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Abstract. Adaptive mesh refinement and the Börgers’ algorithm are combined to generate a
body-fitted mesh which can resolve the interface with fine geometric details. Standard linear finite
element method based on such body-fitted meshes is applied to the elliptic interface problem and
proven to be superclose to the linear interpolation of the exact solution. Based on this superconver-
gence result, a maximal norm error estimate of order O(h1.5) is obtained without using the discrete
maximum principle. The data structure and meshing algorithms, including local refinement and
coarsening, are very simple. In particular, no tree structure is needed. An efficient solver for solving
the resulting linear algebraic systems is also developed and shown be robust with respect to both
the problem size and the jump of the diffusion coefficients.
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1. Introduction. Elliptic interface problems arise in many physical applications
including fluid dynamics, material science and so on [23]. Let Ω be a bounded open
domain in R2 and Γ a continuous simple closed curve imbedded in Ω. The curve Γ
separates the domain Ω into two disjoint regions Ω+ and Ω−, and by convention Ω−

denotes the interior domain enclosed by Γ. A typical elliptic interface equation is

(1.1) −∇ · (β(x)∇u(x)) = f(x), x ∈ Ω\Γ,

with prescribed jump conditions across the interface Γ:

(1.2) [u]Γ = u+ − u− = q0, [βun]Γ = β+u+
n − β−u−n = q1,

and Dirichlet or Neumann boundary condition on ∂Ω. Here un denotes the normal flux
(∇u) ·n with n being the unit outward (from Ω− to Ω+) normal vector of the interface
Γ. The superscripts + and − stand for the restrictions of a function on Ω+ and Ω−,
respectively. The diffusion coefficient β(x) is assumed to be uniformly positive and
smooth on each subdomain, but may be discontinuous across the interface. The
discontinuity of the solution and/or the flux posed in (1.2) makes numerical methods
for interface problems a challenging task.
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Existing numerical methods for interface problems can be roughly classified into
two categories by using either a Cartesian-type mesh or a body-fitted mesh in the
discretization of the domain. Methods based on Cartesian meshes use Cartesian
meshes of the whole domain Ω and modify the finite difference stencils or finite element
basis functions on the vertices near the interface in order to deal with the jump
conditions; see [15, 23, 24] and references therein. The main advantage of using
Cartesian-type mesh is that the mesh generation is simple. In contrast, on body-
fitted meshes, one can use the standard discretization while changing the mesh such
that the grid points fitted to the interface. Therefore a crucial ingredient of this
method is to have a simple, robust and fast mesh generator, which is the topic of this
study.

We are interested in the semi-structured and body-fitted triangular mesh gen-
eration methods [4, 5, 26], and in particular the Börgers’ algorithm [5]. The basic
idea of the Börgers’ algorithm is to use a Cartesian grid but perturb only the grid
points near the interface onto the interface and choose an appropriate diagonal of
perturbed quadrilaterals to fit the interface and maintain the mesh quality. The final
body-fitted mesh is shape regular and topologically equivalent to the Cartesian grid.
This topological structure will be beneficial in the numerical computation, e.g., on de-
signing multigrid type solvers. Application of Börgers’ algorithm to elliptic interface
problems can be found in [30, 31]. For general unstructured body-fitted triangular
mesh generation methods, the readers are referred to Triangle [28] and Distmesh [25].

When the interface contains fine geometric features, methods based on a Cartesian
mesh or its perturbation, require a very fine mesh to resolve the interface and in turn
increase the computational cost. The cost can be dramatically reduced by applying
adaptive mesh refinement (AMR) near the interface. We should distinguish two types
of mesh adaptivity: one is to resolve the geometry of the interface and the other
is to resolve the singularity of the solution [13]. Here we focus on the former since
usually the singularity occurs near the interface and resolving the interface is enough
to resolve the singularity. Even if further singularity could exist in other locations,
the standard adaptive mesh refinement based on a posteriori error estimator can be
applied once the initial mesh resolves the interface.

In this study, we combine the adaptive mesh refinement and the Börgers’ algo-
rithm to generate a body-fitted mesh which resolves the interface with fine geometric
details while maintaining the hierarchical structure. Since the feature of a curve can
be characterized by its large curvature. Our mesh refinement will be guided by a
discrete curvature estimator. Interface elements, which are triangles across the inter-
face, will be refined if the estimated curvature is big. The refinement stops until no
such elements. Then Börgers’ algorithm [5] is applied to adjust the mesh points near
the interface to get a body-fitted mesh. Finally edge swapping and mesh smoothing
technique is applied to further improve the quality of the mesh. The obtained body-
fitted mesh will be used a coarse grid and finite element approximation of the interface
problem will be based on a sequence of meshes based on the uniform refinement of this
coarse mesh. The new vertices on the interface edges introduced in each refinement
will be projected onto the interface.

An important feature of our approach is that the data structure and meshing
algorithms, including local refinement and coarsening, are simple and fast. In par-
ticular, no tree structure is needed, and only standard data structure for the Finite
Element Methods (FEMs) is used. The hierarchical structure of the mesh is implic-
itly stored in the ordering of triangles. This is in contrast to other adaptive methods
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where sophisticated quad-tree structure is used [34]. In addition, unlike the quad-tree
grids, the generated mesh is conforming without hanging vertices that need special
treatment.

The implicitly built-in hierarchical structure can be used to construct a multigrid-
type preconditioner. Together with the Preconditioned Conjugate Gradient (PCG)
method, the linear algebraic systems resulting from the finite element discretization
on our body-fitted meshes can be solved very efficiently. Numerical tests show that
the solver is robust with respect to both the problem size and the jump of the diffusion
coefficients.

For moving interface problems, the coarsening algorithm is more important. After
the interface is moved, we can efficiently adjust the mesh to fit the new interface by
the combination of the coarsening, refinement and Börgers’ algorithm. In this paper,
we focus on the stationary elliptic equations and leave the generalization to moving
interface problems in a forthcoming work.

Besides the numerical experiments, we provide a superconvergence analysis for
the methods we developed. We show that the linear finite element solution of (1.1) is
superclose to the nodal interpolation of the true solution under some practically as-
sumption on the meshes. As a consequence we obtain an O(h1.5) error estimate in the
maximal norm. Note that although optimal order of convergence in the energy norm
is well known [32, 14], the maximal norm error analysis without using discrete maxi-
mum principle, which is difficult to impose in practice [22], is new to two dimensional
interface problems.

The rest of the paper is organized as follows. In Section 2, we present an adaptive
mesh algorithm for the generation of body-fitted meshes. In Section 3, we introduce
the finite element formulation of (1.1), and discuss the superclose and maximal norm
estimate. In Section 4, we provide two numerical experiments to show the effectiveness
of our method. Finally, we give several concluding remarks in Section 5.

2. A Mesh Generation Algorithm. In this section, we present a mesh genera-
tion algorithm to generate a body-fitted triangular mesh for a given smooth interface.
We begin with discussion on the structure and quality of meshes and then introduce
our semi-structured mesh generation algorithm. We explain details of our algorithm
through a concrete example.

