3 K[vIwiI2 + vIEWHI? = (B, tm +vm), @)l
j=1 Jj=1

= [BEW; ), um), i)l = [(B(Wj, um), E(Y;))]

= yvCPA P sl Ul + 215w .
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Now let us estimate each term in the right hand side of the above inequality. First
by the Cauchy-Schwarz inequality and Lieb-Thirring inequality (2.12), we reach

1/2
ST KIBW, tm + Vi), 1) < (jg (3 Kuy(0) - 900) dx) it + vl

Jj=1 J=1

1/2
< (G2 Zlanjnz) It + Vi
J:

%
7 EK”(I}]HZ + Callum + vl

,J;

By using (2.7)-(2.10), we obtain
[(B(E(Wj), um), Y| < CIRIEWHIIEWHII,

and

[(B(wj,um), &E(Wi))| < CRIE(WHINEW)I.

Thanks to the Cauchy-Schwarz inequality, we get

VO lw i Ulw il + 21 EWH D

< gnwjnz +Y2VCrAL w2 + 2yv AT g L TE () I,
On the other hand,

D Klwil* = X K(Apj,pj) = X KvAj,

j=1 Jj=1 J=1

Ks = R( D KA ).
j=1

Therefore, by applying (4.12), we get

2CIAPR2] Collum + vmll?
Ks=%®( > KAj) = > K [‘Z’Aj 3wy’ - S | - z||umv vml®
j=1 j=1 m+1

By using (2.5) we reach

A K(K +1 2C3A1°R?
ks> YMKE LD 5 200k - 2SN R ¢ —Q(R + Ni(y, R, v, f)),
2C0 2 Am+1

which implies (4.21). |
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4.1. Estimates for the resolvents in the nonlinear Galerkin case. In this
section we define as in Prodi [67] the parabola-like set T(R) C C, by setting

(4.24) T(R) = {z eC:3qx = Ay, |z—-vx]|

<[C1(R+ @(R)) + yvA}'*C}*]x 12

NIECTRRSVEEN
2)\1/4)\1/4 A1/2 :

1 m+1 m+1

where C; and Cy are as in (2.7) and (2.21) respectively, and

fl . GR.  yAP”?
C(R) = A2 tE * N
VAm+i VAm+1 m+1
Denote by
§ 1 (6CiR\* 16y2C,
4.2 M- ( ) , .
( 5) max { C()A% v Co

It is clear tlzat whenm > M, T(R) isa parabola-like set. Now and later we assume
that m = M.
Similar to Section 3 on page 44, we can show the following two lemmas.

Lemma 4.5. LetR > 0, Wy €V with |umll < R. Then

o the spectra of Nonw(Um), m =1, ..., o, are in T(R);
o for every z & T(R) the following inequalities hold:

(4.26)  |(Npm(um) —z) | <dist(z, T(R))'v| = Ny (y,R, v, f,2) V],
(4.27) I Am(ug) —2) "l < Nv(y,v,R,2)|v], Vv € Hp,

(4.28) |A(Am(uo) —2) " "W| < Na(y,v,R,2)|V|, VvV E Hp,

where
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(4.29) Ny(y,R,v,f,2)

_ (2NH(}/,§,V,f,Z)>1/2 . (2'VZ')1/2NH(>/,R,v,f,z>

V2Ci (R + N4(y,R, v, 2C,AR
N [ 1( ‘4/()’ S +y BCA; + 11/4
Vil

X Nu(y,R,v, f,2),

(4.30) Na(y,R,v,f,2)

=Ly (ZQR " C”ZA”Z) Nit(y, R, v, f, 2)

12
’ [<¥> ZCI (R +Ns(y,R,v, ) + yCL”z?\l/z]

X Ny (y,R,v, f,2),

Lemma 4.6. Let R > 0, wy € V with lumll < R. Then for every z ¢ T(R)

the operators (Nom (Um) — 2)71, form =1, ..., oo, are H-S operators. Moreover,
(4.31) Il (Nom (Um) —2) "2 < Nus(y, v, R, 2),
where
(4.32) Ny ( sz)—C Na(y,V,R, 2),
. HS Y, il il - \/EAI A }/;

where No(y,R, Vv, f,2) is as in (4.30).

Following Section 3 on page 44, we denote by
Ac = ——[cl (R+T(R)) +yvA*Cl*1,

M:N7(y,2?\c 2 va)
Al
where N7 is as (4.22).

Lemma 4.7. Let R > 0, Uy, € V with |uml| < R, and p, s > 0, and let
A € Csatisfy |RA| < s. Then for every m < oo, if

(4.33) dist(A, Sp(Nom (um))) = p,
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then we have

(4.34) (N (um) — A" v| < Ng(y,p,s,R,v, f)lv], Vv € Hy,
(4.35)  [(Nmum) =AN)~"vll < No(y,p,s,R, v, f)lvl, Vv € Hp,
(4.36)  |A(Npm(ug) —A)'w| < Nioly,p,s,R,v, f)lvl, Vv € Hp,

where

(4.37) Ng(y,p,s,R,v,f)

Nu(y,R,v, f,2), A¢Eo(R-A2),
_ exp{%+;Is—ZACIZNIZJS(y,v,R,IS—Z?\CI)}
M
1 2|S_Ac|
XACIA—ZAAZ( > ) , A€o (R-2A/2),

(4.38) No(y,p,s,R,v,f)

_ <2N8(Y,P,S,R,V,f)>1/2+ (%)UzNg(y,p,S,R,v,f)

\ %4
9 ?\1/4R
N [ﬂCI(R +N4s(y, R, v, f)) +y 3CLA1+C1f}4]
v VA

X Ng(y,p,8,R,Vv, f),

(439) Nlo(y,P’S,R,V,f)

_l’_

1 (2CiR 2
. (Tl+yCL”2?\i/2) Ns(y,p,5,R, v, f)

1/2
+ [(%) + %(R +N4s(y,R,v, f)) + yCL”zA%’Z]

X No(y,p,s,R,Vv, f),

and Nys(y,v,R,|s —2Ac|) is as in (4.31).

