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Abstract

An inhomogeneous steady state pattern of nonlinear reaction-diffusion equa-
tions with no-flux boundary conditions is usually computed by solving the
corresponding time-dependent reaction-diffusion equations using temporal
schemes. Nonlinear solvers (e.g., Newton’s method) take less CPU time in
direct computation for the steady state; however, their convergence is sensi-
tive to the initial guess, often leading to divergence or convergence to spa-
tially homogeneous solution. Systematically numerical exploration of spatial
patterns of reaction-diffusion equations under different parameter regimes re-
quires that the numerical method be efficient and robust to initial condition
or initial guess, with better likelihood of convergence to an inhomogeneous
pattern. Here, a new approach that combines the advantages of temporal
schemes in robustness and Newton’s method in fast convergence in solving
steady states of reaction-diffusion equations is proposed. In particular, an
adaptive implicit Euler with inexact solver (AIIE) method is found to be
much more efficient than temporal schemes and more robust in convergence
than typical nonlinear solvers (e.g., Newton’s method) in finding the inhomo-
geneous pattern. Application of this new approach to two reaction-diffusion
equations in one, two, and three spatial dimensions, along with direct com-
parisons to several other existing methods, demonstrates that AIIE is a more
desirable method for searching inhomogeneous spatial patterns of reaction-
diffusion equations in a large parameter space.
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1. Introduction

Reaction-diffusion equations are often used to model interactions among
molecules and chemical species through reactions and random motion by
diffusion [1, 8, 10, 21, 26, 27]. A reaction-diffusion system usually takes the
form

ou

e = DAu + F(u), (1)

where u € R™ represents concentration of m types of molecules or chemical
species, D € R™*™ is the matrix of diffusion coefficients, and F € R™
represents reactions and interactions among different species.

The boundary conditions for (1) are critical in determining the prop-
erty of reaction-diffusion equations. For example, when influxes of molecules
or chemical species are from part of the domain, spatially inhomogeneous
solutions and steady state patterns arise naturally due to the boundary con-
ditions [7, 17]. For many applications, the boundary conditions are no-flux
or periodic in every direction of regular domain [8, 10, 21, 26, 27]. For such
homogeneous boundary conditions, some constants in space can be a steady
state solution of the system; however, the interest of study is usually spatially
inhomogeneous patterns in steady state that arise from a close interaction
between reaction and diffusion, such as Turing patterning [31]. One ma-
jor mechanism which consists of a short-range activation for the activator
and a long-range inhibition for the inhibitor (drastic differences between the
diffusion constants for the activator and the inhibitor) is responsible for spon-
taneous formation of many patterns in systems ranging from cell polarization
9, 16] to animal coats [19, 21].

To study the reaction-diffusion equations with homogeneous boundary
conditions, such as no-flux boundary conditions, linear stability analysis
around the spatially homogeneous steady state can provide necessary condi-
tions and constraints on the parameters that allow pattern formation [31].
Other analytical theories, such as weakly nonlinear analysis [29], have been
utilized for deriving more information on the specific form and stability of
patterns [14, 32]. For complex biological models involving more species along
with strong nonlinear regulations, linear stability analysis and analytical
study become increasingly challenging. It leads to difficulty of finding the
parameter regions permitting interesting patterns or choosing appropriate
initial conditions evolving to desirable patterns.



One approach for systematic exploration of parameter regions for steady
state patterns of a reaction-diffusion system is to apply temporal algorithms
to solve equation (1) with various initial conditions. Because of the temporal
stability constraint due to diffusion and possible stiff reactions, many time
steps are required to compute the long time behavior of the temporal systems
to approximate the steady state within a reasonable error, even using many
recently developed new algorithms that are specifically designed to handle
the stability constraints in diffusion [6, 11] and stiff reactions [11, 22, 23,
28]. In addition, one may need to search a large parameter space of the
reaction-diffusion equation to find a correlation between parameters, which
connect to specific biological processes, and patterns, which correspond to
phenotypes [8, 25, 27].

Here, we focus on computing the steady state of (1) directly by solving
the following system of equations

DAu+ F(u) =0, (2)

with no-flux boundary conditions. Note that a solution uniform in space
(often called a homogeneous or constant solution) of the algebraic equation
F(u) =0 is also a solution to (2). Here, the goal of solving (2) is to identify
non-constant solutions, corresponding to inhomogeneous spatial patterns.

One popular approach is to first approximate the differential operator in
(2) to form a nonlinear algebraic system (e.g., through the finite difference
method or the finite element method), and then solve the resulting nonlinear
equations using Newton’s method [12] or nonlinear multigrid methods [3, 4,
33]. Because of their strong dependence on the initial guesses, these types of
iterative methods may easily converge to constant solutions of the algebraic
equation F(u) = 0 even if the methods are efficient and convergent. For
example, if the initial guess is not far from a homogeneous solution, Newton’s
method may converge to this solution even if it is unstable. While if using
temporal schemes, perturbing from an unstable homogenous solution very
likely leads to another stable solution, a possible spatial pattern. Our goal of
solving (2) is to identify spatial patterns with minimal analytical knowledge
of the solution, which is the case for most of the applications. Therefore,
a desirable method needs to be efficient enough such that many parameters
can be explored within a reasonable amount of time while the convergence to
spatially inhomogeneous solutions is less sensitive to the choice of the initial
guesses.