2.1. Overview. Structured meshes, for example, the Cartesian grid or topo-
logically tensor product grids, can use a simple index pointer. Physical location of
each vertex and function values at each vertex can be addressed by index (i, j) in
two dimensions or (i, j, k) in three dimensions. This structure enable simplification
in the implementation of numerical methods. Furthermore the natural hierarchical
structure of tensor product meshes is ideal for multigrid solvers. Unlike structured
grids, unstructured grids require a list of the connectivity which specifies the way of a
given set of vertices making up individual elements. The indexing is more complicated
and the hierarchical structure is usually unavailable.

The mesh quality measures the shape of elements. For triangles, usually the
aspect ratio of the diameter over the inscribed radius is used. In two dimensions, this
is equivalent to the minimal angle. Among various mesh qualities [20], in this paper
we use the minimal angle. The mesh quality is important to control the interpolation
error in H1 norm [1] and the condition number of the stiffness matrix [18].

There are a number of body-fitted triangular mesh generation methods, different
in the trade-off of the mesh structure and the mesh quality. Scarifying the structure,
one can get body-fitted meshes with high quality. A popular approach is through
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Delaunay-refinement and/or mesh smoothing. One noticeable example is the software
package Triangle [28] which can generate an unstructured mesh fitted to given polygon
curves with a guaranteed minimal angles ≥ 30◦. Another approach is through mesh
optimization. For example, DistMesh [25], can usually produce body-fitted meshes
with high quality triangles.

In our application, the hierarchical structure is more important since efficient
multigrid preconditioner can be developed and coarsening is possible which fascinate
the re-meshing for moving interface problems. Therefore we would like to maintain
a hierarchical structure. We still use unstructured grid indexing while record the
hierarchical structure implicitly by the ordering of the triangles and vertices using the
ideas in [12]. We call such grids semi-structure.

One semi-structured and shape regular meshing algorithm is proposed by Börgers [5]
for Cartesian grids. He showed that one can generate a quasi-uniform and shape reg-
ular grid from a Cartesian grid by perturbing some nearby grid points to the interface
and connecting suitable diagonals of the quadrilaterals. The tensor product structure
of the Cartesian grid is thus preserved. The accuracy of the approximation of the
interface Γ is O(h2) for Γ ∈ C2; see Theorem 3 in [5]. If the initial Cartesian grid
is uniform, the mesh generated by Börgers algorithm has a theoretical lower bound
18.4349◦.

In this study, we combine the adaptive mesh refinement and the Börgers’ algo-
rithm to generate a body-fitted mesh which resolves the interface with fine geometric
details while maintains the hierarchical structure. Our mesh refinement is guided by
a discrete curvature estimator. If we begin with a mesh consisting of isosceles right
triangles, the final mesh generated by our algorithm also has a lower bound 18.4349◦.
In practice, the minimum angle is usually slightly larger than this theoretical bound.

In our algorithm, we store the coordinates of vertices in node array and the
topological connectivity of vertices in elem array, which is the minimal information
required for any finite element implementation. Instead of using the binary refinement
tree explicitly, the hierarchical structure is implicitly stored in a special ordering of
the triangles and vertices; see [12] for details.

One closely related mesh generation algorithm is AMR through quad-tree grids
which recursively subdivides rectangles into four smaller rectangles with equal size.
Once the mesh resolves the fine details of the geometry, vertex perturbation is applied
to fit the interface. Further post-processing is needed to improve the skew triangles
near the boundary or interface; see [17, 33] and references therein.

There are some drawbacks of the quad-tree method which limit its application [34].
First, the data structure of quad-trees is more sophisticated than ours in terms of
storing and retrieving mesh information. Furthermore, it suffers from the existence of
hanging nodes and is relatively poor in fitting the boundary. As a consequence, mesh
generation algorithm based on quad-tree needs post-processing in order to obtain a
mesh with good quality; see [16, 17].

2.2. Algorithm. For simplicity, we assume that the domain Ω is a square with
four vertices p1, p2, p3, and p4 shown in Fig. 2.1 (a). We also assume that an initial
mesh T0 of Ω consisting of isosceles right triangles is given. The vertices of each
triangle are listed in counter-clockwise order and the first vertex of each triangle is
opposite to its longest edge. If Ω is the unit square, the node and elem arrays of T0

in Fig. 2.1(a) are
node = [0 0; 1 0; 1 1; 0 1]; elem = [2 3 1; 4 1 3];
We label the first vertex of each triangle of T0 as the newest vertex, and use the
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newest vertex bisection method. The rule of newest vertex bisection includes:
(1) a triangle is bisected to two new children triangles by connecting the newest

vertex to the midpoint of the opposite edge;
(2) the new vertex created at the midpoint of a bisected edge is assigned to be

the newest vertex of the children.
Once the labeling is done for an initial triangulation, the decent triangulations inherit
the label by the rule (2) such that the bisection process can proceed. Note that when
triangles are all isosceles, the newest vertex bisection coincides with the longest edge
bisection. By storing the first vertex of triangles as the newest vertex, however, there
is no need to compute the edge length. A simple implementation of newest vertex
bisection method in MATLAB can be found in iFEM [9].

p
1

p
4

p
2

p
3

Ω
Ω
+

Ω
−Γ

(a) (b)

Fig. 2.1: The initial mesh and the mesh obtained by bisection twice. (a) The initial mesh T0. (b)
Uniformly bisect T0 twice.

Let Γ be a smooth interface imbedded in Ω. Assume Γ can be represented by the
zero-level set of a function φ(x), i.e., Γ = {x ∈ Ω : φ(x) = 0}. The interface Γ sepa-
rates Ω into two subdomains Ω+ := {x ∈ Ω : φ(x) > 0} and Ω− := {x ∈ Ω : φ(x) < 0}.
Given a triangular mesh T of Ω, a vertex p is said to be inside if φ(p) < 0, outside if
φ(p) > 0, or on Γ if φ(p) = 0; an element τ ∈ T is called an interface element if the
function values of φ at its three vertices have at least two different signs. All vertices
of interface elements are called interface vertices.

During the refinement process, there will appear two types of elements in the
mesh. An element is said to be of Type A if its two legs are parallel to either x-axis
or y-axis; see Fig. 2.6. A Type B element is one such that its hypotenuse is parallel
to x-axis or y-axis; see Fig. 2.7. If all elements containing a vertex p are of Type A,
their legs locally form a Cartesian grid around p for which Börgers’ algorithm [5] can
apply. Therefore the type of elements will be carefully controlled in our algorithm.
Note that one bisection will change the type of the bisected element.