Proof. By using the same approach as for the estimate (3.26), we can get the
estimate (4.34). We only need to show the estimates (4.35) and (4.306).
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Let Uy = ®app (Um) and for each g € Hyy, let (N (um) —A)71g = w, ie.,
(4.40) VAW + Pyu[B(Um + Vm, w) + B(W, Um + Um) + B(um, E(w))
+B(E(w), um) + yL(w + &(w))] - Aw = g,
and
(4.41) VAE(W) + Qu (B(Uyy, w) + B(w,Uy,) + yLw) = 0.

Taking the inner product, in H, of the equation (4.40) with w and the equation
(4.41) with &€(w), we obtain

viwl? + Bw, um + vm), w) + (B(um, E(w)), w)
+ (BE(W), um),w) +y(L(w + E(w)),w) - Alw|* = (g, w),
and
VIEW) 1> + (B(um, w), E(w)) + (B(w, um), E(w)) + y(Lw,E(w)) = 0.
The summation of these two equations leads to
viwl? + vIEI® < (g, w)| + Al w]? + [(B(w, um + Vi), W)
+ [(BE W), um), w)| + [(B(w, um), E(w))|
+yl(L(w + &Ew)),w)| + yl(Lw,E(w))].
By using (2.7)-(2.10) and (2.21), we reach

1/241/2
viwl? + vIEI? < Igllwl + slw]® + yvCPA w (lwll + I1END
+ Crlum + Ul V2 A + i) M w ] Jw ]

2CA1*R
== lwl gl

m+1

By the Cauchy-Schwarz inequality, we conclude

v 3
5llwll2 <lgllwl+slw|*+ EYZVCL)\1|W|2

o Cllttm + il [AGum + vm)| [w? | 2CFA;°R?

1/2 |
v m+1

| 2
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By applying the estimate (4.34), we get (4.35).

Moreover, taking the inner product, in H, of the equation (4.40) with Aw
gives
vIAw|? < sllwl* + (g, Aw) |

+ [(B(Um + Vi, W), Aw) + (B(W, Um + Vi), AW)
+ (B(um, &), Aw) + (B(&, um), Aw) + y(Lw,Aw)]|.

By using (2.7)-(2.10) and (2.20) with 8 = %, we get

VIAW? < s|wl? + 1gl lAw| + Cilum + Vi [V A + vi) V2 |lw || [Aw |

+ Cillum + vm M2 AU + v) V2w V2 w112 Aw |

CilAum| I1El CilAum| ISl
g —petmlisl o 3 |Aw| + —L=mm TS0 1/4"}/45 |Aw|
Ay AT A

+yvCPA P (lwl + IED 1Aw .
By using estimates (4.12) and (4.34), we obtain

2CiR
v

IEw)] < ( N yCL”ZAW) Ns(y,p,5,R, v, P)lgl,

By the Cauchy-Schwarz inequality, and using estimates (4.34) and (4.35) and the
above inequality, we get (4.36). O

Lemma 4.8. Let R > 0 and ug, u1 € D(A) with |Aug| < AV?R, |Auy| <
AV?R, and let s, p > 0. Then there are two constants

v

4.42 ] ’ ’R’ I = ’
(4.42) Ny, p,s, R, v, f) 2C1Ng(y,p,$, R, v, fIN11(y,p,8,R, v, f)

and
(4.43) T (y,p,s,R,v,f) =

4Ng(y,p,s,R,v, INL(y,p,s,R,V, f)
C0V2 ’

where

N2 (y,s,R,v, FINS*(y,5,R, v, f)

(444) N]](y,p,S,R,V:f) = A1/4
1

+ V2N (y,5,R, v, f),
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(445) le(}’,P’S’R’V,f)
= CiA*{R + N4(y,R,v, f)[Ns(y,5,R, v, f) + VI2N 2 (y, 5, R, v, f)]
+ 4C1RNy(y,s,R,v, f) + 2C1Ng(y,s,R,v, f)}

+ yvC2AV?[Ng(y,s,R, v, f) + 2No(y, s, R, v, )1,

and N4(y,R,v, f), N5s(y,s,R,v, f), N(y,s,R,v, f), and Ng(y,p,s,R,V, )
are as in (4.11), (4.15), (4.16), and (4.37) respectively, and No(y,R,Vv, f) is as
specified in (4.49), such that if

1P (o —u)ll < nly,p,s,R,v, f)
and
(4.46) (Sp(Nom (Prug)))s = @
holds for some m € [Ty(y,p,s,R, Vv, f), o), then for every n € [m, o] we have
(4.47) (Sp(Nn(Prut1)))s C B(Sp(Nm (Pmuto)), p).

Proof. Let um = PmUo, Vm = Papp(Um); and pim = PmUt1, Gm = Qmus;
and Pp = Py, dn = Papp(Un). Suppose that A € (Sp(N,(Pn)))s, i.e., there is
aw € Hy, lw| = v such that Ny, (Pn)w = Aw and |RA| < 5. Denote by

Wy =Pupw and w;, = Quw.

