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a b s t r a c t

A Fortin operator is constructed to verify the discrete inf–sup condition for the lowest order
Taylor–Hood element and its variant in two dimensions. The approach is closely related to
the recent work byMardal et al. (2013). That is based on the isomorphism of the tangential
edge bubble function space to a subspace of the lowest order edge element space. A more
precise characterization of this subspace and a numerical quadrature are introduced to
simplify the analysis and remove the mesh restriction. The constructed Fortin operator is
stable in both H1 and L2 norm for general shape regular triangulations.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we construct a Fortin operator to verify the discrete inf–sup condition for the lowest order Taylor–Hood
element [1] for solving the following two dimensional Stokes problem:

−1u + grad p = f inΩ,
−div u = 0 inΩ,
u = 0 on ∂Ω,

(1)

whereΩ ⊂ R2 is a bounded domain, u is the velocity field, p is the pressure, and f is the external force field.
The key to establishing thewell posedness of (1) is knownas the following inf–sup condition or the so-called div-stability:

inf
q∈P

sup
v∈V

(div v, q)
|v|1∥q∥

= α > 0, (B)

where P = L20(Ω) := {q ∈ L2(Ω),

Ω
q = 0} endowedwith L2-norm ∥ ·∥ and L2-inner product (·, ·), and V = H1

0 (Ω; R2) :=

{u ∈ L2(Ω; R2),∇u ∈ L2(Ω; R4), u|∂Ω = 0} with norm | · |1 := ∥∇(·)∥. Here X(Ω; Rn) is used to denote vector function
spaces onΩ . Proofs of (B) can be found in many textbooks; see for example [2].

For simplicity of exposition, we assume Ω is a polygon. Let Th be a shape-regular triangulation of Ω with size h =

maxT∈Th diam(T ). Based on Th, finite element spaces Vh ⊂ V and Ph ⊂ P can be constructed. A conforming finite element
discretization of (1) is as follows: find uh ∈ Vh and ph ∈ Ph such that

(∇uh,∇vh)+ (div vh, ph) = (f , vh) for all vh ∈ Vh,
−(div uh, qh) = 0 for all qh ∈ Ph,

(2)
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for given data f ∈ L2(Ω; R2). The key to obtaining a stable discretization of Stokes equations is the following discrete inf–sup
condition: there exists a constant β independent of the mesh size h such that

inf
qh∈Ph

sup
vh∈Vh

(div vh, qh)
|vh|1∥qh∥

= β > 0. (Bh)

The lowest order Taylor–Hood element [1] takes Vh to be the space of continuous and piecewise quadratic functions
and takes Ph to be the space of continuous and piecewise linear functions. Denoted by P k

:= {u ∈ C(Ω), u|T
is a polynomial of degree k,∀T ∈ Th} as the standard kth order Lagrange finite element and P k

0 := P k
∩ H1

0 (Ω). The
lowest order Taylor–Hood element can be simply denoted by P 2

0 × P 2
0 − P 1 element. The discrete inf–sup condition for

Taylor–HoodP 2
0 ×P 2

0 −P 1 element is, however, not easy to verify. See for example Bercovier and Pironneau [3], Verfürth [4],
Boland and Nicolaides [5], Stenberg [6], Brezzi and Falk [7], and Boffi [8].

In a recent work [9], Mardal, Schöberl, and Winther construct a Fortin operator from H1
0 (Ω; R2) → P 2

0 × P 2
0 in two

dimensions. The key idea to construct the operator is to identify an isomorphism between a subspace of the lowest order
edge element space and the tangential edge bubble function space. A Petrov–Galerkin method can then be used to define
the desirable operator. We shall follow closely the work [9]. Our main contribution is a more precise characterization of
the subspace containing gradP 1 and the middle points quadrature rule for the L2-inner product. This quadrature, used in
Falk [10], simplifies the construction and analysis which consequently removes the mesh condition in [9] required for the
L2 stability of the Fortin operator.