Our algorithm is described as follows:

Algorithm 2.1. T = interface(T0, φ)
Input: T0 an initial mesh of Ω; φ the level set function describing Γ.
Output: T a body-fitted mesh.
Step 1 Uniformly bisect T0 till there exists at least one inside vertex.
Step 2 Bisect interface elements with large curvature estimator.
Step 3 Update the type of interface elements.
Step 4 Move nearby interface vertices to Γ.
Step 5 Apply edge swapping and mesh smoothing.

2.3. An example. We describe Alg. 2.1 in detail by the following example.
Consider the square domain Ω = (−1, 1)2 and an interface Γ given in the parametrized
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form:

X(θ) = 0.02
√

5 + r(θ) cos(θ), Y (θ) = 0.02
√

5 + r(θ) cos(θ), r(θ) = 0.5 + 0.2 sin(12θ),

for 0 ≤ θ ≤ 2π; see Fig. 2.1(a). Given a point x0 = (X,Y ) ∈ Ω, the level set of Γ is:

φ(x0) = r2
0 − r(θ0)2,

where (r0, θ0) is the polar coordinates of x0.

Step 1. Uniformly bisect T0 several times to get a finer mesh with at least one
vertex inside Γ; see Fig. 2.1(b). Find all interface elements by checking the sign of
the level set functions evaluated on each vertex; see the elements with gray color in
Fig. 2.1(b).

T

T�

T�

(a)

T

T�

T�

(b) (c)

Fig. 2.2: Two cases of interface vertices with large curvature estimator. In (a) and (b), for an
interface vertex p not on the interface, there exist other two interface vertices p1 and p2, which are
neighbors of p, such that p1, p, p2 are collinear and the line segment (p1, p2) is crossed twice by the
interface Γ ; In (c) the interface elements form a “belt” domain whose “width” is only one interface
element and boundaries are two poly-lines along the interface.

Step 2. The accuracy of the poly-line approximation of a curve is usually con-
trolled by its curvature and the local edge length. Typically, more mesh vertices (and
thus shorter edge length) are needed at places with big curvature in order to have a
better approximation. In this step, we will repeat the following loop until no elements
marked for refinement:

(2.1) ESTIMATE→ MARK→ REFINE.

For every interface vertex p, we estimate the curvature of Γ near p, mark interface
elements which contains a interface vertex with large curvature estimator, and refine
these elements.

ESTIMATE. We estimate the curvature at an interface vertex p by the config-
uration and angles of the interface elements containing p, and construct a curvature
estimator ηp.

There are two possible configurations of interface vertex. For the first case, let p
be a interface vertex which is not on Γ. If there exist other two interface vertices p1

and p2 which are neighbors of p( namely (p1, p) and (p2, p) are two edges in current
mesh), furthermore p1, p, p2 are collinear and the line segment (p1, p2) intersects the
interface Γ twice, then we set ηp = ∞, see the vertices marked with black dots in
Fig. 2.2 (a) and (b). Because this case indicates that the interface is folded in some
place (not necessarily near p) which make two parts of the interface near p very close,
so we need to bisect the elements containing p to separate this two parts. Through
local mesh refinement, the interface vertices of the first case will disappear, since the
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distance between p and Γ is fixed and the local element size around p will discrease
when local refinement is applied.

In the second case, the interface elements form a “belt” domain whose “width”
is only one interface element and boundaries are two poly-lines along the interface;
see Fig. 2.2 (c). And the trend of such a “belt” domain should reflect the trend of
the interface. Consequently the discrete curvature of its two poly-line boundaries
should reflect the curvature of the interface. So we introduce our curvature estimator
based on the discrete curvature of these two poly-line boundaries. Here the discrete
curvature κp at a vertex p is defined as the change of the angles of two neighboring line
segments following the positive direction of the poly-line; see Fig. 2.3. The curvature
estimator ηp at p is defined as:

ηp :=

∣∣∣∣∣∣
∑

q∈J (p)

κq

∣∣∣∣∣∣ ,
where J (p) is the neighbor interface vertex set of p. Here the sum introduces some
average and smoothing effect and make the estimator to reflect the varying of the real
curvature better.

p
4

p
3

p
1

B

p
2

−A Γ
h

Fig. 2.3: The discrete curvature of poly-line Γh at its vertex. Counter clockwise is the positive
direction. From line segment (p1, p2) to line segment (p2, p3), Γh turns left and the discrete curvature
of Γh at p2 is B degree; from line segment (p2, p3) to line segment (p3, p4), Γh turns right and the
discrete curvature of Γh at p3 is −A degree.

MARK. Mark elements which contain an interface vertex with ηp ≥ 180◦.

REFINE. If there exist marked elements, bisect all marked elements with pos-
sible more neighboring elements to get a conforming triangulation; else step 2 termi-
nates.

Let us consider a special case –the interface is a straight line–to show why Step
2 can terminate. See Fig. 2.4, for a straight line, all interface elements form a “belt”
domain whose “width” is only one interface element and boundaries form two poly-
lines along the straight line, and these two poly-line boundaries neither cross over
nor be far from the straight line. Under such case, one can show that the discrete
curvature estimator of every interface vertex must be less than 180◦. If not, the
poly-lines must cross over or depart from the straight line.

For general interface, under small enough local mesh size, the interface locally can
be thought as a straight line. So the bisection process based on the discrete curvature
estimator ηp will terminate when the local mesh size is small enough. For the mesh
and its local detail, see Fig. 2.5.

Step 3. For an interface vertex p if all interface elements containing p are of
Type A, the legs of these elements locally form a Cartesian grid, see Fig. 2.6, so



8 HUAYI WEI, LONG CHEN, YUNQING HUANG AND BIN ZHENG

Fig. 2.4: . The interface Γ is a straight line. The gray elements are the interface elements.

(a) (b)

Fig. 2.5: The mesh (a) and its local details (b) after step 2.

p

Type A

Type AType A

p

Type A

Type A

Type A

Type A

Type A

Fig. 2.6: Examples of Type A interface elements. The legs of these elements locally form a uniform
Cartesian grid.

that Börgers’ algorithm can be applied. For Type B interface elements it can be
transformed into Type A by one bisection. However, there is no need to transform all
Type B interface elements to Type A. In fact, as a property of locally adaptive meshes,
the type difference between neighboring elements is necessary for having varying mesh
size. We shall just bisect some Type B interface elements and keep others in the mesh.

Two triangles are called neighbors of each other if they share a common edge.
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(d)
Fig. 2.7: Examples of Type B elements. (a) The Type B interface elements. (b) The Type
B element pair near the interface which are not interface elements. (c) The transition Type B
interface element τB which satisfies the condtion φ(m2)φ(m3) < 0. (d) The transition Type B
interface element τB which satisfies the condition φ(m14)φ(m34) < 0 and φ(m2)φ(p2) < 0.

Let the neighbors of an element be indexed in such a way that the i-th neighbor is
opposite to its i-th vertex. A Type B interface element is called a transition Type B
if its first neighbor is a Type A interface element, and its second or third neighbor
is also of Type A interface element; see Fig. 2.7(c). We shall bisect some transition
Type B elements according the rule described below.