If A ¢ B(Sp(Nm(um)), p), ie., dist(A, Sp(Nm(um))) = p, by Lemma 4.7 on
page 69, and using the same argument as in Lemma 3.7 on page 53, we get

W |
4.48 N, -A >——
( ) [N (Um) Win W | Ns(y, 0,5, v, R)
. 1 (v— Ns(y,s,v,R)>
h NS(Y1p|S|V’R) A:’l’/lil

= LH,

where Ns(y, s,R,v, f) isasin (4.15), and Ng(y, p,s,R, Vv, f) is as in (4.37).
On the other hand,



74 CHONGSHENG CAO, IOANNIS G. KEVREKIDIS ¢ EDRISS S. TITI

N (U)W — Awy
= N (Um) Wi — P (N (D) w)
= P [B(Um + Vi = Pn = dn, Wm) + B(Pn + dn, ~wiy)
+ B(—wp, Um + Um) + B(W, Uy + Um — Pn — dn) + B(um, E(wm))
+ B(E(Wm), Um) = B(Pn, T(w)) = B (W), Pn) — yLwiy]
= P [B(um — Pms Win) + B(W, U — Pm) + BE(Wm), Um) + B(um, E(wm))
+ B(Um — dm, Wm) + B(w, U — qm) + B(C(w), Pn) + B(Pn, T(w))
+ B(=Wip, U + Um) + B(Pu + Gny —Wy) — yLwyy ],
where &(wy,) and T(w) satisfy following equations
VAE + Qm[BWUm, Wm) + B(Wm, Um) + yLwm] =0,
VAT + QulB(Pn,w) + B(w, Pn) + yLw] = 0.
By using (2.7), (2.8), and (2.20) with § = %, it is clear that
|AEl < No(y,s,R, v, f),
|AC| < No(y,s,R,v, f),
where

(4.49) No(y,s,R,v,f) = C‘I/—R(Ns(y,s,R,v,f) + V20PN (y, 5, R, v, £))
+ yCL”z/\{/zNg(y,s,R,v,f).
By using the inequalities (2.8)-(2.10) and (2.20) with B = 3, we obtain
[{(Nm (Um) — D) wp|

1w 1" | Aw, |2
1/4
A

sC1|Ium—vmll< +|w|”2|Aw|”2>

Avy| + |A
+61P—Jﬂ—iiﬁﬂwwmn+hm”ﬂAwP”)

AI/Z

m+1

+20A§HAum¢+IACHAﬁM)]
7\1/2)\1/2
1

m+1

+ yvCPAY [lwi I+ IEN + 1T

+QPNW+%H

A2 IIW,%II+Iw;l”zlAwal”zllﬁn+t7n||] <
1
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- [N;“(y,s,R,v,fwg”(y,s,R,v,ﬂ .

N v”zNé”w,s,R,v,f)} m — Pl
1

1
+ W[ClA}/Z(R + Ng(y,R, v, f)(N5(y,s,R, v, £) + VI2N¢(y,5,R, v, £))

m+1
+ 4CiRNy(y, 5, R, v, f) + 2CiNg(y, s, R, v, f) + yvC2Al?)
x (Ns(y,s,R, v, f) + 2No(y,s,R,v, f))] =: RH,
where N4(y,R,Vv, f), Ns(y,s,R,v, f), and N¢(y,s,R,v, f) are as in (4.11),
(4.15), and (4.16) respectively, and No(y,s,R, v, f) is as in (4.49). Therefore,

we have
LH <RH.
But if we let
lum = pml <n(y,p,s,R,v,f) and m=Ta(y,p,s,R,v,f),

where n(y, p,s,R,v, f) and T>(y, s, p,R, Vv, f) are as in (4.42) and (4.43), then

1 Ns(y,s,v,R)}
LH = Vv — >RH
NB(yapsszavvf) |: A}'V/lil
Ni%(y,s,R,v, fIN*(y,s,R,v, f)
:cl[ > Y J;I,f Y P N2y, 5, Rov f) | i — po
1

1

+ AT[ClA%“(RH\u(y,R,v,f><Ns<y,s,R,v,f>+v“2N6”2(y,s,R,v,f>>
m+1

+ 4C1RNO(%51R,V,f) + 2C1N6(%51R,V,f) + yvc]i/zA%/z)
X (NG(Y1S!R|v1f) +2N0(Y1S!R|vaf))]'

This leads into contradiction. Thus A € B(Sp(Nm (uo)), p), ie.,
(Sp(Nn(u1)))s € B(Sp(Nom(uo)), p),

which completes the proof of the lemma. )



76  CHONGSHENG CAO, IOANNIS G. KEVREKIDIS ¢ EDRISS S. TITI

4.2. The main result in the nonlinear Galerkin case. Next we present our
main theorem of this section.

Theorem 4.1. Ler 0 > 0 be given, and let pyy, + ayy, be a steady state solution of
the Galerkin approximation equation (4.1) of the closed-loop system (2.18) such that
lp + gy | < N1. Then there exists a constant

(450) MNLG(yIO-lNliV1f) = maX{T3(Y,0',N1,V1f), T4(y1O-1Nllvif)}1

where T3(y, 0, N1, v, f), Tuly,o,N1,v, f) are specified as in (4.70) and (4.74),
such that if

holds for some m = Mxig(y, 0, N1, v, f), then we have

(i) For every n = wm, there is a stationary solution p;; + qy; of the nonlinear
Galerkin approximation equations (4.1) and (4.2) of order n, for which

(4.52) (Sp(Nu (P2 = D,
(4.53) Py +ay - i - ap) = ROV S)
Am+1
where

(454) ng(y, O',N],V,f)

_ é[AlN/;(Y,Ns,V;f)
\ %

3

x (2C1N3 + yvCLl/zAi/z) (yvCL”2 +

1 N 2C1NZ(Y,N3,V,f)>

172 72
Al A’