Another new result is a Fortin operator for the modified Taylor–Hood element by adding piecewise constant functions
into the pressure space [11,12], i.e., P 2

0 × P 2
0 − (P 1

+ P 0). The inclusion of piecewise constant pressure will lead to the
local mass conservation in each triangle and thus preserve better physical properties [13,14].

We shall use the standard notation of Sobolev spaces and use notation a . b to denote that there exists a positive constant
C independent of the mesh size h, such that a ≤ Cb, and a h b denote a . b . a. For a d-dimensional domain ω, we use |ω|

to denote the d-dimensional Lebesgue measure of ω.

2. Fortin operator and discrete inf–sup condition

We shall construct a Fortin operator [15] to verify the discrete div-stability.

Definition 2.1. A linear operatorΠh : V → Vh is called a Fortin operator if: for any v ∈ V
(1) (divΠhv, qh) = (div v, qh) for all qh ∈ Ph.
(2) |Πhv|1 ≤ C1|v|1.

We call the inequality in condition (2) the H1-stability of the operator Πh. If instead, an inequality with L2-norm holds,
i.e., ∥Πhv∥ ≤ C1∥v∥ for all v ∈ V, we say Πh is L2-stable. For T ∈ Th, define ΩT = ∪T ′∈Th,T ′∩T≠∅ T ′. If the operator Πh

satisfies ∥Πhv∥T ≤ C∥v∥ΩT for all v ∈ V, we say Πh is locally L2-stable. Here we use notation ∥ · ∥ω to denote the norm
restricted to a subdomain ω ⊂ Ω . Obviously local L2-stability implies L2-stability since the mesh is shape regular.

The discrete inf–sup condition (Bh) can be derived from the continuous counterpart (B) with the help of a Fortin operator.
The following result is standard and can be found in, e.g., [2].

Theorem 2.2. If there exists a Fortin operator Πh, then the discrete inf–sup condition (Bh) holds.

For velocity spaces containing linear finite element space, it suffices to construct a Fortin operator locally stable in the L2
norm. The proof of the following result is adapted from [16].

Theorem 2.3. Assume the triangulation Th is shape regular and the velocity space Vh contains piecewise linear and continuous
function space. If there exists an operator ΠB : H1

0 (Ω; R2) → Vh such that (div v− divΠBv, qh) = 0 for all qh ∈ Ph and locally
stable in L2 norm, then there exists a Fortin operator Πh : H1

0 (Ω; R2) → Vh and stable in both H1 and L2 norm.

Proof. LetΠ1 : H1
0 (Ω; R2) → P 1

0 × P 1
0 be the Scott–Zhang quasi-interpolation [17] which satisfies

|Π1u|1,T + h−1
T ∥u −Π1u∥T . |u|1,ΩT , ∥Π1u∥T . ∥u∥ΩT , (3)

where hT = diam(T ). We define the Fortin operator as

Πhu = Π1u +ΠB(u −Π1u).

Then (div u − divΠhu, qh) = 0 for all qh ∈ Ph by definition.
The L2-stability ofΠh is trivial. Now we prove the H1-stability. By the inverse inequality, stability ofΠB in L2-norm, and

the property (3) ofΠ1

|ΠB(u −Π1u)|21 .

T∈Th

h−2
T ∥ΠB(u −Π1u)∥2

T .

T∈Th

h−2
T ∥u −Π1u∥2

T . |u|1.

The desired inequality then follows from the triangle inequality and the H1 stability ofΠ1. �
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Fig. 1. A typical boundary triangle. The bold line is on the boundary.

Fig. 2. A typical corner triangle. Bold lines are on the boundary.

3. Modification of edge element spaces

For continuous pressure spaces, by integration by parts, it is equivalent to construct Πhu ∈ Vh satisfying (u − Πhu,
grad qh) = 0 for all qh ∈ Ph. A key observation in [9] is that gradP 1 is contained in a proper subspace of the lowest order
edge element spacewhich is isomorphism to the tangential edge bubble function space. Then a Petrov–Galerkin formulation
of the L2-projection can be used to defineΠhu. In this section, a constructive characterization of this subspace will be given
under a geometric assumption.