To this purpose, we present a hybrid approach that takes advantage of
fast convergence of steady state solvers such as Newton’s method and robust-
ness of temporal schemes that usually always lead to a convergent solution.
In particular, we apply the implicit Euler method to equation (1); however,
without exactly solving the implicit equation during each time step, to gen-
erate a new iterative procedure for solving the equation (2). Several methods
derived from this new approach are then applied to two different reaction-
diffusion equations in one, two, and three spatial dimensions for a comparison
with Newton’s methods and some other existing methods. It is found that
the new approach is much less sensitive to the initial guesses in generating
spatially inhomogeneous solutions and is much more efficient than temporal
schemes. Although the new iterative procedure might be slower in conver-
gence than Newton’s method, it is much more likely to converge to a spatial
pattern for a given set of parameters. The balance of efficacy and robustness
makes the new approach particularly suitable for computational searching of
spatial patterns of reaction-diffusion equations in a large parameter space.

The paper is organized as follows. In section 2, we describe the new
hybrid approach; in section 3, we compare several methods described in
section 2 through two important performance measurements: likelihood of
each method converging to spatially inhomogeneous steady state patterns
and CPU time of convergence, for two reaction-diffusion equations in different
spatial dimensions. In section 4, we conclude and discuss.

2. Methods

In this section, we first briefly describe three existing numerical methods:
Newton’s method, the implicit Euler method, and the FAS multigrid method,
in a context of solving temporal or steady state reaction-diffusion equations.
Following the description, we then present a new approach that integrates
these three methods to solve the steady state equations (2).

To use Newton’s method (NM) to solve the reaction-diffusion system
(2), a spatial discretization of the linear diffusion operator usually leads to a
nonlinear algebraic equation:

G(u) =B(u) + F(u) =0, (3)

where B is a discretized linear diffusion operator (e.g., through a second-
order central difference scheme [20]) and F is a nonlinear reaction term. In



general, G is a nonlinear function from RM — RM with u € R™, where
M is the total number of unknowns. For example, M = mN for a one-
dimensional m-variable system which is discretized in N spatial grid points.
The Newton’s iteration for (3) becomes

Uiy = U, — G'(u,) 'G(uy,). (4)

It converges quadratically to a solution if the initial guess is close enough [12].
The implicit Euler method (IE) is an implicit time-evolution method for
solving temporal reaction-diffusion systems with stiff reactions. IE takes the

general form of
Up1 — U

N~ Gl (5)
The temporal solution w, 1 is updated by the previous time step solution
u,, in an implicit form. When the sequence u,, is convergent, it will converge
to a stable solution of the steady state reaction-diffusion systems.

The main computational expense of the IE method is to solve the nonlin-
ear system (5) for w, ;1 at each time step. Although IE is linearly absolutely
stable allowing a large time step size At for stability reason [30], solving
one nonlinear system at each time is still very expensive. In particular, the
reaction-diffusion system needs to be solved for a large number of n to ap-
proach a steady state solution. Recall that our goal is to obtain approxima-
tion of steady state solutions (i.e., one only needs to derive an approximated
solution @, such that G(w) is close to zero). As a result, the nonlinear system
(5) does not need to be solved accurately at each time step.

2.1. Adaptive Implicit Euler Method with Inexact Solver (AIIE)

We present a new approach that uses only one Newton’s iteration to
solve the nonlinear system (5). Specifically, replacing At with a in (5) and
applying one Newton iteration with the initial guess u,, yields this iteration
procedure:

Upi1 = Uy — (G (uy,) — a ') 'G(u,), (6)

where I is an identity matrix with the same dimension as G'(u,,). We assume
« is chosen such that the operator G'(u,,) — oI is non-singular. Clearly,
G(u,11) converges to zero as u,y; converges to a finite value in (6).

It is noted that the iterative procedure (6) is similar to a modified New-
ton’s method [24]. The modification for the Newton’s method in searching
optimal points is mainly for the purpose of stabilizing the Jacobian matrix



to improve the convergence property of Newton’s method [15, 18]. Here,
we dynamically vary the critical parameter « to adjust the contribution of
the temporal scheme and Newton’s iteration such that the new method can
exhibit advantages of both the temporal scheme and Newton’s method.

We define this iteration procedure (6) as the inexact implicit Euler (ITE)
method. In IIE, the intermediate solution w,; is no longer an accurate
approximation of the original temporal solution at ¢,.;. If the nonlinear
system (5) can be solved accurately using one Newton’s iteration with the
solution at the previous time step as the initial guess (this may be the case
when « is very small), the method (6) behaves similarly to an implicit Euler
method.

For larger «, to approximate the rate of convergence, we consider the
extra term oI as the error term of the Jacobian matrix approximation and
apply the following theorem in [12].

Theorem 1. If G’ is Lipschitz continuous and nonsingular at u = u* where
G(u*) =0, then there are C > 0, 6 > 0 and 6, > 0 such that if ||u, —u*|| < o0
and ||M|| < 61 then

Upp1 =, — (G (u,) — M) G(up),
is defined and satisfies
[ —w|| < Cllwn — w[|* + [IM][[|wn — w"[]).

If the initial guess for (6) is close to the steady state solution, denoted
as u*, we let M = o' (|M]| = |[[a'I|| = o) and apply Theorem 1 to
obtain

[t 1 — || < Cllun — w'|* + 07 [l — w7])), (7)

where C' is a positive number independent of n. As seen in (7), when «
is very large, the iterative procedure behaves similarly to Newton’s method
with a quadratic convergence rate.

Similar to temporal schemes with an adaptive time step, an adaptive
a presumably makes the iteration process of (6) more robust and efficient.
We denote ITE with an adaptive o as AITIE. When « is small, the nonlinear
system (5) can be solved accurately using one Newton’s iteration with the so-
lution at the previous time step so AIIE behaves similarly to an implicit Euler
method. Note that when o — 0, the iteration process of (6) also approaches



to an explicit Euler method. In (6), the term —(G'(u,) —a 'T)"'G(u,,) can
be rewritten as

—(G'(u,) — a ') G(uy) = (I + aG'(u,) + *G/(u,)? + ...)aG(u,).