+ 2C1)\1N42(Y;N3; V,f)

L A+ AP AnG +2CA N (y, N5, v, fIN10(, 0/2,0, N5, v, )
2C1)\%11VN120(}’, /2, O-vNﬁs V’f)

X (4C1N3 + yVCLl/zAi/z)
:
32C3VN%y(y,0/2,0,N3,v, f)

(7\}/2 + 2N <Y, g

2,0,N3,v,f>

2C1AY2N2(y, N3, v, f)
)\1/2

m+1

X Ny (y,%,U,Na,v,f>,

X <2C1N5 +yvC AT+ 1+
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whereNg(y,0/2,0,N3,Vv, f) and Nio(y,o/2,0,N3, Vv, f) are as (4.39) and
(4.39) respectively.
(ii) There is a stationary solution u* of the closed-loop system (2.18) such that
(4.55) Py +dm — UC asmn — oo.

Moreover, u™ is hyperbolic and

(456) (Sp(-’]\foo (um)))o—/z =0,
N
(4.57) - py - qy) = MO0V S)
An+1

Proof. We will use the contraction mapping theorem to show the existence of
Py +dy-
First let us establish the map. Denote by

W=py+dy —Pm—dm» Wn=Pow, wy=Qnw, dqdm=Pndy,
(71?;1 = an;?u Un = p;:[ + é;ﬁu Un = q)app(un)-

If pyy +ay; is a stationary solution of the nonlinear Galerkin approximation equa-
tions (4.1) and (4.2) based on n-eigenmodes, then w should satisfy

VA(Up + Wy) + Pu[B(poy + Ay + W, P + A + W) — By + Wiy, 4o + W;r)
VA((%O% + wﬁ) + Qu[B(Up + Wy, Up + Wy) + YL(Up + wy)] = Qunf,
that is,

+ B(up, E(wn)) + B(E(wn), un) + yL(wy + E(wy))] = ¥(wy),

(4.59) VAE + Qu[B(uyn, wy) + Blwy, un) + yLwy] =0,
(4.60) VAW — ) + QulB(dpm, un) + B(ppy,dm) + yL4m1 =0,
(4.61) VAW = VAV, — do) + VAE(wy) — QnB(wy, wy),

where
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(4.62) Y(wy)
= Pu[B(a@m,am) — B(dm, dm) + B(dm, wiy)

+ B(wy, dm) + B(un, E(wn) + Un — doy — wi)

+ B(E(wn) + Un — dyy — Wiy, Un) + B(wn, vn — 4y — wiy)

+ B(Un — doyy — Wy, Wn) — B(wn, wn) + YL(E(wn) — wy)].
From (4.61), we get
(4.63) Wy = Vn — dmy + E(wn) — (VA) T 'QuB(wn, wy).

In other words, if we can show the existence of wy, then we get w; by
(4.63). By Lemma 4.8 on page 72, we have (Sp(Nyu(un)))o2 = @, when m =
Tr(0,0/2,v,N3). So Nyn(uy) is invertible. Denote by

(4.64) Fwn) = (Nn(un) ¥ (wy),

where ¥ (wy,) is as in (4.62).
Next we will show that F maps

(4.65) Bn(r) ={w, € Hy : |Awy| <7}

into B, (1), where

A
¥ = )
4CiNyo(y,0/2,0,N3,v, f)

(4.66)
By the estimate (3.28) of the Lemma 4.7 on page 69, we get

IAF (wn)| < Nig (y, %,U,Na,v,f) ¥ (wn) .

Now we will get an estimate for |¥(wy,)|. First, by using (2.7)-(2.11) and (2.20)
with 8 = %, we get the following estimates

4C\N3 + yvC /A2

(4.67)  |AZ(wn)| < 7 |Awy |
m+1
AN (y, N3, v, f)(2CiN3 + yvC2A1%)

4.68 Avy, —g%)] < = LR L 71
( ) | ( n qm | VATI/V/Lil

1
(4.69) |Aw; | < 7 <A}/2N4(y,N3,v,f)(2C1N3 +yvC AT

m+1

2
+ (4C1N3 + yVCLl/ZA%/Z) |Aw1| + 2C1|Au}1|)

A2
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Moreover, we use (2.7)-(2.11), (2.20) with B = %, and the above estimates to
obtain

¥ (wn)l

_ 2GIN5|AE(wn) + v —dy —wo)| | 2GAINE(Y, v, f)
- A Am1

2CIAV AN (y, N3, v, ) IAwE | 2G| Awy |
+ R\ /25172
m+1 ACA

m+1

|A(Vn — dp — wip)|

A 2
n CilAw,|

N PG AP IE wa) - wyl

4C? 26,A12 ,N3, v,
Ci IAwn|3+ CiA1""N4(y,N3,v, f)

~ VA A VA2,

+C1|Awn|2 [1+ 1 (12CIA}/2N3

(4CIN3 + yvC*AV?) | Awy |

+2yCr2A

Ay Amat

. 4C1A1N4(y,N3,V,f)>]

L AN NV ) e yvCiPal?y

Am+1
2CiN4(y,N3,v, f) 2C1ANZ (y, N3, v, f)
x( 1 Y1/23 S JFJ/CL1/2>Jr 4),\ )
VA'I’V[‘FI m+1

Therefore when |Awy,| < 7, 7 is as in (4.66), and

470)  m=Ts(y,0,Ni, v, f) = max{:rz (o, %,V,Ng) T, TG},

where

3CoA;

