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abstract

In this paper we consider a class of one dimensional nonlinear dispersive wave equations.
A closure model is developed and the Kolmogorov—type wave spectra are established. Nu-
merical simulation show that the model successfully predicts the inertial range exponents.

1 Introduction

Weak turbulence theories play an important role in the prediction of the spectra for the
dispersive waves. The principle of the weak turbulence is that the nonlinear interaction
is smaller than the linear effects which disperse the energy. Based on this principle and
the fact that the energy transfer takes place through resonant wave interactions, the clo-
sures of the statistical kinetic equations have been developed previously (cf. [1], [2], [3],
[4], [5]). Numerical simulations show that the weak turbulence theories are excellent in
approximating the statistical stationary solutions of the dispersive wave equations.

Here, following the work of Majda, McLaughlin and Tabak in [2], we consider the
following dispersive wave equations:
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where o and 8 are parameters and u is a complex periodic function with zero mean. In
[2], the authors used the solutions of linear part of the equation (1) to get the fourth order
moment. In this article we use similar method developed in [2]. First, we solve a linearized
phase equation. In addition we assume that the amplitude of the wave is small and varies
slowly in time. The Kolmogorov—type wave spectra are established. However, the spectrum
is sharper than the one predicted by the previous weak turbulence theories (cf. [3], [4]).
This phenomenon has also been seen in [2]. As the authors in [2] have pointed out the
reason is that in the weak turbulence theory dissipation has been added within the inertial
subrange. In order to test our model, a set of direct numerical simulations (DNS) based
on pseudo-spectral method of system (1) have been carried out. The obtained spectrum
exponents agree well with our model.

2 A model for the kinetic equation

Let
o(k,t) = /u(:c,t)e_2”k$, keZ, (2)

be the Fourier transform of u(z,t). For A € R, |9;|* is defined as:
[ 10:P (e, e 27k s = (kP k. ),

and for any constant ¢, we define
10z = 0.



Applying the Fourier transform to equation (1), we get
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Note that the equation (3) can be rewritten as
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Let

n(k,t) =< ¢(k,t)p(k,t) >

be the energy spectrum, where < > denotes an ensemble average. It is clear that

an(k,t>:ﬂm< 5 ¢<kl,t>¢<k2,t>&<kg,t)¢‘s<k,t>>:
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This is the kinetic equation of (3). For convenience, we set
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and denote
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Nik.1) QZ lex ko P72 ‘

From (3), we have the following equation for ¢(k;,t)d(ka,t)d(ks,t)d(k,t).
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There are two secular terms in equation (8) as follows:
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The magnitude of the first term is much larger than that of the second term. Therefore, in
order to reach equabilium the first one should balance itself. Thus

[k |* + |ka|* — |ks|* — [K|* = 0. (11)
This is four wave resonant condition. As a result, when |k1|* + |k2|® — |k3|® — |k|* # 0
Im (¢(ky,t)P(k2, t)p(ks, t)p(k,t)) = 0. (12)
Denote
o(k,t) = R(k, ) *:b),
We have

n(k,t) =< ¢(k,t)p(k,t) >=< R*(k,t) >
It is easy to obtain the following equations:
OR(k,t) R(k1,t)R(k2,t)R(ks,t)
ot kz lkrkaksklPA (13)
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o0(k,t) . Rk, ) R(kz, t) R(ks, 1)
7 G kz Rk, 6)|k1kaksk|P/A (14)
x cos(0(k1, 1) + (ks £) — O(ks, ) — O(k, 1)).
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N(k,t) can be rewritten as function of R and 6:

R(ky,t)R(ks, t)R(ks, t)R(k, )
N(k,t) =2 kZ |k1k2k3k|ﬁj4 x 15)
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By integrating equation (14) on [0, t], we can get a formal solution of 8(k,t) :
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in the above equation, respectively, we get

—0(k, s) by their linear approximations:
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where
B(k) = [k|* + A(k),
O = 0(11,0) + 0(l,0) — 6(13,0) — 0(k,0), (20)
and A(k) is as in (16). Let R(k,t) = n'/2(k) + €(r, t), we have
(R(k1,t)R(k2, t)R(ks, t) R(k, t) sin(0(j1, 1) + 0(j2,t) — 0(j3, 1) — 0(ja, t)))
=7 /0 ' [R(ky,t)R(k2,t)R(ks, t)R(k, t)x
x sin(B(ky,t) + 0(ka, t) — O(ks, t) — 6(k, t))] dt

o=

T
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Here, we have replaced the ensemble average by time average. Now, we assume that e(k,t)
is very small.

REMARK: The referee asked to show this assumption, numerically. I have not done
it yet.