When a — 0, it equals to aG(u,,) after skipping all the higher order terms.
So (6) becomes
Upi1 = Uy, + aG(u,),

which equals to a time update process of an explicit Euler method. It is
consistent that when « is small, the difference between u,,; and wu, is small
so implicit Euler method behaves like explicit Euler method.

When « is large, according to (7), AIIE behaves more similarly to New-
ton’s method, which has a quadratic convergence rate.

To take advantage of both NM and IE, we choose to increase « in I1E
adaptively for an adaptive I[IE (AIIE) such that the overall method gradu-
ally switches from a temporal scheme to a steady state solver like Newton’s
method during the iteration process. Typically, « is chosen to be an increas-
ing function of n, such as @ = 0.1n, a = 2n and a = n, as shown in the next
section for direct numerical tests. Among those three choices, it is found for
the reaction-diffusion equations tested in this paper that o = n provides the
best performance and robustness for AIIE.

2.2. FAS Multigrid Method with AIIE (FAIIE)

The nonlinear multigrid methods [3, 4] can enable rapid convergence by
employing grids of different mesh size in solving nonlinear systems. Through
a suitable smoothing operator and coarse grid correction, a multigrid ap-
proach can accelerate convergence, particularly for diffusion-dominated sys-
tems in multi-spatial dimensions. Here, we integrate a Full-Approximation
Storage (FAS) multigrid method with the new AIIE approach, denoted as
FAIIE, to solve the system (3) using a two-grid iteration cycle [3, 4]. Here
is an outline of the iteration procedure:

1. Obtain an approximation " by performing n; times AIIE iteration on
Gh'(u") = 0.

2. Restrict the approximation v" and its residual to the coarse grid:

,UQh: 2h,vh’ ?"2h= }2Lh<—Gh(’Uh>).



3. Smooth ny times AIIE iteration on the coarse-grid residual problem:
G2h(u2h) — GQh(,v2h) + T2h.

h h 2h

4. Extract the coarse-grid correction: e?" = u?" — v

5. Interpolate and apply the correction: v" = vh + I}, *".

Similar to AIIE, « can be adjusted according to the number of FAS
iterations. In this paper, we set ny = ny = 1 and only consider FAIIE with
a = n, where n is the number of iteration cycles of the FAS method.

The performance of the FAS multigrid method depends crucially on a
smoother and a coarse grid solver, and nonlinear Gauss-Seidel smoother usu-
ally is used for a typical FAS multigrid approach. In the numerical tests
shown in the next section, it is found that the FAS multigrid with a Gauss-
Seidel nonlinear smoother typically results in divergence or convergence to
a homogeneous solution, showing no interesting biological patterns. With
ATIE as a smoother, the overall method more likely converges to an inhomo-
geneous solution with spatial pattern. For the rest of the paper, we choose
AIIE as a smoother for the FAIIE approach.We note that if the inverse
(G'(u,) — a™'T)7! in AIIE is computed by a direct solver, smoother calcu-
lation is not cheap. However, here we keep such structure of FAS and leave
the investigation of a more efficient smoother to future work.

3. Numerical Results

Our interest is to find all types of inhomogeneous solutions with a spatial
pattern of reaction-diffusion system. Therefore, an important performance
measurement for a nonlinear solver is the robustness of converging to inho-
mogeneous solutions. How sensitively a method depends on its initial guesses
to produce a spatially inhomogeneous solution becomes critically important.
Therefore, in addition to comparing efficiency, which is measured as CPU
time for obtaining a solution, we also focus on studying the likelihood of
each numerical method converging to spatially inhomogeneous steady state
patterns.

In this section, we first consider two reaction-diffusion biological models in
one spatial dimension for five different numerical methods: Newton’s method
(NM), Implicit Euler (IE), Implicit Euler with inexact nonlinear solver (I1E),
IIE with adaptive @ = n (AIIE), and FAS on IIE (FAIIE) with adaptive
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a = n, as described in the previous section. Next, we extend our study
of NM and AIIE to two-dimensional and three-dimensional domains to show
that the results are consistent with the one-dimensional examples. We finally
study how the performances of NM and AIIE depend on the number of spatial
grid points. All the numerical tests are implemented in MATLAB with the
help of the software package iFEM [5]. For solving the linear system in (4) or
(6), it is found that the Gauss-Seidel method and the multigrid method with
a Gauss-Seidel smoother usually results in non-convergence. In this paper,
we solve the linear system by using the direct solver built in MATLAB. The
numerical parameter settings will be discussed in the later sections.

3.1. One-dimensional systems

Here, we study all five methods under two possible scenarios depending on
how much analytical information can be obtained for the reaction-diffusion
equations. The first scenario is when the linear stability analysis around the
homogeneous steady state solutions can be carried out analytically to ob-
tain a set of necessary conditions for parameters resulting in inhomogeneous
patterns. For this case, we study how the convergence of each method to
inhomogeneous patterns depends on the initial guess, which is chosen as a
perturbation from the homogeneous steady state solution. The second sce-
nario is when no analytical information of the reaction-diffusion equation is
known. For this case, we compare the five methods using a large set of ran-
domly chosen initial guesses and parameters to study performance in terms
of robustness and efficiency.