For a mesh T in two dimensions, let E be the set of all edges, E∂ the set of all edges sitting on the boundary, and E0

the set of all interior edges, i.e. non-boundary edges. We further define E0
0 as the set of edges with two interior vertices, E0

∂

for edges with one interior vertex and one boundary vertex, and E∂∂ for edges with two boundary vertices. Note that for a
boundary edge, two vertices are on the boundary but the converse may not be true. There exists a non-boundary edge with
two vertices on the boundary; see edge e3 in Fig. 2 for such an example. Namely E∂ ⊂ E∂∂ but E∂∂ ∩ E0 may not be empty.

Each edge in e ∈ E is assigned a direction. To fix the presentation, we shall use the direction pointing from the vertex
with a smaller index to a bigger one. The corresponding unit directional vector will be denoted by te.

For a vertex i of the triangulation T , we denote by λi the standard hat function, i.e., the basis of linear element at vertex
i. For an edge e with vertices i, j, the edge bubble function is be = 4λiλj which is the nodal basis at middle point me of e.
Namely bei(mej) = δij for any ei, ej ∈ E . Define VB,t

0 = span{ψe = bete, e ∈ E0
} ⊂ Vh as the tangential edge bubble function

space. Note that to impose the boundary condition, only interior edges are used in VB,t
0 .

The lowest order edge element space is defined as ND = span{φe, e ∈ E} and ND0 = span{φe, e ∈ E0
} with

φe = λi∇λj − λj∇λi, where i, j are indices of two vertices of e and i < j. It is easy to verify that φei(mej) · tej = δi,j/|ei|
for any ei, ej ∈ E .

The mapped space gradP 1 is a proper subspace of ND. Note that gradP 1
0 ⊂ ND0 and there is a natural isomorphism

of ND0 and VB,t
0 . Only grad λi for boundary nodes i is not contained in ND0. We shall modify the basis of edges adjacency

to boundary edges to find a subspace which contains gradP 1 and isomorphism to VB,t
0 . In this section, we assume the

triangulation satisfies the following geometric property:
(G) The set E∂∂ ∩ E0 is empty.

Remark 3.1. This condition will be removed in the next section.

We loop over all boundary triangles, which are defined as triangles containing at least one boundary edge, and modify
the basis element-wise. Due to the assumption (G), for each boundary triangle, there exists one and only one boundary
edge. Without loss of generality, we assume a typical boundary triangle T consists of two boundary vertices 1, 2 and one
interior vertex 3. To fix the presentation, we further assume the global index ni, i = 1, 2, 3, of these three vertices satisfies
n1 < n2 < n3. Different ordering only results in a proper sign change in our construction. Inside this triangle, the three edges
are labeled such that the ith edge is opposite to the ith vertex; see Fig. 1. We modify the basis associated to the edge e2 as
φ̃e2 |T = −grad (λ1|T ) = φe2 |T +φe3 |T and φ̃e1 |T = −grad (λ2|T ) = φe1 |T −φe3 |T . Then locally gradP 1(T ) ⊂ span{φ̃e1 , φ̃e2}.
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To unify the notation, we denote by φ̃e = φe for e ∈ E0
0 . Since only a boundary basis function is appended to an interior

one, the modified basis φ̃e ∈ ND and more importantly the following property still holds for interior edges:

φ̃ei(mej) · tej = δi,j/|ei| for any ei, ej ∈ E0. (4)
We define the spaceND0 = span{φ̃e, e ∈ E0

}.

Then we have gradP 1
⊂ ND0 andND0 ∼= VB,t

0

by mapping φ̃e → ψe for each e ∈ E0.
By standard scaling argument, it is easy to show both bases {ψe} and {φ̃e} are L2-stable. More specifically, define the patch

Ωe = {T ∈ T , e ∈ ∂T }. For u =


e∈E ueψe,

∥u∥2 h

e∈E0

u2
e∥ψe∥

2 h

e∈E0

u2
e |Ωe|.