T, = [3N15(Y,(2(,)N1,v,f)] |

TS — |:16C1N120(Y,0'/2:O'aN?nV;f)NM(y;O_,Nlnv’f):|

and
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(4.71) Nus(y,o,N1,v, f)
16C1VN3y(y,0/2,0,N3,v, f)

+2CINZ (¥, N3, v, f)

12C1A12N3 + 2yvCr/2A1 + 4C AV *Ny(y, N3, v, f)
16C1 VN3 (y, 0/2,0,N3, v, f)

+ Ni(y, N3, v, f)(2C1N3 + yvCl/?Al/?)
y <2C1N4(Y,11/\£3,V,f) N yCL1/2>
VA,

N4(y,N3,v, f)(4C1N3 + yvCLl/z?\%/z)
2vNio(y,0/2,0,N3,v, f) ’

(4.72) Nis(y,o,Ni,v, f)

3C,
4VN]0(y, 0-/2,0)N31V1f)

=2yCiC"% +

202
+ 1 (3N3 + Ni(y, N3, v, )
VA,

. 2CINa(y, N5, v, f)N10(y,0/2,0, N3, . f)
V)\]

X (4C1N;3 + yvC2AT?),

we have |[AF (wy)| < v, that is, F maps By (r) into B, (7).
Finally, we will show that the map F is a contraction map on By, (¥). Suppose
Wy, Wy € By (r). Then

F(wn) = F (W)
= (Nn(un)) "W (wn) — (Np(un)) 1Y (W)
= (Nn(un)) "' Pu[B(un, E(wy) — E(W)) —wi + W3) + B(dg, wi — Wy)
+ B(E(wyn) — EWy — wy + Wy, Un)

~] Aoco

+ B(wy — Wi, aqy) — B(wy,, w;y — W)
- B(wﬁ _wﬁ,afn) + B(wn — Wy, vy _ﬁ% _wé)
+ B(vn _a;; _wﬁ,wn - Wy) — B(wy — Wy, wy)

— B(Wy, wn — Wy) + yL(E(wy) — E(Wn) — wit + Wi)],
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VA(E(wy) — E(Wh))

+ QulB(Un, wn — Wy) + B(Wn — Wy, Un) + yL(wy —Wy)] =0,
VA(wy — wy)

= VA(§(wy) — EWn)) — QulB(wn — Wy, wy) + B(Wy, wy — Wy)].

Then by using (2.7)-(2.11) and (2.20) with g = %, we obtain

— 4CN3 + yvC 22 —
A (wn) — E(Wn)| < 13V;Q2L L Awn — W),

m+1

4C1?\%/2N3 + yVC]}/ZAl + 4C1|Awn|

17241/2
VA A

A(wit —wh)| < |A(wy — wy)l.

As a result of the estimates above, (2.7)-(2.11), and (2.20) with B = %, we have

2|Awn| | 12CHAw, > 8CyCr2 | Awy|
Ay VA1 Am+1 At

g,O’,Ng,V,f)[

< CiNyo (Y, 2

L 8CHAwn| (3N Ni(y,y,Ns,v, f)
VAmi \Al2 A

+ZQAWNA%N@wf)

3/2
v2\m+1

(dcin+ yveial?) .

Therefore, by (4.66) and (4.70), we get

MWWM—?@MHS%MM—WM-

Thus, F is a contraction map on By (r). By the contraction mapping theorem,
there are a unique w;} € B, (¥) and a unique wrt given by (4.63), such that

Py Ay =pomt+dm+wn+wit

is a steady state of the nonlinear Galerkin equations (4.1) and (4.2) of order n,
and

Ay
4CiNwo(y,0/2,0,N3,v, f)’

(4.73) |A(py +ay — Pm —am)| <
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when m = T3(y,0,N1, Vv, f) and T3(y, o, N1, Vv, f) is as in (4.70).

Now we will show the estimate (4.53). First notice that, by using the
same argument as in the proof of (3.56) and (3.57), for all wi, w, € Hyp, we
obtain

g
(N (p52)) " B(wr, ws)| < C1No (y, E,U,Ns,v,f) w1 2] Aws V2w,

o
[(Non (p5)) ™ Bwi, wa)| < CNo (3,50, N3, v, f ) w12 v 112

Then we apply the above estimates and the estimate (4.36) of the Lemma (4.7) to
(4.64), and obtain

lwy | =1Fwy)l

(02 ~oo
SC1N9 (y,?;O-’N3’V,f) |:2N3|§(w:;)+vn_qm_w:;l|
2MINZ(y, N3, v, f)  2A1°NZ(y,N3,v, f)lw;]
+ 2 + e
m+1 m+1

2r(Jup — gy —wi*|)
+ N1/2
1
CiN1o(y,0/2,0,N3,v, f) w32 |w}k|1/?
+ /4
1

o
+yvCPA 2N (y, 3,0,N3,v,f) [E(w1) - wl.
Since w2 w12 < |Aw|/AY* and (C7Nio(y, 0/2,0,N3, v, f)) /A1 =
%,WC gCt

4 o
wil < 3Ny (y, 5,0,N3,v,f) [2CIN3|<vA>‘1QnB<w5i,w1T>|
2010 *N2(y, N3, v, f)|lw;i |
+ A2

m+1
2rCL(IE(w) | + [(vA) 'QuB(wyy, wi) )
+ A%/z

2C1A1NZ (y, N3, v, f)
+ V32

m+1

+yvC A (lon - &l + 1(vA) ' QuBw;i, wiH)]) ]
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Therefore, by using the estimates (4.67), (4.68), (4.69), and (4.73), we obtain

Nis(y,o,N1,v, f)
A3/2 ’

m+1

k
lwyl| <

where

4
Nig(y,o,N1, v, f) = §N9 (y, %,U,N3,V.f)

y [A1N4<y,N3,v,f>(2clNa +yv A

2C1N42(%N3,V,f)>
v

(yvCLl/z +

+2C1A1NZ (y, N3, v, f)

. AP (A2 +2CIN2 (y, N3, v, f)N1o(y, 0/2,0,N3, v, f)
20,2 VN (y,0/2,0,N3,v, )

X (4C1N3 + yvCi2al?)