3.1.1. A system with linear stability analysis and known homogeneous solu-
tions
The normalized one-dimensional activator-substrate system [13] has the
following form:

%—‘?—DAA+SA2—A+p,

(8)
g—f = AS + (1 — SA?),

in z € (0,10) with no-flux boundary conditions at both ends. The substrate
S may be depleted by activator A. The constant D measures the diffusion
coefficient ratio of activator to substrate. The parameters p and p measure
the production rates of activator and substrate, respectively.



Solving the system
SA* — A4 p=0,
{ (9)

pu(l—SA?%) =0,

gives us a homogeneous steady state:
A =14p, 8" =(14p)2. (10)

The linear stability analysis in [13] states that an inhomogeneous steady state
may exist if the following inequalities hold:

2 2 ?

In particular, we choose parameter ranges as

9 1 D) 2
€(0,1), pe(——-1,2), De 0001, = (/—— -1 o (12
pe0.1). n (Hp ) ( u( I+p )) (12)

The ranges in (12) give a subset of parameters satisfying the conditions (11)
for the existence of inhomogeneous steady state patterns. The initial guess
(Ao, So) takes the following form:

Ay = A" (1 +764(x)), So = S*(1+~ds(x)), (13)

where d4(z) and dg(x) are standard normally distributed random variables
with zero mean and variance being one. All of the random variables are
spatially independent. The constant 7 is used to measure the magnitude of
the perturbation away from the homogeneous solution (A*, S*). Figure 1 is
a typical inhomogeneous steady state pattern of equation (8).

To study how the convergence of each method to an inhomogeneous pat-
tern depends on the initial guess (13) for different perturbation amplitude
v, we randomly select 100 sets of parameters from the analytically derived
range (12) with uniform probability distribution. Then we investigate the
percentage of such simulations converging to an inhomogeneous pattern and
the average CPU time per simulation for obtaining the approximated solu-
tion.

Denote N = 27 4+ 1 as the number of spatial points where J is a positive
integer. In Figure 2, we choose J = 10, and for NM, IIE (« = 1, 10), AIIE,
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FAIIE, the iteration is considered to converge to steady state if the residual in
the form of (3) is less than 10~7 within 1,000 iterations. For IE, the implicit
equation (5) is solved by Newton’s method with a tolerance of 107°. In
this paper, if we do not mention the number of spatial grid points, iteration
tolerances and implementation, all of them are chosen to be the same as in
Figure 2.

In the simulations for each v with 100 sets of randomly generated pa-
rameters and initial guesses, all methods except IIE with @ = 1 have more
than 90% of the cases converging to either a homogeneous steady state or an
inhomogeneous pattern. IIE with @ = 1 has only around 30% of the cases
converging within 1,000 iterations. With relatively small a,, ITE behaves like
an implicit Euler method, as « is similar to a time step, and most of the
parameters make the IIE less “stable” with such a large “time step” leading
to non-convergence.

Next we study the percentage of simulations that converge to inhomo-
geneous patterns and average CPU time used for simulating one set of pa-
rameters. As shown in Figure 2, the likelihood that NM will converge to
inhomogeneous patterns strongly depends on ~, the size of perturbation in
the initial guess. If the initial guess is closer to a homogeneous steady state,
it is less likely that NM will converge to an inhomogeneous pattern. As ex-
pected, once convergence, NM costs the least average CPU time used for
simulating one set of parameters.

On the other hand, the likelihood of convergence to inhomogeneous pat-
terns for all four other methods seems to be insensitive to the perturbation
parameter v in the initial guess (13). This is not surprising because all of the
four methods have some characteristics of temporal schemes and the iterated
solutions evolve away from the unstable homogeneous solution. Among these
four methods, AITE has a similar likelihood of obtaining inhomogeneous pat-
terns as IE, a temporal scheme which is most likely to obtain inhomogeneous
patterns, while AIIE is the cheapest one in average CPU time per simula-
tion and IE is significantly more expensive. The advantage of AIIE becomes
clear among these four methods, as seen in Figure 2. FAIIE is a bit more
expensive than AIIE. The convergence of FAIIE is mainly due to AIIE, so
there is no benefit from FAS. The results also show that IIE with a fixed «
is not as good as AIIE in CPU time as well.

Compared with AITE, NM is much more likely to obtain homogeneous
solutions for a very small v, although NM is significantly cheaper in CPU for
this case. On the other hand, for large 7 (e.g., close to v = 0.5), the likelihood
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of obtaining inhomogeneous patterns for NM is just slightly smaller than for
AIIE while the CPU time per simulation for NM is also only slightly better
than AIIE for a large 7.

In short, there is a trade-off between robustness and efficiency, i.e., likeli-
hood of obtaining inhomogeneous patterns and CPU time for NM and AIIE.
To obtain inhomogeneous patterns, NM is much more sensitive to initial guess
than AIIE while NM is cheaper once it converges. Of course, the details of
such a trade-off are problem-dependent and vary from system to system.

3.1.2. A system without analytical information of the homogeneous steady
state solution

When the reaction term in a reaction-diffusion system takes general non-
linear function with saturations, such as the Hill function [21], or the system
involves more than two equations, analytical information of the solution to
the system becomes difficult to obtain. As an example, we consider another
activator-substrate system [13] with Hill functions in the nonlinear reaction
term:

0A S A2
E_DAA+1+A2_A+p "
@—ASJr 1— SA°

ot s 1+ A42)°

in z € (0,10) with no-flux boundary conditions at both ends.
Following the same process as in subsection 3.1.1, we can still derive a
homogeneous steady state of system (14):

A =1+p, S*=1+1+p) 2 (15)

However, in order to test the performance of all the methods when analytical
information is not provided, we do not use the analytical information of the
system (14). We search for inhomogeneous patterns by randomly sampling
parameters within given ranges:

pe(0,1), pe(0,2), De(0.001,0.1). (16)

Specifically, p and p are uniformly selected in the range (16) and the proba-
bility distribution of D is log-uniform. The initial guesses have the following
form:

Ao =14+ ~04(x), So =1+ ~ds(z), (17)
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where 04(z) and dg(z) are defined the same as in (13).