And for u =


e∈E0 ueφ̃e,

∥u∥2 h

e∈E0

u2
e∥φ̃e∥

2 h

e∈E0

u2
e .

4. A Fortin operator for Taylor–Hood element

In this section we construct a Fortin operator for P 2
0 ×P 2

0 −P 1 element in two dimensions. We follow closely to [9] but
simplify the analysis by using a numerical quadrature.

Using the isomorphism between ND0 and VB,t
0 , in [9], the authors defineΠB,tu ∈ VB,t

0 such that

(ΠB,tu, v) = (u, v) for all v ∈ ND0. (5)

This is a Petrov–Galerkin formulation of the standard L2-projection with the trial space VB,t
0 and the test space ND0.

To get the well-posedness and L2-stability of ΠB,t , one has to compute the non-symmetric matrix M = ((φ̃ei , ψei))N×N
withN being the number of interior edges, and prove the stability ofM in certain norms. In [9] the calculation has been done
for a two dimensional triangular grid with certain geometric constraints. More refined analysis is needed to remove these
constraints.

We propose to using the middle points quadrature for the L2 inner product. Define

(u, v)h,T =
|T |

3

3
k=1

u(mek)v(mek), (6)

and
(u, v)h =


T∈Th

(u, v)h,T .

It is well known that the middle points quadrature is exact for quadratic functions, i.e., if uv is a quadratic polynomial on T ,
then (u, v)h,T = (u, v)T . In particular, if u ∈ VB,t

0 and v is piecewise constant, (u, v)h = (u, v).
We consider the modified problem: findΠB,tu ∈ VB,t

0 such that

(ΠB,tu, v)h = (u, v), for all v ∈ ND0. (7)
Using this discrete L2 inner product, the corresponding matrix is diagonal and positive.

Lemma 4.1. Let D = ((φ̃ej , ψei)h)N×N . Then D = diag(de1 , de2 , . . . , deN ) with de = |Ωe|/(3|e|).

Proof. D is diagonal since φ̃ei(mej) · tej = δi,j/|ei| and ψei(mj) = δi,jtei . The formula of dei is obtained by the direct
computation. �

Let ue = (u, φ̃e), e ∈ E0. Then ΠB,tu =


e∈E0 d−1
e ueψe. We then verify ΠB,t is a Fortin operator and locally stable in

L2-norm.

Theorem 4.2. Assume the shape-regular triangulation Th satisfies the assumption (G). Let ΠB,tu be defined by (7). Then

(div u − div (ΠB,tu), qh) = 0 for all qh ∈ Ph, (8)

and

∥ΠB,tu∥T . ∥u∥ΩT , for all u ∈ V. (9)
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Proof. Notice that for qh ∈ Ph, grad qh ∈ ND0 and piecewise constant and ΠB,tu ∈ VB,t
0 is piecewise quadratic. Thus the

quadrature is exact and by the definition ofΠB,t (7)

(ΠB,tu, grad qh) = (ΠB,tu, grad qh)h = (u, grad qh).

Integration by parts yields (8). The local L2 stability follows from

∥ΠB,tu∥2
T .


e∈∂T

d−2
e u2

e |Ωe| .

e∈∂T

(u, φ̃e)
2 . ∥u∥2

ΩT


e∈∂T

∥φ̃e∥
2 . ∥u∥2

ΩT
. �

Remark 4.3. Compare with the original proof in [9], the above analysis is simplified and requires less constraints on the
mesh. For example, mesh conditions for the H1 stability of the L2 projection are not needed. The stability in both L2-norm
and H1-norm is crucial for the uniformly stable preconditioner constructed in [9] for a singular perturbed Stokes problem.