A2
+
32C?vN%y(y,0/2,0,N3,v, f)

(7\{/2 + 2Ny (y, E,U,Nz,v,f)

2

2C,AY2N2(y, N3, v,
x (2C1N3+yvCL”2A%/2+ ANy 3vf)>)].

The estimate (4.53) follows after this estimate and (4.69).
Let

(4.74) Ti(y, o, Ny, v, f) = [ Nis(y,o,N1, v, f) } |

CO)\I”I(Y, g, 0-/21 V1N3)

where n(y,o,0/2,v,N3) is as in (4.42). When m > Mnig(y,0,N1, v, f), it
is clear that [lw}ill < n(y,o,0/2,v,N3), so the second part of the theorem has
been proved. m

5. POSTPROCESSING THE STABLE GALERKIN STEADY STATES

In previous sections we have provided an explicit numerical criterion for the stabi-
lization of steady state solutions of the Navier-Stokes equations with a certain class
of linear feedback control operators. In this section we use an efficient numerical
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method, the postprocessing Galerkin method, which was introduced in [38], [39],
[40], [65], to improve the error estimates (3.47) and (4.57).

Here we consider only the Galerkin case. One can obtain similar results for
the nonlinear Galerkin case. Suppose us;,, m = Mgrk is the stable steady state
solution of the Galerkin equations. u® is the steady state solution of the closed-
loop Navier-Stokes equations which we obtained by Theorem 3.2 on page 55. By
using the postprocessing technique, we are able to get the following result.

Theorem 5.1. We denote by ®5 : Hy — Hy, the so called steady Approximate
Inertial Manifold ([76)], see also 30 (350), swhich is defined implicitly by

(5.1) ®s(um) = VA 'Qmif — Bum + @5 (Um), Um + Bs(Um))
= YL(um + ®s(um))}
for W € Hp, provided m is large enough (see [76]). We define vy, implicitly by
Vo = —(Am(up)) " P [B(ugy,, ®s(upy, + vpn)) + B(®s(ugy, + v, um))
+ yLOs(uy, +vy)1,
and denote by
u* =upy + v+ ds(upy + v).

Then under the same assumptions as in Theorem 3.2 on page 55, we have

1/2
52 |ue—ut| < Keen oV fKY [1 . 21 g(M)] ,

A%nﬂ Ay
where
K*
(5'3) KPP(yJO-Jvlf’Kl):KP(Y!O-!V’f!Kl) (1+T)’
A'f"’l"—l

where K* and Kp(y, o, v, f,K1) are specified as in (5.11) and (5.13).

Proof. We rewrite u® = pyy, + qpy with py, € Hy and q;, € Qm. They
satisfy the following equations

(5.4) VAP + P B(Pm + dmy Pm + Am) + YL + am) ] = P f,
(5.5) VAGm + Qum[B(Pm + Amy Pm + Am) + YL + am) = Qm S,
(5.6) VAus, + Pm[B(us, upy) + yLupy] = P f.
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Thus, we have

P — Uy = —(Am(Uy)) 'PrulB(py — U, Do — Um) + B(@s )
+ B(@msPm) + B(@m, am) + YLdy].
Therefore, we get

(o] (o] (o]
Pm—Un —Unm

= —(Am(up)) 'Prm[B(py — U, Do — Up) + B, apy)
+ B(am,py) +Blay,ay) + yLay, — B(uyy, s(usy, +vy))
— B(ds(uspy, + Vo), um) — yLOs(upy + v 1.

Notice that, by using a similar technique as in the proof of (3.56) and (3.57), for
all wy, w, € H, and w3 € Hyy,, we obtain

[((Ap (upp) ' Bwy, wy), w3) | < Crlw| [wa| [AY2( Ay (uiy)) ws| .

Now let us recall the following inequality, which holds in the two dimensional
case, from [11]

|Aul 1/2
(5.7) lullzs < Callul {1 + log <7”>} _

1/2
A2 u

Therefore,

|AY2( Ay (u)  ws e

|A2 (A (1)~ ws| )]”2

= ClAAm ) [1 +log (M“mmm(um)—lwﬂ

By using (3.28) with A = 0, p = 0, s = 0, R = K3, and the fact w3 € Hp, we
conclude