Similar to the study in the previous subsection, we select 1,000 sets of
parameters for each v with an initial guess in the form of (17) and compare
NM, IIE (« = 1,10), AIIE, FAIIE and IE with different values of . To
ensure the sample size is large enough for statistically reliable results, we
also double the sample size to 2,000 sets of parameters for each 7 and find
the results are consistent between the two kinds of sampling.

It is found that more than 90% of the simulations for each method con-
verges to steady state solution. However, most of the convergent solutions
are spatially homogeneous solutions, with about 2.5% of the convergent cases
inhomogeneous at best. The result is understandable, since we do not have
a priori information on the range of parameters to produce patterns. We
verify that the steady state is an inhomogeneous pattern by checking if the
diffusion term Bu is larger than 10~%; this is also confirmed by observation.

As the results shown in Figure 3, the likelihood that NM will converge
to inhomogeneous patterns strongly depends on v, and NM costs the least
average CPU time per simulation. This is consistent with what we observed
in the previous subsection. For v = 0.5, NM has a higher likelihood of
obtaining inhomogeneous patterns than the other four methods. It is different
from the results shown in Figure 2 that AIIE always has a higher likelihood
of obtaining inhomogeneous patterns than NM.

Without considering the likelihood of obtaining inhomogeneous patterns,
NM is the most efficient method among all the five methods. If the initial
guess with suitable range of perturbation can be obtained, NM may be the
most efficient and robust method. However, the process for searching a suit-
able range of perturbation may take significantly more CPU time, especially
in two-dimensional and three-dimensional domains. If we require that the
performance of the method has to be less sensitive to the initial guess, AITE
is the most efficient method for obtaining inhomogeneous patterns.

To further explore this observation, we study the performances of NM and
AIIE by selecting parameters p and p in a uniform distribution of the ranges
[0.001,0.1] and [0.01, 1] respectively, with three different diffusion ratios D =
0.0005,0.001 and 0.002 using the initial guess of the form (17).

The choice of the parameter ranges is motivated by the results of Figure
3, in which most of the inhomogeneous patterns appear within the following
parameter ranges:

p € (0.001,0.1), e (0.01,1), D e (0.001,0.002). (18)
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For each set of parameters, NM and AIIE are carried out for both v = 0.1
(Figure 4) and v = 0.5 (Figure 5). For the case v = 0.1, AIIE method leads
to a wider white region than NM method (Figure 4), showing that AIIE is
more likely to produce an inhomogeneous pattern than NM; when ~ increases
from 0.1 to 0.5, the white region for AITE does not change much, while the
white region obtained through NM is enlarged with increasing . The result
on likelihood of converging to inhomogeneous patterns for both AIIE and
NM, consistent with the case when parameters are randomly selected.

The average CPU times used for simulating one set of parameters using
NM are 0.108s and 1.307s for the case v = 0.1 and the case v = 0.5, respec-
tively. The average CPU times used for simulating one set of parameters
with AITE are 2.528s and 3.865s for v = 0.1 and v = 0.5, respectively. The
average CPU time per simulation depends on 7 because the time used for
convergence is related to how close the initial guess is to the steady state.
When v = 0.1, the initial guess is close to the homogeneous steady state, NM
converges to homogeneous steady state rapidly. When v = 0.5, the initial
guess is far from the homogeneous steady state but may not be close to the
inhomogeneous one, so more CPU time is required.

The time cost per simulation is increasing when the diffusion ratio D
is decreasing when applying NM and AIIE. For AIIE, there are more non-
convergence cases when D decreases because the number of iterations for
convergence is increasing per case (example in Figure 6). With a small D,
the system is dominated by the nonlinear reaction term, leading to more
iterations for both AITE and NM. AITE becomes less effective as it is designed
for a system with diffusion.

3.2. Two-dimensional and three-dimensional systems

We next study the performance of NM and AIIE for systems in two-
dimensional and three-dimensional domains. In particular, we consider the
system (14) in (z,y) € (0,2) x (0,2) and (x,y, z) € (0,10) x (0,10) x (0, 10)
with no-flux boundary conditions on all boundaries.

Similar to the one-dimensional tests, p and p are generated uniformly
in the ranges [0.001,0.1] and [0.01, 1] respectively, with fixed diffusion ratios
D = 0.001. The initial guesses have the following forms:

2D : Ay =1+ vdap(z,y), So =14 vs2n(,y); (19)
3D : Ay =1+ 7dasp(x,y,2), So=1+~v0asp(z,y,2), (20)
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where d40p(,y), ds2p(z,y), dasp(x,y, 2) and dg3p(z,y, 2) are standard nor-
mally distributed random independent variables with zero mean and vari-
ance being one. For each set of parameters, NM and AIIE are carried out
for v = 0.1 and v = 0.5 (Figures 7 and 8). The grid levels J are set to be
6 in the two-dimensional domain with a total number of spatial grid points
N = (27 4+1)?; for the three-dimensional domain, we set J = 4 with the total
number of grid points N = (27 + 1)3.

Figures 7 and 8 for the two- and three- dimensional systems exhibit similar
behavior as that seen in the one-dimensional system in Figures 4 and 5. The
performance of NM is more sensitive to the magnitude of perturbation acted
on the initial guess than AIIE. From the point of view of CPU time, NM
is more efficient than AIIE for one simulation. The overall performance of
AIIE and NM for the two- and three-dimensional systems is consistent with
that of the one-dimensional model (that is, AIIE is more robust in obtaining
an inhomogeneous pattern, while NM is more efficient if it is convergent).