5. Extension to general shape regular meshes

In this section, we construct a Fortin operator for general shape regular triangulations without the geometric assump-
tion (G).

We shall apply different modifications for the corner elements, which are triangles with three vertices on the boundary;
see Fig. 2 for a typical corner triangle.Without loss of generality, we assume the edge e3 ∈ E0. We could still modify the basis
function associated to e3 by attaching boundary edge basis, i.e., use grad λ1 and grad λ2. But now since there exists only one
interior edge of this triangle, the tangential edge bubble space is not big enough. For example, grad λ3 cannot be spanned by
basis functions associated to interior edges. Following [9], we enrich the trial space to VB,t

0 + {ψ⊥
e } where f ⊥ is the rotation

of the vector f by 90° counterclockwise. For the test function space, we chose φ̃e3 = φe3 −φe1/2−φe2/2 = grad (λ2 −λ1)/2
and introduce one more function φ∂ = −grad λ3 = −φe1 − φe3 .

We define Π̄B,tu ∈ VB,t
0 + {ψ⊥

e3} such that

(Π̄B,tu, v)h = (u, v) for all v ∈ ND0 + {φ∂}. (10)

Suppose Π̄B,tu =


e∈E0 ceψe + c0ψ⊥
e3 . We now compute the coefficients ce and c0 by choosing different test functions in

(10). Let ue = (u, φ̃e), e ∈ E0 and u0 = (u, φ∂). For e ∉ Ωe3 , we chose v ∈ φe in (10) and compute the coefficient ce as before
ce = d−1

e ue. Denote by a∂n := (ψ⊥
e3 , φ∂)h, a∂e := (ψe, φ∂)h and aen := (ψ⊥

e3 , φe)h. Direct calculation shows that a∂n = |e3|/6
and aen = −|e3|/12. Since φ∂ involves only the basis of boundary edges, the entry a∂e = 0 for e ∈ E0. Choosing v = φ∂ in
(10), we then get c0 = u0/a∂n. Choosing v = φei , we get cei = d−1

ei (uei − aeinc0) = d−1
ei (uei + u0/2) for i = 4, 5. The local

L2-stability of Π̄B,t then follows easily as before.
We are in a position to summarize our main result in the following theorem.

Theorem 5.1. For u ∈ H1
0 (Ω; R2), let Πhu = u1 + u2 where u1 = Π1u, u2 = ΠB,t(u − u1) with Π1 being the Scott–Zhang

quasi-interpolation mapped to P 1
0 × P 1

0 andΠB,t defined by (7)/ (10) for triangulations without/with corner triangles. ThenΠh

is a Fortin operator for the Taylor–Hood element P 2
0 × P 2

0 − P 1 and stable in both H1 and L2 norm.

6. Modified Taylor–Hood element

In this section, we shall prove the discrete inf–sup stability of the modified Taylor–Hood element P 2
0 ×P 2

0 − (P 1
+P 0)

in two dimensions. Namely piecewise constant function space is included in the pressure space which will lead to the local
mass conservation in each triangle and thus preserve better physical properties [18,11–14]. A proof of the discrete inf–sup
condition for the enhanced spaces in general setting (general order and two and three dimensions) can be found in [18].
Here we present a simple proof for the lowest order case. Other proofs can be found in [19,13].

Let us define VB,n
0 = span{ψ⊥

e = bene, e ∈ E0
}. The lowest order Raviart–Thomas space is defined as RT0 = span{ϕe, e ∈

E0
} with ϕe = (λi∇

⊥λj − λj∇
⊥λi)where ∇

⊥f = (∇f )⊥. It is easy to verify that ϕei(mej) · nej = δi,j/|ei| and both {ψ⊥
e } and

{ϕe} are L2 stable bases.
We defineΠB,nu ∈ VB,n

0 such that
e
ΠB,nu · n ds =


e
u · n ds for all e ∈ E0. (11)

The orthogonality

(div u − divΠB,nu, qh) = 0

for piecewise constant qh follows from the application of divergence theorem to (11) on each triangle.
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We then study the stability of this projection.