1/2 1/2
|AY2( A (up)) wsl e < CKo(y, 0,0, v, K3) [w;| [1 + lO%( AT/E])] .
1

Moreover,

(A (uy) ' Bwy, w))|

1/2
< CLCoKo(y, 0, 0, v, K3) [1 + 3 log (%)] w1 [wal.
1



86 CHONGSHENG CAO, IOANNIS G. KEVREKIDIS ¢ EDRISS S. TITI

As a result of the inequality above, we have

[(Am (us)) "  B(poy = s, P — Ui |

1/2
SC1C2K9()/,O',O',V,K3) |:1+%10g()\;:l+1):| |P;,?l_u%|2|
1

[(Am (ui)) " B(po — Uy drm)|

1 A 1/2
< C1CoKoly, 0,0, v, K3) [1 N E1og( ;:‘1‘)] S —u s,

(A (use)) ' B(apy pon — usm) |

1 A 1/2
< CiGKy(y,0,0,v,K3) [1 + Elog( X:”)] |Pm — um! laml,

[(Am (um)) ' Bug, am — ®s(um +vi)|

Am+1

Aq

1 1/2
< C1GKq(y,0,0,v,K3) [1 + Elog( )] U | 1@y — Ps(Usp + Vi) 1,

[(Am (uip)) "' Blag, — ®s(ugy, + vi), upy)|

1 A 1/2
< C1GKq(y,0,0,v,K3) [1 + Elog( ’:\1:1” U | 1@ — s (Ui + Vi) 1,

(A () "B, am)|

1/2
< CICKo(y, 0, 0, v, K3) [1 " %log(A’;\”1 )] as P,
1

|(Am(up)) " yL(apy, — ®s(usy, + vl
- yvCLl""A%’“

- )\170(

m+1

Ko(y,o,0,v,K3)|qy, — Ps(upy, +vp)l.

Therefore,

[oe]
|p’il?l _u% _vm|

1 Am+1 12
SC1C2K9()/,O',O',V,K3) 1+§10g( A )
1

X [1pm —um|>+21p;m —uml lam| + 21w | lam — s (upm + vi) | + lam|*]

N yvCLl""/\%’“

PR Ko(y,o,0,v,K3)|dy — s (Uy, + V).
m+1
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Now we assume that m is large enough such that

o ey 3
(5.8) |A(pg +ap)| < EA}”Ka,

|A(US + v+ ds(u +v3)) | < %AW}Q,

,_ 3CK [1 1 (AmH)]”z 3CiKs  vyCl *Al ™

(5.9) Moo + - log A - >

%

2 221 A2-20 2
Notice that all the above assumptions are true if m is at least of order G, the
Grashoff number. In fact, to implement the results of our previous sections we
require M to be much larger, namely, that m > Mgix.

Next we get an estimate for |q;, — s (us, + v;‘;).l. Denote by. Wy = Py —
usy, — v,y and by wi, = qp, — ®s(ugy, + v;y). Following the equations (5.1) and
(5.5), we obtain

VAW, + Qm[B(po; + Ay Wm + W;r,)
+ B(wm + Wiy, Uy + Uy + Ps(Upy, + V1)) + YL(Wy + wyy,) = 0.

Following the inequalities (2.7)-(2.11) and (5.7), and (2.20) we get

_3c21<2[ 1 (Amﬂ)]”z_ﬁclKa_vyCz“A%“ L
(V 2 L2108 73, 2o arz ) el

m+1

C1C sl 1w | 1 Amir \ 12
= ;\17/3 [Hilog( Al )]

m+1

+ Crlwm 2 lwm 1M [am 2 Nlam 112 + Crlug V2 Aug, 112w
+ Crlwm |2 w112 1®s (ugy, + v [V 105 (ugy, + vi) 112

yvGe AT
1/2—«x N
)\m+1

Therefore, by using the assumptions (5.8) and (5.9) we conclude
K*

(5.10) lwinl < 7~ lwml,
m+1

where



88 CHONGSHENG CAO, IOANNIS G. KEVREKIDIS ¢ EDRISS S. TITI

1/2 1/2
o PRl v ()]
v 2)\erl 1

3CA1K; yvCi*al—«
1/2 CiKs + 12—«
m+1 m+1

Thus, if m is large enough such that

(5.12)  K*Ko(y,o0,0,v,K3)

" [2C1C2K1 [1 1y (Am+1>]1/2 . yvCLl‘“?\{‘“} _1

Am1 2 M A 2’
we get
0 00 ., 00 KP()/,O-,V,f,Kl) |: l (Am+1):|1/2
[P — U — U] < 2 1+210g N :
where

(5.13) Kp(y,o,v,f,K1) =2CCKe(y,0,0,v,K3)

2
X (KIO(Y,O',O',V,K3) + %Kﬁ) .

Notice that, when m = Mgk, (5.12) is true. Moreover, we have

o o ey < KKe(y,0,v, f,K) [ 1 (Am+1)]”2
|am — Ps(Up) | < N 1+ 2lo A, :
Then the estimate (5.2) follows. |

6. CONCLUSION

In this paper we have presented an explicit numerical criterion for the stabiliza-
tion of steady state solutions of the Navier-Stokes equations with linear feedback
control. We will summarize below our results and the steps of how to implement
this criterion.

Suppose u* is an unstable steady state solution of the NSE. It is not practical,
computationally, to stabilize the infinite dimensional system. However, by using
numerical methods we can find a stationary solution of the Galerkin approxima-
tion equations, or the nonlinear Galerkin approximation equations, which is an
approximation of u*. Suppose that we can design a linear feedback control L,
whose Galerkin (or nonlinear Galerkin) truncation stabilizes this approximate so-
lution. The question is whether this same linear feedback control, L, stabilizes
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In this paper we have shown that the answer to this question is affirmative,

provided we use enough eigenmodes, and the linear feedback operator L belongs

toa

certain class of linear operators which are dominated by the viscous term VA.

This restriction on the feedback controllers is essential in order for the viscous
term to suppress the potential spillover that L might cause, by destabilizing the
higher eigenmodes. This approach is practical because we are now working with a
finite dimensional system.

(i)

(i)

(iii)

A general abstract algorithm. Our general algorithm is as follows:

Find a steady state u};, of the m—state Galerkin approximation equations,
or a steady state p;i, + q;;, of the m—state nonlinear Galerkin approximation
equations, by numerical simulation for some m, such that u},,, or pJi, +q,,
is close to u*, respectively. More precisely, we assume that, in the Galerkin
case,

lu* —ull <e <1,
or in the nonlinear Galerkin case,
lu* — (ph, +an)l <e<1.