Let us take the transition Type B interface element τB : (p1, p2, p3) in Fig. 2.7(c)
and (d) as an example to illustrate our criterion. The Type A interface element τA :
(p4, p1, p3) is the second neighbor of τB . Let m23, m14 and m34 be the middle points
of edge (p2, p3), (p1, p4) and (p3, p4), respectivly. Furthermore, let m2 = (p2 +m23)/2
and m3 = (m23 + p3)/2 . We will bisect τB if one of the following two conditions is
satisfied
(C1): φ(m2)φ(m3) < 0,
(C2): φ(m14)φ(m34) < 0 and φ(m2)φ(p2) < 0.

Let p be the intersection point of Γ and edge (p2, p3). Condition (C1) means that
d(m23, p) < d(p, p2) and d(m23, p) < d(p, p3), where d(·, ·) is the Euclidean distance of
two points. So τB is bisected such that m23 is a mesh vertex and thus the perturbation
(of vertices to intersection) is smaller; see Fig. 2.7 (c).

When condition (C2) is satisfied, the vertices p2 and p4 will be perturbed onto Γ
while p1 and p3 will not be perturbed onto Γ by Börgers’ algorithm. So edge (p1, p3)
will cross the interface. The interface will be better approximated by swapping the
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diagonal (p1, p3) with (p2, p4) in the quadrilateral formed by p1, p2, p3 and p4. But for
quadrilateral formed by different type of elements, the edge swapping would introduce
an element with very small angle (for example, the triangle (p1, p2, p4)). Therefore
bisection of τB will be helpful; see Fig. 2.7 (d).

In order to enable the edge swapping in Step 5, we also need to bisect the pairs
of Type B elements which are close to but not crossed by the interface, i.e. they are
not interfaces elements but neighbors of interface elements; see Fig. 2.7(b).

Step 4. Following Börgers’ algorithm in [5], we find all edges parallel to the
coordinate axes and crossing the interface. For each such edge, we compute the
distances from the two end vertices to the intersection point and replace the closer
vertex by the intersection. If an interface vertex can be replaced by more than one
intersection point, we choose the closest one; see Fig. 2.8.

A B

CD

E

F

G

H

P

P1

P2

P3

P4

Fig. 2.8: Börgers’ algorithm considers the intersections of the interface and the edges parallel with
x or y coordinates and choose the smaller perturbation. In the above figure, because |PP2| < |EP2|
and |PP3| < |FP3|, so P can be moved to P2 or P3. Furthermore because of |PP3| < |PP2|, Börgers’
algorithm will move P to P3.

Step 5. After the perturbation, in Börgers’ algorithm, one need to choose a
suitable diagonals of the quadrilaterals containing interface vertices. In our setting
it is equivalent to the edge swapping. The first case is a quadrilateral formed by
two interface elements and the diagonal of this quadrilateral cross the interface. We
apply edge swapping to make them to fit the interface; see (a) and (b) in Fig. 2.9.
The second case is a quadrilateral formed by the element pair which has at least one
vertex on the interface and share a common longest edge. We apply the edge swapping
if the minimal angle can be improved and the new edge does not intersect with the
interface; see Fig. 2.9(c). After edge swapping, the minimal angle is 19.1052◦ for this
example, which is better than the theoretical lower bound 18.4349◦.

Mesh smoothing can be further applied to improve the mesh quality for elements
near the interface. The mesh smoothing scheme used here is the CPT smoothing
which is a variant of ODT smoothing proposed in [7, 8, 10]. For any bad element with
an edge fitting to the interface, relocate the vertex opposite to the fitting edge to the
weighted average of barycenters of all triangles containing this vertex; see Fig. 2.9(d).
The mesh smoothing improve the minimum angle to 24.0143◦ for this example.

Finally, we obtain a shape regular and body-fitted mesh which captures the geo-
metric details of Γ and preserve some structure of the adaptive mesh; see Fig. 2.10.
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(a) (b)

swap this edge to dash edge

Γ

(c) (d)

Fig. 2.9: Edge swapping and mesh smoothing are applied to fit the interface (the thicker curve)
and improve the mesh quality. (a) The interface element pairs after step 4. For every pair, the
common longest edge of two elements is crossed by the interface. (b) Apply edge swapping for the
interface element pairs in (a) to make the common edge fit the interface. (c) Apply edge swapping
for the element pair near interface to improve the minmal angle of the element pair. (d) Local
CPT mesh smoothing. Relocate the vertex to the weighted average of barycenters of all triangles
containing this vertex.

We emphasize again the obtained body- fitted mesh will be used a coarse grid and lin-
ear finite element approximation of the interface problem will be based on a sequence
of meshes using the uniform refinement, i.e., each triangle is divided into four similar
small triangles, of this coarse mesh.

(a) (b)

Fig. 2.10: The obtained mesh (a) and its local details (b).
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3. FEMs for Interface Problems. In this section we consider linear finite
element approximation of (1.1) based on a sequence of meshes obtained by several
uniform refinement of the body-fitted mesh generated by Alg. 2.1. We provide a
superconvergence analysis to prove that the linear finite element solution is superclose
to the linear interpolant of the exact solution. A maximal norm estimate is obtained
based on this superclose result.

For the simplicity of exposition, we assume the domain Ω is a square, the func-
tion value jump condition [u]Γ = 0, and the Dirichlet boundary condition u|∂Ω = 0.
Furthermore, we assume the coefficient function β(x) is positive and piecewise con-
stant. The results in this section, however, can be extended to general elliptic interface
problems without essential difficulty. In addition, we use x . y to indicate x ≤ Cy.

3.1. The Sobolev spaces and the weak formulation. LetD denote a bounded
open and connected set in R2 and W k,p(D) the usual Sobolev space with standard
norm ‖ · ‖k,p,D and seminorm | · |k,p,D. For p = 2, we denote W k,2(D) by Hk(D) and
the corresponding norm and seminorm by ‖ · ‖k,D = ‖ · ‖k,2,D and | · |k,D = | · |k,2,D,

respectively. The space H1
0 (D) is a subspace of H1(D) whose elements have zeros

trace on ∂D. Let (·, ·)D and 〈·, ·〉∂D denote the standard L2 inner products of L2(D)
and L2(∂D), respectively.

For (1.1), the domain Ω can be decomposed as Ω = Ω−∪Γ∪Ω+ (see Fig. 2.1(a)).
We denote by W k,p(Ω− ∪ Ω+) the Sobolev space consisting of function w such that
w|Ω− ∈W k,p(Ω−) and w|Ω+ ∈W k,p(Ω+) equipped with norm

‖w‖k,p,Ω−∪Ω+ =
(
‖w‖pk,p,Ω− + ‖w‖pk,p,Ω+

)1/p

,

and seminorm

|w|k,p,Ω−∪Ω+ =
(
|w|pk,p,Ω− + |w|pk,p,Ω+

)1/p

,

with standard modification for p =∞.
The weak formulation of (1.1) is as follows: find u ∈ H1

0 (Ω) such that:

(3.1) (β∇u,∇v)Ω = (f, v)Ω − 〈q1, v〉Γ for all v ∈ H1
0 (Ω).