Lemma 6.1. For v ∈ H1
0 (T ; R2), we have

h−1
T ∥ΠB,nv∥T + |ΠB,nv|1,T . h−1

T ∥v∥T + |v|1,T . (12)

Proof. By the inverse inequality, we only need to estimate h−1
T ∥ΠB,nv∥0,T as follows:

h−2
T ∥ΠB,nv∥

2
T .


ei∈∂T


e
v · n ds

2

. h−2
T ∥v∥2

T + |v|21,T .

In the second inequality, we have used Cauchy–Schwarz inequality and the scaled trace theorem for integral on edges: for
any function g ∈ H1(T )

∥g∥2
e . h−1

T ∥g∥2
T + hT∥∇g∥2

T . � (13)

Theorem 6.2. Suppose the triangulation satisfies the assumption (G). Let Πhu = u1 + u2 + u3 where u1 = Π1u, u2 =

ΠB,n(u − u1), and u3 = ΠB,t(u − u1 − u2) with Π1 the Scott–Zhang quasi-interpolation mapped to P 1
0 × P 1

0 , ΠB,t defined
in (7), andΠB,n in (11). ThenΠh is a Fortin operator for the modified Taylor–Hood element P 2

0 × P 2
0 − (P 1

+ P 0).

Proof. By construction (div u, qh) = (divΠhu, qh) for qh ∈ P 1. By divergence theorem, (div u3, qh) = 0 for all qh ∈ P0
since on edges u3 contains only tangential component. Therefore (div u, qh) = (divΠhu, qh) for qh ∈ P 0.

We prove the H1-stability |Πhu|1 . |u|1 by considering the three components one by one. By (3), |u1|1 . |u|. By (12) and
(3), we have

|u2|
2
1 .


T∈Th

h−2
T ∥u2∥

2
T .


T∈Th


h−1
T ∥u − u1∥

2
0,T + |u − u1|

2
1,T


. |u|21.

By the inverse equality and the local L2-stability ofΠB,t , we have

|u3|
2
1 .


T∈Th

h−2
T ∥u3∥

2
T .


T∈Th

h−2
T ∥u − u1∥

2
T + h−2

T ∥u2∥
2
T . |u|21. �

Remark 6.3. The assumption (G) is necessary for the P 2
0 ×P 2

0 − (P 1
+P 0) element. Suppose there exists a corner element

T (shown in Fig. 2). Choosing qh = χT in (2), the coefficient of the normal edge bubble basis is zero. From the discussion in
the previous section, only one tangential edge bubble basis is not large enough to impose the div-stability.

Acknowledgments

The author would like to thank Professor Ragnar Winther for fruitful discussion. This research was supported in part by
National Science Foundation Grant DMS-1115961 and in part by Department of Energy prime award # DE-SC0006903.

References

[1] C. Taylor, P. Hood, A numerical solution of the Navier–Stokes equations using the finite element technique, Comput. & Fluids 1 (1973) 73–100.
[2] V. Girault, P.A. Raviart, Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, Springer-Verlag, Berlin, 1986.
[3] M. Bercovier, O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables, Numer. Math. 33 (2)

(1979) 211–224.
[4] R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations, RAIRO Anal. Numer. 18 (2) (1984) 175–182.
[5] J.M. Boland, R.A. Nicolaides, Stable and semistable low order finite elements for viscous flows, SIAM J. Numer. Anal. (1983) 474–492.
[6] R. Stenberg, Analysis of mixed finite element methods for the Stokes problem: a unified approach, Math. Comp. 42 (165) (1984) 9–23.
[7] F. Brezzi, R. Falk, Stability of higher-order Hood–Taylor methods, SIAM J. Numer. Anal. 28 (3) (1991) 581–590.
[8] D. Boffi, Stability of higher order triangular Hood–Taylor methods for stationary Stokes equations, Math. Models Methods Appl. Sci. 4 (2) (1994)

223–235.
[9] K.-A. Mardal, J. Schöberl, R. Winther, A uniformly stable Fortin operator for the Taylor–Hood element, Numer. Math. 123 (3) (2013) 537–551.