3.83. Spatial resolution refinement tests

To understand how the number of grid points affects convergence, we
first study the performance of NM and AIIE using different spatial level J
(number of spatial points N = 27 + 1) for the one-dimensional system (14)
with initial guesses of form (17). Figure 9A shows that when J increases, the
likelihood that NM will converge to inhomogeneous patterns is reduced. It is
clear that the likelihood that NM will obtain inhomogeneous patterns is much
more sensitive to the number of spatial grid points regardless of the size of
perturbation acted on the initial guess. Compared with NM, the robustness
of AIIE is slightly affected by the change of J, the spatial resolution.

In the case of Figure 9A, the initial guess for both methods is independent
at each spatial resolution and is directly generated from the equation (17).
The two methods behave differently if the initial guesses are generated by
linearly interpolating the initial guesses on the coarse grid J = 6 to the fine
grids J = 8,10, 12 and 14 for their initial guesses. Figure 9B shows that the
likelihood of NM and AIIE converging to inhomogeneous solutions is much
less sensitive when the number of spatial grid points is varied.

The analysis of previous section shows that the likelihood of converging
to inhomogeneous solutions increases when the magnitude of perturbation
of the initial guess increases. The reason is that the amplitudes of non-zero
frequencies of the perturbation increase with the magnitude of perturba-
tion [2] and enough strength of some non-zero frequencies is necessary for
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leaving a homogeneous steady state and converging to an inhomogeneous
pattern [13, 31]. For the simulations in Figure 9B, the amplitudes of the
frequencies of the perturbation are not affected during the spatial refinement
because the initial guesses have the “same” form in different spatial levels.
So the likelihood of NM and AIIE converging to inhomogeneous solutions
is not affected by the spatial resolution. But for the simulations in Figure
9A, the increase of spatial levels may reduce the strength of some non-zero
frequencies so there is not enough level of perturbation for a convergence to
an inhomogeneous pattern. Then the likelihood of convergence to inhomo-
geneous solutions decreases when the spatial level increases.

Sometimes, although the change of spatial resolutions may not signifi-
cantly affect the likelihood of convergence to inhomogeneous patterns, a spe-
cific form of pattern may be varied as the spatial level J changes. For some
cases, the corresponding numerical method may not converge to the exact
steady state solution of the continuous reaction-diffusion equations and the
convergent solution for a fixed number of spatial grid points is only the steady
state solution of the corresponding finite-dimensional discretized system.

To study how the pattern is varied as the spatial level J changes, we
apply both AITE and NM to the one-dimensional system (8) using 50 sets of
parameters and initial guesses in the form (13). In all sets of the parameters
and initial guesses, both NM and AIIE converge to inhomogeneous patterns
using J = 9 level of grid. Here, the initial guesses are first generated for
J =9 coarse grid (N = 27 + 1) and are linearly interpolated to J = 10
level of grid. When the level of grid increases from J =9 to J = 10, AIIE
maintains the same form of pattern in 46% of cases, while NM converges to
the same form of pattern only in 16% of cases. In this test, AIIE is more
likely to maintain the same of pattern during the spatial resolution than
NM. Here two patterns are defined to be the same if their relative pointwise
difference is less than 0.1%.

We further investigate this in two-dimensional systems. We apply AIIE
and NM to different initial guesses using the two-dimensional system (14).
The initial guesses are first generated for J = 6 coarse grid (N = (27 + 1)?)
and they are then linearly interpolated to J = 7 and J = 8 level of grids.

Initial guesses for A or S of the system (14) in a two-dimensional domain
are defined as follows:

oy (%) if & € Dy;
0 otherwise,

1G3(7) =

1G1(7) = i(7) lfl’ED.1;
1 otherwise,
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oy (Z) if & € Do
0 otherwise,

5(Z) if & € Dy;

1 otherwise,

1G2(%) = { [GA(F) = {

1G5(7) = §(3),

where Dy = {(z,y) : |(z,y) — (5,5)| <2}, Dy = {(z,y) : |(z,y) — 2] < 1,2 =
(3,3),(3,7),(7,3),(7,7)}, dy(x) is a uniformly distributed random number
in [0,1] and d(x) is a normally distributed random variable with zero mean
and 0.5 for its variance. The spatial patterns for those five initial guesses are
shown in Figure 10.

In the test, we choose one set of parameters for each model. Time evolu-
tion simulation shows that the inhomogeneous steady state exists with this
set of parameters. Figure 11 shows that AIIE and NM converge to inhomoge-
neous patterns in all simulations for J = 6. To examine if those steady state
patterns are locally stable for the corresponding temporal reaction-diffusion
equation, we use a second-order Runge-Kutta method with an initial con-
dition that is perturbed away from the steady state (A*, S*) computed by
AIIE or IE. In particular, the initial conditions with perturbation have the
following form:

Ag=(1+0.10a(x,y))A", So = (1+0.105(x,y))S™, (21)

where d4(z,y) and dg(z,y) are standard normally distributed random inde-
pendent variables with zero mean and variance being one. For a fixed spatial
resolution, all temporal evolutions eventually go back to the steady state
solution computed by AIIE or NM, showing the steady state solutions are
locally stable for the finite discretized system. However, when the number
of spatial points increases, all the convergent solutions using NM change to
different patterns, with some cases failing to converge to an inhomogeneous
pattern (e.g., IG3, Figure 11). Among the five initial conditions, only the
case 1G4 seems to show a consistent pattern when spatial resolution is var-
ied. In contrast, when AIIE is used, the cases IG3, IG4 and IG5 all show a
consistent pattern when the spatial resolution increases. AIIE seems to be
more likely to maintain the same form of pattern during the spatial resolu-
tion, suggesting that the steady state solution of the discretization system is
more likely to converge to the steady state of the continuous system.