The existence and uniqueness of the solution can be easily proved by the Lax-Millegram
theorem. For the solution u of (3.1), we have the following regularity result [27]:
u ∈ Hr(Ω− ∪ Ω+)

‖u‖r,Ω−∪Ω+ . ‖f‖0,Ω + ‖q1‖r−3/2,Γ ,

where 0 ≤ r ≤ 2.
Remark 3.1. If the function value contains a jump [u]Γ = q0 6= 0, we can find

φ− : Ω− → R with φ− = q0 on ∂Ω− and φ− ∈ H1(Ω−). The zero extension of φ−,
denoted by φ satisfies φ ∈ H1(Ω− ∪ Ω+) with φ = φ− on Ω− and φ = 0 on Ω+. The
model (1.1) is equivalent to: find u = q − φ with q ∈ H1

0 (Ω) such that:

(β∇q,∇v)Ω = (f, v)Ω − 〈q1, v〉Γ + (β∇φ,∇v)Ω−

for all v ∈ H1
0 (Ω). Notice that the choice of φ is not unique and can be approximated

by a finite element function [19].
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3.2. Finite Element Approximation. Let Th be a body-fitted and shape reg-
ular triangular mesh. For each τ ∈ Th, let hτ denote its diameter and h = maxτ∈Th hτ .
The vertices on Γ forms a polygon Γh approximation of Γ. The polygon Γh also splits
Ω into two subdomains: Ω−h and Ω+

h which are the approximations of Ω− and Ω+,
respectively. Each triangle τ ∈ Th is either in Ω+

h or Ω−h , and has at most two vertices
on Γ. The triangulation Th can be decomposed into three parts:

T +
h := {τ ∈ Th|τ ⊂ Ω+

h , τ has at most one vertex on Γ},
T −h := {τ ∈ Th|τ ⊂ Ω−h , τ has at most one vertex on Γ},
T 0
h := {τ ∈ Th|τ has two vertices on Γ}.

(3.2)

Let hΓ = maxτ∈T 0
h
hτ denote the mesh size near the interface. Assume Γ is of class

C2, it is easy to show that the distance between every edge Eh ∈ Γh and Γ is O(h2
Eh

),
where hEh is the length of Eh. Furthermore, for each triangle τ ∈ T 0

h , let τ+ = τ ∩Ω+

and τ− = τ ∩ Ω−, and since Γ ∈ C2, we have either |τ+| . h3
τ or |τ−| . h3

τ ; see Fig.
3.1.

τ
+

Γ

τ
−

x

P(x)

τ

n
h

Ω
+

Ω
−

E
h

0

Fig. 3.1: The projection P0. In this figure, τ+ = τ ∩ Ω+ and τ− = τ ∩ Ω−, and
∣∣τ+∣∣ . h3τ .

Let Eh be an edge of Γh and nh the unit normal of Eh pointing from Ω−h to Ω+
h .

We can define a projection P0 from Eh to Γ [6] (see Fig. 3.1):

P0(x) = x+ d(x)nh for all x ∈ Eh,

where P0(x) ∈ Γ and |d(x)| is the distance between x and Γ along nh. We assume
the length of Eh is small enough so that P0 and its inverse P−1

0 are all well defined.
Let Vh be the linear finite element space on Th. The linear finite element approx-

imation of (3.1) is: find uh ∈ Vh ∩H1
0 (Ω) such that:

(3.3) (βh∇uh,∇vh)Ω = (f, vh)Ω − 〈q̄1, vh〉Γh for all vh ∈ Vh ∩H1
0 (Ω),

where q̄1(x) = q1(P0(x)) for all x ∈ Γh and βh|τ = β+ for all τ ∈ Ω+
h and βh|τ = β−

for all τ ∈ Ω−h . We can find the following nearly optimal L2-norm and H1-norm
estimates; see [14, 32].

Theorem 3.1. Let u be the solution of (1.1) and uh the linear element solution
of (3.3). We have

(3.4) ‖∇u−∇uh‖0,Ω . h |log h|1/2 (‖f‖0,Ω + ‖q1‖2,Ω),

(3.5) ‖u− uh‖0,Ω . h2 |log h| (‖f‖0,Ω + ‖q1‖2,Ω).
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3.3. Superconvergence. Let E be an interior edge of Th and ΩE the patch of
E consisting of two triangles sharing the edge E. We say ΩE is an O(h2) approximate
parallelogram if the lengths of any two opposite edges differ only by O(h2). We adapt
the definition of the O(h2σ) irregular grids (see [2, 11]) to the body-fitted mesh.

Definition 3.2. Let E = E1 ⊕ E2 denote the set of interior edge of Th. The
triangulation Th is O(h2σ) irregular, for some σ > 0, if for each E ∈ E1, E is not an
edge of Γh and ΩE forms an O(h2) approximate parallelogram, while

∑
E∈E2 |ΩE | =

O(h2σ).
Taking the body-fitted mesh generated by Alg. 2.1 as the initial mesh, we uni-

formly refine it, i.e., divide each triangle into four similar small triangles, to get a
sequence of meshes of Ω. By computing

∑
E∈E2 |ΩE | of each mesh in the sequence,

one can show that the mesh sequence obtained is O(h2σ) irregular, and numerically
σ ≈ 0.5.

Lemma 3.3. Let u ∈W 1,∞(Ω− ∪ Ω+); then

(3.6) |(β∇u,∇vh)Ω − (βh∇u,∇vh)Ω| . h
3/2
Γ ‖u‖1,∞,Ω−∪Ω+ |vh|1,Ω for all vh ∈ Vh.

Proof. Given τ ∈ T 0
h , let τ∗ = supp(β − βh) ∩ τ . Then |τ∗| . h3

τ and

|(β∇u,∇vh)Ω − (βh∇u,∇vh)Ω|

≤
∑
τ∈T 0

h

∫
τ∗
|[β]∇u · ∇vh| .

∑
τ∈T 0

h

‖u‖1,∞,Ω−∪Ω+

∫
τ∗
|∇vh|

.
∑
τ∈T 0

h

h3/2
τ ‖u‖1,∞,Ω−∪Ω+ |vh|1,τ∗ . h2

Γ ‖u‖1,∞,Ω−∪Ω+

∑
τ∈T 0

h

|vh|1,τ

.h3/2
Γ ‖u‖1,∞,Ω−∪Ω+ |vh|1,Ω ,

where we have used the fact that ∇vh is constant on τ . Obviously, the constant in .
is C |β− − β+|.

The following lemma is slightly different with Lemma 2.2 in [14]. Here we use the
extension q̄1 = q1(P0(x)) to replace the linear interpolation of q1 on Γh in [14].