[10] R. Falk, A Fortin operator for two-dimensional Taylor–Hood elements, ESAIM Math. Model. Numer. Anal. 42 (2008) 411–424.
[11] J. Gresho, P.M. Lee, R.L. Chan, S.T. Leone, A new finite element for Boussinesq fluids, in: Pro. Third Int. Conf. on Finite Elements in Flow Problems,Wiley,

New York, 1980, pp. 204–215.
[12] D. Griffiths, The effect of pressure approximation on finite element calculations of compressible flows, in: M. Morton, K.W. Baines (Eds.), Numerical

Methods for Fluid Dynamics, Academic Press, San Diego, 1982, pp. 359–374.
[13] R.W. Thatcher, Locally mass-conserving Taylor–Hood elements for two- and three-dimensional flow, Internat. J. Numer. Methods Fluids 11 (3) (1990)

341–353.
[14] D.M. Tidd, R.W. Thatcher, A. Kaye, The free surface flow of Newtonian and non-Newtonian fluids trapped by surface tension, Internat. J. Numer.

Methods Fluids 8 (9) (1988) 1011–1027.
[15] M. Fortin, An analysis of the convergence of mixed finite element methods, RAIRO Anal. Numer. 11 (R3) (1977) 341–353.
[16] D.N. Arnold, F. Brezzi, M. Fortin, A stable finite element for the Stokes equations, Calcolo 21 (4) (1984) 337–344.
[17] R. Scott, S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (190) (1990) 483–493.
[18] D. Boffi, N. Cavallini, F. Gardini, L. Gastaldi, Local mass conservation of Stokes finite elements, J. Sci. Comput. 52 (2) (2012) 383–400.
[19] J. Qin, S. Zhang, Stability of the finite elements 9/(4c + 1) and 9/5c for stationary Stokes equations, Comput. Struct. 84 (1–2) (2005) 70–77.

http://refhub.elsevier.com/S0898-1221(14)00451-9/sbref1
http://refhub.elsevier.com/S0898-1221(14)00451-9/sbref2
http://refhub.elsevier.com/S0898-1221(14)00451-9/sbref3
http://refhub.elsevier.com/S0898-1221(14)00451-9/sbref4
http://refhub.elsevier.com/S0898-1221(14)00451-9/sbref5
http://refhub.elsevier.com/S0898-1221(14)00451-9/sbref6
http://refhub.elsevier.com/S0898-1221(14)00451-9/sbref7
http://refhub.elsevier.com/S0898-1221(14)00451-9/sbref8
http://refhub.elsevier.com/S0898-1221(14)00451-9/sbref9
http://refhub.elsevier.com/S0898-1221(14)00451-9/sbref10
http://refhub.elsevier.com/S0898-1221(14)00451-9/sbref11
http://refhub.elsevier.com/S0898-1221(14)00451-9/sbref12
http://refhub.elsevier.com/S0898-1221(14)00451-9/sbref13
http://refhub.elsevier.com/S0898-1221(14)00451-9/sbref14
http://refhub.elsevier.com/S0898-1221(14)00451-9/sbref15
http://refhub.elsevier.com/S0898-1221(14)00451-9/sbref16
http://refhub.elsevier.com/S0898-1221(14)00451-9/sbref17
http://refhub.elsevier.com/S0898-1221(14)00451-9/sbref18
http://refhub.elsevier.com/S0898-1221(14)00451-9/sbref19

	A simple construction of a Fortin operator for the two dimensional Taylor--Hood element
	Introduction
	Fortin operator and discrete inf--sup condition
	Modification of edge element spaces
	A Fortin operator for Taylor--Hood element
	Extension to general shape regular meshes
	Modified Taylor--Hood element
	Acknowledgments
	References