To investigate if this property of AIIE and NM depends on a particular
form of reaction-diffusion equations, we study another system, the Gray-Scott
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model [27] in a two-dimensional domain (z,y) € (0, 10) x (0, 10):

o4 _ DAAA — AS? + p(1 — A),
gg (22)
5 = DsAS + AS* — (p+ k)S,

which has no-flux boundary conditions on all edges of the domain. The model
describes the growth of an activator A reacted with substrate S fed from the
activator with a rate p, and S is converted to an inert product at the rate k.
D4 and Dg are the diffusion coefficients of A and S, respectively.

Instead of producing the pattern of spots in Figure 11, the system (22)
generates the stripe patterns shown in Figure 12. As expected, NM is unable
to produce consistent patterns for either one of the five initial guesses when
the spatial resolution increases; however, AIIE is able to produce a consistent
stripe pattern for at least two out of the five initial guesses (e.g., IG1, IG2
in Figure 12).

We further study the effect of spatial resolution for the systems (14)
and (22) in a three-dimensional domain (z,y,2) € (0,10) x (0,10) x (0, 10)
using three different initial guesses. The three initial guesses for A or S in
a three-dimensional domain are the corresponding three-dimensional version
of IG1,IG3,1G5, where Dy = {(z,y,2) : |(z,y,2) — (5,5,5)] < 2}. The
total number of spatial grid points for the three-dimensional system is N =
(27 4+ 1)3.

For the system (22), NM converges to inhomogeneous patterns or homo-
geneous steady states on the grid level J = 3, but NM does not converge on
the grid levels J = 4,5. However, AIIE converges to steady state on all grid
levels. All the steady states AIIE obtains on J = 4,5 are inhomogeneous
patterns. Figure 13 shows the form of a three-dimensional pattern computed
by AIIE using the initial guess IG1. The form of pattern is similar to that
found in a two-dimensional domain.

For the system (14), AIIE and NM both converge to inhomogeneous pat-
terns on the coarsest grid level J = 3. When the grid level increases to J = 4
or 5, both AIIE and NM do not converge to any steady state. Although both
methods converge on the grid level J = 3, the patterns obtained may not be
the “real” patterns of the continuous reaction-diffusion equations due to the
large error of spatial approximation. On the finer grids J = 4,5, AIIE and
NM are unable to converge to any steady state solution. This is probably due
to the fact that the initial guesses are far from any steady state, suggesting
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that better initial guesses may be needed for both methods to converge in
three dimensions.

In general, AIIE is found to be relatively more consistent in generating
the same pattern when the spatial resolution is refined. NM may converge in
low spatial resolution; however, it may lose convergence in a higher spatial
resolution. Also, a convergent pattern computed by NM to solve the same
system is more likely to vary when its spatial resolution is varied.

4. Conclusion and Discussion

In this paper, we have presented a new hybrid approach to solve steady
states of reaction-diffusion equations with no-flux boundary conditions. AIIE,
one of the new methods, integrates the implicit Euler temporal scheme with
one Newton iteration. This method behaves similarly to a temporal scheme
during the early part of the iteration process and gradually becomes a New-
ton’s method as iteration continues. The design principle of this method is to
take advantage of strengths in both an implicit temporal scheme, which is ro-
bust in finding steady state inhomogeneous solutions, and Newton’s method,
which has a fast convergence when the method does converge.

For most existing numerical methods, a trade-off usually occurs between
the likelihood of finding an inhomogeneous pattern and CPU time for a
method to converge. AIIE seems to alleviate such a trade-off to a certain
degree. AIIE is faster than the temporal schemes, while its convergence
to a spatially inhomogeneous pattern is less sensitive to initial guess and
spatial grid size compared with Newton’s method. In other words, AIIE
may be the most efficient, compared with existing methods, in searching for
spatial inhomogeneous patterns. Because each simulation for a given set of
parameters may diverge or converge to a spatially homogeneous solution, the
efficiency of such a task is determined by two factors: likelihood of converging
to patterns and CPU time for each convergent simulation. Therefore, an
efficient method for finding patterns needs a balance of performances affected
by these two factors.

Although AIIE is shown to have good performance and efficiency, several
improvements can be made for the new approach introduced in this paper.
The dominant cost of AIIE, similar to Newton’s method, comes from solving
the linear system involving the Jacobian matrix at each iteration step. Since
the Jacobian matrix in (4) or (6) is tridiagonal in a one-dimensional system
or has a structure of block tridiagonal matrices for high spatial dimensions,
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one may develop a direct fast method to solve the linear equation (4) or (6).
For a one-dimensional system, the Thomas algorithm [20] may be carried out
directly. For two- or three- dimensional systems, the Alternating Direction
Implicit (ADI) method [20] for direction splitting may be incorporated with
the Thomas algorithm or a similar fast algorithm in each direction for the
development of fast solvers.

Similar to Newton’s method, calculation of the Jacobian matrix in AITE
may also become problematic for the systems involving many species with
reaction terms that may not be smooth enough for differentiation. In such
cases, the approximation of the Jacobian matrix or a Jacobian-free approach
[12] may be adapted for further improvement of the AIIE type of method.