Lemma 3.4. Assume q1 ∈W 0,∞(Γ) and Γ ∈ C2; then

(3.7) |〈q1, vh〉Γ − 〈q̄1, vh〉Γh | . h
3/2
Γ ‖q1‖0,∞,Γ ‖vh‖1,Ω for all vh ∈ Vh,

where q̄1(x) = q1(P0(x)) for all x ∈ Γh.
Proof.

〈q1, vh〉Γ − 〈q̄1, vh〉Γh

=
∑

Eh∈Γh

∫
Eh

q1(P0(x))vh(P0(x))J(x)ds−
∫
Eh

q1(P0(x))vh(x)ds

=
∑

Eh∈Γh

[∫
Eh

q1(P0(x))(vh(P0(x))− vh(x))J(x)ds+

∫
Eh

q1(P0(x))vh(x)(J(x)− 1)ds

]
=
∑

Eh∈Γh

[I1 + I2] ,

where J(x) is the Jacobian of the projection P0.
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For I1, since vh is piecewise linear function, we have

|I1| . ‖q1‖0,∞,Γ
∫
Eh

|∇vh(P0(x)) · (P0(x)− x)| . h2
Γ ‖q1‖0,∞,Γ

∫
Eh

|∇vh(P0(x))|

. hΓ ‖q1‖0,∞,Γ
∫

ΩEh

|∇vh| . h2
Γ ‖q1‖0,∞,Γ |vh|1,ΩEh .

For I2, since Γ ∈ C2, we have |J(x)− 1| . h2. Then we have

|I2| . h2
Γ ‖q1‖0,∞,Γ

∫
Eh

|vh| . h
5/2
Γ ‖q1‖0,∞,Γ ‖vh‖0,Eh . h2

Γ ‖q1‖0,∞,Γ ‖vh‖1,ΩEh ,

where we used the scaled trace theorem. Then we have

|〈q1, vh〉Γ − 〈q̄1, vh〉Γh | . h2
Γ ‖q1‖0,∞,Γ

∑
Eh∈Γh

‖vh‖1,ΩEh . h
3/2
Γ ‖q1‖0,∞,Γ ‖vh‖1,Ω .

We are in the position to present the main superconvergence results.
Theorem 3.5. Suppose the body-fitted triangulation Th is O(h2σ) irregular. Let

u be the solution of (1.1), uh the linear element solution of (3.3) and uI the linear
interpolation of u in Vh. If u ∈ H1(Ω)∩H3(Ω− ∪Ω+)∩W 2,∞(Ω− ∪Ω+) and Γ is of
class C2; then for all vh ∈ Vh,

(βh∇(u− uI),∇vh)Ω .h1+min {1,σ}(‖u‖3,Ω−∪Ω+ + ‖u‖2,∞,Ω−∪Ω+) |vh|1,Ω
+ h

3/2
Γ ‖u‖2,∞,Ω−∪Ω+ |vh|1,Ω ,

(3.8)

and ∥∥∥β1/2
h (∇uh −∇uI)

∥∥∥
0,Ω

.h1+min {1,σ}(‖u‖3,Ω−∪Ω+ + ‖u‖2,∞,Ω−∪Ω+)

+ h
3/2
Γ (‖u‖2,∞,Ω−∪Ω+ + ‖q1‖0,∞,Γ).

(3.9)

Proof. Let u− and u+ be the restrictions of u on Ω− and Ω+, repectively. We
have u− ∈ H3(Ω−) ∩W 2,∞(Ω−) and u+ ∈ H3(Ω+) ∩W 2,∞(Ω+). Since Γ is of class
C2, by the extension theorem in [29], we can extend u− onto the whole domain Ω and
still denote the extension by u−. We have the extension u− ∈ H3(Ω)∩W 2,∞(Ω) and∥∥u−∥∥

3,Ω
.
∥∥u−∥∥

3,Ω− and
∥∥u−∥∥

2,∞,Ω .
∥∥u−∥∥

2,∞,Ω− .

Similarly, we can obtain the extension of u+ on Ω. We then split the target term as

(βh∇(u− uI),∇vh)Ω

=
∑
τ∈T +

h

(β+∇(u− uI),∇vh)τ +
∑
τ∈T −

h

(β−∇(u− uI),∇vh)τ

+
∑
τ∈T 0

h

[(βh∇(u− uI),∇vh)τ+ + (βh∇(u− uI),∇vh)τ− ]

(3.10)

Let u−I and u+
I be the linear finite element interpolations of the extension u− and u+

in Vh, repectively. For τ ∈ T 0
h with |τ−| . h3

τ , we have βh = β+ on τ and

(β+∇(u− uI),∇vh)τ+ + (β+∇(u− uI),∇vh)τ−

=(β+∇(u+ − u+
I ),∇vh)τ − (β+∇(u+ − u+

I ),∇vh)τ−

+ (β+∇(u− uI),∇vh)τ− .
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For τ ∈ T 0
h with |τ+| . h3

τ , we have a similar identity.
Then (3.10) can be written into the following form

(βh∇(u− uI),∇vh)Ω

=(β−∇(u− − u−I ),∇vh)Ω−
h

+ (β+∇(u+ − u+
I ),∇vh)Ω+

h

+
∑

τ∈T 0
h ,|τ−|.h3

τ

[
(β+∇(u− uI),∇vh)τ− − (β+∇(u+ − u+

I ),∇vh)τ−
]

+
∑

τ∈T 0
h ,|τ+|.h3

τ

[
(β−∇(u− uI),∇vh)τ+ − (β−∇(u− − u−I ),∇vh)τ+

]
=I1 + I2 +

∑
τ∈T 0

h ,|τ−|.h3
τ

[I31 − I32] +
∑

τ∈T 0
h ,|τ+|.h3

τ

[I41 − I42] .

For I1 and I2, we have the following estimates which can be found in [11]:

|I1| . h1+min {1,σ}(
∥∥u−∥∥

3,Ω− +
∥∥u−∥∥

2,∞,Ω−) |vh|1,Ω ,

|I2| . h1+min {1,σ}(
∥∥u+

∥∥
3,Ω+ +

∥∥u+
∥∥

2,∞,Ω+) |vh|1,Ω .

For the element τ ∈ T 0
h with |τ−| . h3

τ , which means that the most part of τ is in
Ω+, we know that u ∈ H1(τ) ∩W 2,∞(τ− ∪ τ+). By Taylor expansion [32], we have

|u− uI |1,∞,τ− . ‖u‖1,∞,τ−∪τ+ ,

and

|I31| . ‖u‖1,∞,τ−∪τ+

∫
τ−
|∇vh| . h3/2

τ ‖u‖1,∞,τ−∪τ+ |vh|1,τ− . h2
τ ‖u‖1,∞,τ−∪τ+ |vh|1,τ .