Therefore, we only need to find
1 T
= / Sin(8(ky, £) + 0(kn, t) — (ks £) — O(k, £))dt.
0

When [j1|* + [j2|*] = Js|* = |7a|* = 0, we get
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and A(k), B(k) are as in (16) and (19), respectively. By changing integral variable ©g — A;t



to t, we obtain
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we get
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Notice that

2m
/ costsin(ait + as) dt = laﬁ[cos(%ral + as) — cosas] la1| # 1,
0 —a

27
/ costsin(ait + a2) dt = wsinas la1]| = 1.
0
Thus, when A;, # A;,

1 mi /27r costsin(ﬁ(zgn +t—0) — 6P dt (24)
2mm £=0 0 AJ 0 0

m—1

1 ApAj Aip ! Aip !
= 2 €] oF) — 2 €] of
Dy 5220 y _"4121) [cos(—*F y P2r(€+1) — Q) — OF) — cos(—2 y L (2ré — ©g) — O]

In case % is an integer, it is clear that
J
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In case é\’:’ is not an integer, by the ergodicity of cos( (27r(§ +1) — ©y) — ©F) and
COS(%(%’& - 09) — ®0p), we also have
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As a result, we reach
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Therefore, we can close N(k,t) with a closure N (k,t) defined as follow:
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where A = A(ky) + A(ks) — A(ks) — A(k), and Ay, is as in (23). Therefore, we get the
following closure model for the kinetic equation:

n(k,t) _
ot

Ne(k, ). (26)

Let us assume that the kinetic energy n(k) has a power law solution n(k) = |k|7, and



let
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Then
Ne(k,t) =C Y F(ky, ko, ks, k).
k*
Using conformal transformation developed by Zakharov ([3], [4]) or the self-similarity
method derived by Majda, McLaughlin and Tabak in [2], by simple calculation, we obtain
the following equation (here, we refer [2] for details)

on(k,t) ks|?  |Ed]? (K2
5 =C Y Fky, k2, ks, k) [1+ = 1% L (28)
where 3
y=37+358+a—4. (29)

For the steady state a"(k ) = 0 which requires with y = 0 or y = a. Therefore,

1-5_2¢ for y=a
e (30)
%—g for y=0

3 Numerical Simulation

In previous section we have established a closure model by solving the linearized phase
equation. In this section we carry out direct numerical simulations for Eq. (1) using
the pseudo-spectral method. We focus on several cases of the parameters (a,3). The
computational grid is 8192. First, we change the variable

w(k,t) = R gkt 4 1,).



Then, 9 satisfies

ou(k,t) _ R ‘f_1<¢<k,t>e—i|k|“t)
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2 .
o (ke (31)
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where F and F~! are the Fourier transform and the inverse Fourier transform, respectively.
We solve the above equation with a forth—order Runge-Kutta scheme, and after each step
At, we add force and dissipation by multiplying the ¢(k,t,+1) by

S fidl v k[T = vt k|| At

el 7

Here, following the work of [2], in our numerical simulation, we choice

2 .
fi= TRF+a=T 12< [ <18
! 0 other ’
2
= K
+ _ €
= W’

Here e = 0.175,d =12, K_ = 5, and K = 2250, and + is as in (30). The ensemble average
was replaced by a time average between ¢ = 20000 and ¢ = 30000.

FIG. 1-FIG. 5 display the energy spectrum, n(k), versus the wave number k for pairs
(o, 8) = (0.3,0.5),(0.25,0.5),(0.25,0.25), (0.5,0.25), (0.5, 1.0), respectively. A power law
spectrum with |k|~7 can be identified in the inertial subrange 50 < |k| < 800. A solid
line has been included in each figure to show the theoretical prediction given by Eq. (30).
All numerical simulations show that the range that the spectrum exponents agree with our
model is larger when 3 is smaller.

4 Discussion

A closure model has been developed. This model successfully predicted the power law
exponents in all of the numerical simulations reported here. As we pointed out before,
dispersion is a main factor in weak turbulence. We have found that there are two dispersive
terms (cf. (9)—(10)) in the system (1). One term is the linear part of the equation which
transforms energy through four wave resonant, consistent with previous results. However,
we have also found that the nonlinear term (as shown in (10)), which balances the energy,
has an essential effect in weak turbulence. It seems that this nonlinear dispersion has been
overlooked in previous studies. We argue in this paper that the latter should be an essential
term in weak turbulence.
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FIG. 1. The energy spectrum, n(k), versus the wave number k for a = 0.3,3 = 0.5. In the
inertial range 50 < k < 800, a power spectrum with £~ %933 can be identified. The solid line is
from our theory, the dash-dotted line is from WT (weak turbulent theory) and the dashed line is
from MMT (Majda, McLaughlin and Tabak).
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FIG. 2. The energy spectrum, n(k), versus the wave number k for o = 0.25,3 = 0.5. In the
inertial range 50 < k& < 800, a power spectrum with k%% can be identified.

12



-3

10

n(k)

107

10

10

FIG.

a =0.25, B=0.25

’

N . MMT —- dashed line —— |k| ~54
L ~ S WT —— dash—dotted line —— [k| ~3/4
N N MODEL —- solid line —— k| ~%® ]

10
Ikl
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inertial range 50 < k£ < 800, a power spectrum with k%% can be identified.
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4. The energy spectrum, n(k), versus the wave number & for @ = 0.5, 8 = 0.25. In the

inertial range 50 < k& < 800, a power spectrum with k~2%/2* can be identified.
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FIG. 5. The energy spectrum, n(k), versus the wave number k for a = 0.5,3 = 1.0. In the
inertial range 50 < k£ < 800, a power spectrum with k%% can be identified.
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