A typical FAS multigrid approach with the nonlinear Gauss-Seidel smoother
usually results in divergence or convergence to a homogeneous solution. Al-
though the FAS multigrid method with the AIIE smoother can guarantee the
convergence to an inhomogeneous steady state, it costs more CPU time than
the AITE method in our simulations. It is important to develop a cheaper,
though still robust, smoother for FAS. Again, the difficulty here is to balance
the computational efficiency and ability of obtaining pattern solutions.

The essence of the AIIE method, which combines the implicit Euler
method and Newton’s method in this paper, is the integration of an implicit
temporal scheme and an inexact nonlinear solver along with an adaptive iter-
ative “step” to solve steady state pattern for reaction-diffusion equations. To
utilize the strength of various temporal schemes (e.g., implicit vs. explicit)
and nonlinear solvers (e.g., Newton’s method vs. other types), one can in-
corporate other temporal schemes with Newton’s method, or implicit Euler
with other nonlinear solvers, or two other temporal and iterative methods for
designing new hybrid methods that are more robust and more efficient than
ATIE in exploring spatial steady state patterns driven by complex reaction-
diffusion equations.
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Figure 1: A typical inhomogeneous steady state pattern for the system (8) in a one-
dimensional domain. The parameters for this case are D = 0.1, p = 0.01, and p = 1.
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Figure 2: Comparisons of five different methods for solving system (8) in a one-dimensional
domain. (A): The percentage of the simulations that converge to inhomogeneous steady
state patterns as a function of the magnitude of the perturbation in the initial guess. (B):
CPU time for simulating one set of parameters as a function of the magnitude of the
perturbation acted on initial guess. The percentage and CPU time of the simulations at
each marker are calculated within 100 random sample sets of parameters chosen from the
ranges (12).

25



35 : © 1
-©-NM
5l| "7 1IE(0=10) | 0.9
g —x—:ﬁgﬂ) 'gole
(2
225/ A FAIE 24
8 |[=#-E §
£ 2 | 80— —F
= Q05 —>
[2]
o 1.5 A oo
: %x
@ £ "
(&] =]
0.3 ]
5 >
" o
o~
> Dt
: g e——o .
0.05 01 0.2 05 0.05 0.1 0.2 0.5
Y
35 :
-©-NM
4l “7lIE(e=10) )
0 ¥ IIE(c=1)
c
5 AlIE
£ 250 A FAIE
S %k
c ol 0.
= 0.
[%2]
o 0.
©
o 0.
-
o
2 0.
) DD G
& o——% ..
0.05 01 0.2 05 0.05 0.1 0.2 05
Y Y

Figure 3: Comparisons of five different methods for solving system (14) in a one-
dimensional domain. (A,C): The percentage of the simulations which converge to in-
homogeneous steady state patterns as a function of the magnitude of the perturbation in
the initial guess. (B,D): CPU time for simulating one set of parameters as a function of the
magnitude of the perturbation acted on initial guess. The simulations at each marker in
(A,B) and (C,D) are calculated within 1,000 and 2,000 random sample sets of parameters,
respectively. All the parameters are chosen from the ranges (16).
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Figure 4: Comparison of AIIE and NM using small perturbation acted on initial guess
(v = 0.1) for the robustness of convergence to an inhomogeneous pattern for solving
system (14) in a one-dimensional domain. (A) AIIE. (B) NM. Grey: Convergence to
a homogeneous steady state; White: Convergence to an inhomogeneous pattern; Black:
Non-convergence for a tolerance of 10~7 and a maximal iteration number of 1,000.
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Figure 5: Comparison of AIIE and NM using a larger perturbation acted on initial
guess (v = 0.5) for the robustness on converging to an inhomogeneous pattern for solving
system (14) in a one-dimensional domain. (A) AIIE. (B) NM. Grey: Convergence to
a homogeneous steady state; White: Convergence to an inhomogeneous pattern; Black:
Non-convergence for a tolerance of 10~7 and a maximal iteration number of 1,000.
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Figure 6: The number of iterations for AIIE to converge vs. the diffusion coefficient D.
All the simulations have the same initial guess and the fixed parameters: J = 10, u =1
and p =0.1
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Figure 7: Comparison of AIIE and NM, when applied to a two-dimensional system
(14), for the robustness of converging to an inhomogeneous pattern with two different
magnitudes of perturbation of the initial guess. (A) AIIE. (B) NM. Grey: Convergence
to a homogeneous steady state; White: Convergence to an inhomogeneous pattern; Black:
Non-convergence for a tolerance of 10~7 and a maximal iteration number of 1,000.
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Figure 8: Comparison of AIIE and NM, when applied to a three-dimensional system
(14), for the robustness of converging to an inhomogeneous pattern with two different
magnitudes of perturbation of the initial guess. (A) AIIE. (B) NM. Grey: Convergence
to a homogeneous steady state; White: Convergence to an inhomogeneous pattern; Black:

Non-convergence for a tolerance of 1077 and a maximal iteration number of 1,000.
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Figure 9: The percentage of the simulations that converge to inhomogeneous steady state
patterns as a function of the spatial level J (number of spatial point N = 27 +1). (A):
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guess formed on J = 6 coarse grid. The percentage of the simulations at each marker is
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Figure 10: Five different sets of initial guesses used for spatial resolution refinement tests.
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Figure 11: Two-dimensional patterns at three different spatial resolutions of AIIE and
NM for solving system (14). All the simulations have a tolerance of 5 x 10~ within 1,000
iterations. D = 0.01, p = 0.01 and p = 0.5.
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Figure 12: Two-dimensional patterns at three different spatial resolutions of AIIE and
NM for solving system (22). All the simulations have a tolerance of 5 x 10~ within 1,000
iterations. Dy = 0.01, Dg = 0.005, p = 0.04 and k& = 0.06.
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