For I32, since u+ ∈ H2(τ) ∩W 2,∞(τ), we have

|I32| .
∥∥∇u+ −∇u+

I

∥∥
0,∞,τ

∫
τ−
|∇vh| . h5/2

τ

∥∥u+
∥∥

2,∞,τ |vh|1,τ− . h3
τ

∥∥u+
∥∥

2,∞,τ |vh|1,τ .

Similarly, for the element τ ∈ T 0
h with |τ+| . h3

τ , we can prove

|I41| . h2
τ ‖u‖1,∞,τ−∪τ+ |vh|1,τ , |I42| . h3

τ

∥∥u−∥∥
2,∞,τ |vh|1,τ .

By the fact that
∑
τ∈T h0

1 . h−1
Γ , we have∑

τ∈T 0
h ,|τ−|.h3

τ

|I31 − I32|+
∑

τ∈T 0
h ,|τ+|.h3

τ

|I41 − I42|

.h2
Γ ‖u‖2,∞,Ω−∪Ω+

∑
τ∈T 0

h

|vh|1,τ . h
3/2
Γ ‖u‖2,∞,Ω−∪Ω+ |vh|1,Ω .

The inequality (3.8) then follows.
We now prove (3.9) as

(βh∇(uh − uI),∇vh)Ω

=(βh∇(u− uI),∇vh)Ω + (β∇u,∇vh)Ω − (βh∇u,∇vh)Ω

+ 〈q1, vh〉Γ − 〈q̄1, vh〉Γh .
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Combining (3.8), Lemma 3.4 and 3.3, and taking vh = uh − uI , we proved (3.9).
At last, we give the the maximal norm error estimate. Here let hmin be the

minimum element size of Th. By the discrete embedding result

‖vh‖0,∞,Ω . |log hmin|1/2 |vh|1,Ω for all vh ∈ Vh ∩H1
0 (Ω),

we have the following corollary immediately:
Corollary 3.6. Assume the same hypothesis in Theorem 3.5; then

‖uh − uI‖0,∞,Ω . |log hmin|1/2
[
h1+min {1,σ}(‖u‖3,Ω−∪Ω+ + ‖u‖2,∞,Ω−∪Ω+)

+ h
3/2
Γ (‖u‖2,∞,Ω−∪Ω+ + ‖q1‖0,∞,Γ)

]
.

(3.11)

Remark 3.2. For the body-fitted mesh Th generated by Alg. 2.1, hΓ is generally
far less than h, the maximum size of Th; see the body-fitted meshes in Section 4.
Therefore the second term of the right-hand side of (3.11) is a high order term.

4. Numerical experiments. In this section, we present two numerical exam-
ples to demonstrate the effectiveness of the mesh algorithm combined with the FEM.
We use Matlab package iFEM [9] to do the experiment on a machine with 2.8 GHz
Intel Xeon processor. To test the rate of convergence, we first generate a body-fitted
triangular mesh using Alg. 2.1 and then uniformly refine it to get a sequence of
meshes. Recall that here uniformly refinement means one triangle is subdivied into
four by connecting the middle points of the three edges of the triangle. The new
vertices on the interface edges introduced in each refinement will be projected onto
the interface.

The coefficients β+(x) and β−(x) and the exact solution u+(x) and u−(x) are
given such that the source term, boundary condition, and jump conditions can be
determined accordingly. Let u−h and u+

h be the linear finte element approximations of
u− and u+, respectively. We will test the following four errors:

‖u− uh‖0 := (
∥∥u− − u−h ∥∥2

0,Ω− +
∥∥u+ − u+

h

∥∥2

0,Ω+)1/2,

|u− uh|1 := (
∣∣u− − u−h ∣∣21,Ω− +

∣∣u+ − u+
h

∣∣2
1,Ω+)1/2,

‖uh − uI‖A := (
∥∥∥β1/2

h ∇(u−h − u
−
h )
∥∥∥2

0,Ω−
h

+
∥∥∥β1/2

h ∇(u+
h − u

+
I )
∥∥∥2

0,Ω+
h

)1/2,

‖uh − uI‖∞ := max(
∥∥u−h − u−I ∥∥0,∞,Ω−

h

,
∥∥u+

h − u
+
I

∥∥
0,∞,Ω+

h

).

Remark 4.1. Notice that, u−h defined on Ω−h and u+
h on Ω+

h . But with simple
linear extension on the interface elements [6], we can extend them to Ω− and Ω+,
respectively. In order to compute ‖u− uh‖0 and |u− uh|1 accurately, we use quadratic
curve to replace the straight edge in Γh.

For the solver, we use one multigrid V-cycle as a preconditioner in PCG and call
it MGCG method. The key component of such solver is a coarsening algorithm [12],
with some modification for the mesh generated by Alg. 2.1, to construct a sequence
of nested meshes. After the coarsening, the prolongation and restriction operators
can be built algebraically and so is the standard V-cycle.

For a 2-D quasi-uniform mesh h ≈ N−1/2 and h2 ≈ N−1. In Fig. 4.2 and 4.4, the
rate of convergence is obtained by the least square fitting of the errors to a straight-
line in terms of logN . The slope will be the rate of convergence in terms of N . From
these tests, it is evident that
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• ‖u−uh‖0 and |u−uh|1 reach the optimal order N−1 and N−1/2, respectively;
• |uI − uh|1 has superconvergence N−(1/2+σ/2) with σ ≤ 1 ;
• ‖uI − uh‖∞ achieves the order of convergence N−0.8;
• The MGCG solver scales linearly and is robust with respect to the jump of

the diffusion coefficients.

4.1. Example 1. Our first example is borrowed from [21]. The domain Ω is
(−1, 1)2 and the interface is defined by

X(θ) = r(θ) cos(θ) + xc, Y (θ) = r(θ) sin(θ) + yc,

where r(θ) = r0 + r1 sin(ωθ), 0 ≤ θ < 2π.
The parameters are set to r0 = 0.5, r1 = 0.2, ω = 20, and xc = yc = 0.02

√
5. The

analytic solution is given by

u+ = (r4 + C0 log(2r))/β+, and u− = r2/β−,

where β+ = 10, β− = 1, r =
√
x2 + y2, and C0 = −0.1.

The body-fitted mesh generated by Alg. 2.1 is plotted in Fig. 4.1(a) and the
linear finite element approximation of the solution is plotted in Fig. 4.1(b). The mesh
in Fig. 4.1(a) resolves the interface very well and has a minimum angle 25.7137◦,
maximum element size 0.5 and minimum mesh size 6.7360e-05. The errors of ‖u−uh‖0,
|u − uh|1, ‖uI − uh‖A, and ‖uI − uh‖∞ are presented in Table 4.1 and the rates of
convergence are plotted in Fig. 4.2 (a) and (b).

(a) (b)

Fig. 4.1: The mesh and solution of Example 1. (a) The initial body-fitted mesh with minimum
angle 25.7137◦. (b) The solution on the body-fitted mesh.