Design a linear feedback controller L, which might act on finite or infinitely
many modes, and which belongs to the class of linear operators described
in Section 2, such that u;, is a stable stationary solution of the closed-loop
system

du
d—tm + VAUp + Py B(Upm, U) + Py L(Upy — US,) = Pg

in the Galerkin case, or pj¥ + g}, is a stable stationary solution of the follow-
ing closed-loop system

d
% + VAPm + PuB(Pm + Am, Pm + 4) — PmB(qm, qm)

+ PmL(pm‘FQm_p:q_‘ﬁn) = Pwg,
VAGm + QmB(Pm, Pm) + QmL(Pm — Pyy) = Qmg

in the nonlinear Galerkin case.

Let 0 > 0 be the lower bound of the real part of eigenvalues of the lin-
earized operator, Ay, (ujy,) in the Galerkin case, or Ny (p;y,) in the non-
linear Galerkin case (A, (uf,) and Ny, (p)r) are defined in Sections 3 on
page 44 and 4 on page 60, respectively).
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(iv) Let Mgk and Mnig be as in Section 3 and Section 4, respectively. If m >
Mgk in the Galerkin case, or m = My in the nonlinear Galerkin case,
then the feedback controller L will stabilize a steady state solution u** of the
closed-loop Navier-Stokes equations

i—? +vAu + B(u,u) + L(u —u}y) = g.

Moreover, one has the following error estimate for the Galerkin case

* %

[u** —uh| < and |u™* —u*| < + &,
Am+1 m+1
or in the nonlinear Galerkin case,
* * * | C d % *| <
lu _pm—qm_W an lu —u|_3—/2+£.
m+1 m+1

Furthermore, one can use the postprocessing procedure [38, 39, 65] to im-
prove the accuracy of both (Galerkin as well as nonlinear Galerkin) methods
as it has been discussed in Section 5 on page 83. As a result the above error
estimates, one may conclude that u** is very close to the original solution
u*, provided m is large enough, and that p, + g, converges to u** faster
than u™* does.

(v) Otherwise, if either step 3 or step 4 does not hold we either design another
linear feedback control that allows for a larger o, or increase m and repeat
the above procedure.

In this way one is guaranteed that the linear feedback control L for the finite
system ODEs will stabilize a steady state solution u** of the closed-loop NSE,
and u** is nearby the unstable steady state u* of the NSE.

A specific implementation of the algorithm. Next, we present a special case
of the above general algorithm, which will guarantee ana priori upper estimate for
€, given in step 1 of the above general algorithm, of order O (A, ;) in the Galerkin
case, and of order O(A;f ﬁ) in the nonlinear Galerkin case.

Let u* be, as before, an unstable steady state of the NSE (open-loop)

du
dat
which we are interested in stabilizing. Set u* = &% + nf,, where &}, = Ppu*

and nf, = (I — Pp)u*. Itis clear that u,, = &;}, is a steady state of the following
Galerkin system

+VvAu + B(u,u) = g,

dZiL—tm + VAU + PmB(Um, Um) + YPmLum

= Pnlg +B(E5, &) — B(u™,u™) + yLE 1.
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The equation above is the Galerkin procedure at level m of the closed-loop system:

%'FVAM'}‘B(M,M) +yLu = f,

where f = g + B(&}, &) — B(u*, u*) + yLE;\,.
Notice that the above equation is within our frame of work. In order for us to
derive explicit values to the constants Mgk and Mnic we would need to provide

an explicit bound for || f1 (see the end of Section 3.1 on page 48). Indeed, it is
sufficient to estimate the right hand side of the following

IFI < liglh + 11B(&x, Ex) Il + IIBu*, u*) [ + lyLEx .
First, notice that by (2.11)
IBu*, u*)|l < 2Cilu*["?Au* 2,
and
IB(Emr )l < 2C1 150 12 AG: 1772 < 2C |[u* V2| Au*|3/2,
Based on part (ii) of Lemma 3.1 on page 44 we have

191 2lgl  ClgP
k * =
lu*| < and |Au*| < K(lg|) = v + AZvS

- Alv

Thus, we obtain
IB(u*, u*)l + IB(&, Ex) |l < K(gl),

with K(1g|) = [4C1K>2(1g1) 1911/ (A1v).
As in Section 2 on page 41, we assume that (2.20) holds for « = 0 and g = %
Therefore, we have

YILEL I < vAICLIAY2ES | < vALCLIAY2u*| < A)2CLlgl.
From the above we conclude that
IFIl <K(gl,llgl,y,C) = A{*Crlgl + K(1gl) + llgll.

One can restrict further the class of linear feedback operator L by imposing an
upper bound on Cp, and hence give an explicit a priori determined upper bound

to [If1I.
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Now, we return to apply the general algorithm under these specific choices
for u}, and f. Indeed, in step 1 of the general algorithm we have uj;, = &, and
therefore

1 1 K
Anl = A < B09D
)\m+1 Am+1

lu* —ufl=Inkl <

)\m+l

Then we take € = K(1gl)/Am+1, which is very small provided m is large enough.
Following the same steps as in the general algorithm for this choice of f and uj,,
we obtain in step 4 that

lu* —u**| < _C + K—(Igl).
)\m+1 )\m+1
Hence, the stable steady state solution u** of the closed-loop is not far away from
the original unstable steady state of the open-loop u*.

We can design a similar algorithm for the nonlinear Galerkin case with a new
specific f which satisfies the right estimates so that

-3/2
€= 0D
in the nonlinear Galerkin case, and hence step 4 in this situation would lead to
lu* —u**| = 0(A2).
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