Dofs ‖u− uh‖0 |u− uh|1 ‖uI − uh‖A ‖uI − uh‖∞ hmin

18004 2.1762e-02 1.2936e-01 1.5704e-01 1.3512e-02 6.7360e-05
71987 5.3077e-03 6.6627e-02 4.3957e-02 4.0870e-03 3.3680e-05
287893 1.3200e-03 3.3682e-02 1.1900e-02 1.2155e-03 1.6840e-05
1151465 3.2976e-04 1.6901e-02 3.1798e-03 3.5477e-04 8.4200e-06
Order 2.004 0.9896 1.8947 1.7632

Table 4.1: Errors measured in H1, L2, and L∞ norms for Example 1.

In Table 4.2, we present the variation of iteration steps and computational time
with respect to the number of degree of freedoms (Dofs) and to the jump coefficients
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Fig. 4.2: The errors of Example 1. (a) The errors of ‖u − uh‖0 and |u − uh|1. (b) The errors of
‖uI − uh‖A and ‖uI − uh‖∞.

by fixing β− = 1 and varying β+. For Example 1, since the analytic solution is
dependent on the 1

β+ and 1
β− , all errors will decrease with the increased β+ and fixed

Dofs. The error of ‖uI − uh‖A is weighted by βh, so here we just list the error of
‖uI − uh‖A with increased β+, see Table. 4.3.

β+ = 10 β+ = 100 β+ = 1000 β+ = 10000
Dofs #Iter Time(s) #Iter Time(s) #Iter Time(s) #Iter Time(s)
18004 9 0.38 13 0.47 15 0.51 15 0.52
71987 10 0.51 13 0.88 15 0.96 15 0.96
287893 10 2.2 13 2.6 14 2.7 14 2.7
1151465 10 8.8 13 11 14 11 14 11

Table 4.2: Example 1, the iterations and computing time of MGCG with fixed β− = 1 and increased
β+.

Dofs β+ = 10 β+ = 100 β+ = 1000 β+ = 10000
18004 1.570387e-01 5.174507e-02 2.161404e-02 1.568107e-02
71987 4.395695e-02 1.461396e-02 6.404768e-03 4.873726e-03
287893 1.189950e-02 3.983592e-03 1.804054e-03 1.411514e-03
1151465 3.179841e-03 1.069657e-03 4.948437e-04 3.935619e-04
Order 1.8947 1.8863 1.8472 1.8154

Table 4.3: Example 1, the errors of ‖uI − uh‖A with fixed β− = 1 and increased β+.

4.2. Example 2. The second example is taken from [3]. The domain Ω is
(−1, 1)2 and the interface is defined by

θ(t) = t+ sin(4t), r(t) = 0.60125 + 0.24012 cos(4t+ π/2),

X(t) = r(t) cos(θ(t)), Y (t) = r(t) sin(θ(t)),

where 0 ≤ t ≤ 2π. The analytic solution is given by

u− = cos(y) sin(x), u+ = 1− x2 − y2,

with β− = 4 + sin(x+ y) and β+ = 10000 + x2 + y2.
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For this example, the body-fitted mesh generated by Alg. 2.1 and the linear finite
element approximation of the solution is plotted in Fig. 4.3. The mesh in Fig. 4.3(a)
resolves the interface and has a minimum angle 26.2797◦, maximum element size
0.3536 and minimum element size 1.0451e-03. The errors of ‖u − uh‖0, |u − uh|1,
‖uI − uh‖A, and ‖uI − uh‖∞ are presented in Table 4.4 and the rates of convergence
are plotted in Fig. 4.4 (a) and (b).

(a) (b)

Fig. 4.3: The mesh and solution of Example 2. (a) The initial body-fitted mesh with minimum
angle 26.2797◦. (b) The solution on the body-fitted mesh.

Dofs ‖u− uh‖0 |u− uh|1 ‖uI − uh‖A ‖uI − uh‖∞ hmin

4249 1.9326e-02 1.6337e-01 7.3234e+00 8.7266e-03 1.0451e-03
16953 4.8220e-03 8.6269e-02 2.2225e+00 2.9843e-03 5.2257e-04
67729 1.2256e-03 4.4058e-02 6.3928e-01 9.7703e-04 2.6129e-04
270753 3.0807e-04 2.2185e-02 1.7798e-01 3.1631e-04 1.3064e-04
Order 1.9855 0.9803 1.8223 1.6200

Table 4.4: Errors measured in H1, L2, and L∞ norms for Example 2.
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Fig. 4.4: The errors of Example 2. (a) The errors of ‖u − uh‖0 and |u − uh|1. (b) The errors of
‖uI − uh‖A and ‖uI − uh‖∞.

In Table. 4.5, we also present the variation of iteration steps and computing time
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with respect to Dofs for fixing β− = 4 + sin(x + y) and varying β+. For Example
2, since the analytic solution is not dependent on the β, the errors of ‖u− uh‖0,
|u− uh|1 and ‖uI − uh‖∞ remain stable for different β+. Here we just list the error
of ‖uI − uh‖A which is weighted by βh. One can find that the error of ‖uI − uh‖A
increases with the increased β+ and fixed Dofs, see Table. 4.6.

β+ = 10 + r2 β+ = 100 + r2 β+ = 1000 + r2 β+ = 10000 + r2

Dofs #Iter Time(s) #Iter Time(s) #Iter Time(s) #Iter Time(s)
4294 8 0.086 12 0.11 12 0.11 12 0.11
16953 9 0.16 12 0.19 13 0.21 12 0.19
67729 10 0.46 12 0.52 12 0.52 12 0.52
270753 10 1.9 12 2.2 12 2.2 12 2.2

Table 4.5: Example 2, the iterations and computing time of MGCG with fixed β− = 4 + sin(x+ y)
and increased β+.

Dofs β+ = 10 + r2 β+ = 100 + r2 β+ = 1000 + r2 β+ = 10000 + r2

4249 2.435517e-01 7.356614e-01 2.316728e+00 7.323382e+00
16953 7.383809e-02 2.233129e-01 7.031052e-01 2.222478e+00
67729 2.121271e-02 6.422869e-02 2.022412e-01 6.392772e-01
270753 5.901919e-03 1.788140e-02 5.630591e-02 1.779810e-01
Order 1.8238 1.8224 1.8224 1.8223

Table 4.6: The error ‖uI − uh‖A of Example 2 with fixed β− = 4 + sin(x+ y) and increased β+.

5. Discussion and future work. we have improved Börgers’ algorithm by
newest vertex bisection refinement method, and make it more suitable for the inter-
face with complex geometric details. At the same time, we maintain the hierarchical
structure of the body-fitted mesh by a simple data structure. Based on this hierar-
chical structure, we use the coarsening algorithm in [12] to construct a sequence of
nested meshes and then construct an efficient multigrid solver. By some superconver-
gence analysis, we immediately give an estimate in maximal norm to two dimensional
interface problems.

For moving interface problems, we can efficiently adjust the mesh to fit the moved
interface by the combination of the coarsening, bisection and the Börgers’ algorithm,
which will be our future work.
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