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We derive a computable a posteriori error estimator for the α-harmonic extension problem, 
which localizes the fractional powers of elliptic operators supplemented with Dirichlet 
boundary conditions. Our a posteriori error estimator relies on the solution of small 
discrete problems on anisotropic cylindrical stars. It exhibits built-in flux equilibration and is 
equivalent to the energy error up to data oscillation, under suitable assumptions. We design 
a simple adaptive algorithm and present numerical experiments which reveal a competitive 
performance.
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1. Introduction

The objective of this work is the derivation and analysis of a computable, efficient and, under certain assumptions, 
reliable a posteriori error estimator for problems involving fractional powers of the Dirichlet Laplace operator (−�)s with 
s ∈ (0, 1), which for convenience we will simply call the fractional Laplacian. Let Ω be an open, connected and bounded 
domain of Rn (n ≥ 1) with boundary ∂Ω , s ∈ (0, 1) and let f : Ω → R be given. We shall be concerned with the following 
problem: find u such that

(−�)su = f , in Ω, u = 0, on ∂Ω. (1.1)

One of the main difficulties in the study of problem (1.1) is that the fractional Laplacian is a nonlocal operator; see 
[5,7,24]. To localize it, Caffarelli and Silvestre showed in [7] that any power of the fractional Laplacian in Rn can be realized
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as an operator that maps a Dirichlet boundary condition to a Neumann-type condition via an extension problem on the up-
per half-space Rn+1+ . For a bounded domain Ω , the result by Caffarelli and Silvestre has been adapted in [4,8,35], thus 
obtaining an extension problem which is now posed on the semi-infinite cylinder C = Ω × (0, ∞). This extension is the 
following mixed boundary value problem:⎧⎨

⎩
div

(
yα∇U

) = 0, in C,

U = 0, on ∂LC,
∂U

∂να
= ds f , on Ω × {0}, (1.2)

where ∂LC = ∂Ω × [0, ∞) is the lateral boundary of C , and ds is a positive normalization constant that depends only on s; 
see [5,7] for details. The parameter α is defined as

α = 1 − 2s ∈ (−1,1), (1.3)

and the so-called conormal exterior derivative of U at Ω × {0} is

∂U

∂να
= − lim

y→0+ yαUy . (1.4)

We will call y the extended variable and the dimension n + 1 in Rn+1+ the extended dimension of problem (1.2). The limit 
in (1.4) must be understood in the distributional sense; see [5,7,8] for more details. As noted in [4,7,8,35], the fractional 
Laplacian and the Dirichlet to Neumann operator of problem (1.2) are related by

ds(−�)su = ∂U

∂να
in Ω.

Based on the ideas presented above, the following simple strategy to find the solution of (1.1) has been proposed and an-
alyzed by the last three authors in [29]: given a sufficiently smooth function f we solve (1.2), thus obtaining a function U =
U (x′, y); setting u : x′ ∈ Ω 	→ u(x′) = U (x′, 0) ∈ R, we obtain the solution of (1.1). The results of [29] provide an a priori 
error analysis which combines asymptotic properties of Bessel functions with polynomial interpolation theory on weighted 
Sobolev spaces. The latter is valid for tensor product elements which may be graded in Ω and exhibit a large aspect ratio in 
y (anisotropy) which is necessary to fit the behavior of U (x′, y) with x′ ∈ Ω and y > 0. The resulting a priori error estimate 
is quasi-optimal in both order and regularity for the extended problem (1.2). These results are summarized in Section 3.

The main advantage of the algorithm described above, is that we are solving the local problem (1.2) instead of dealing 
with the nonlocal operator (−�)s of problem (1.1). However, this comes at the expense of incorporating one more dimension 
to the problem, thus raising the question of computational efficiency. A quest for the answer has been the main drive in our 
recent research program and motivates the study of a posteriori error estimators and adaptivity. The latter is also motivated 
by the fact that the a priori theory developed in [29] requires f ∈ H1−s(Ω) and Ω convex. If one of these conditions 
is violated the solution U (x′, y) may have singularities in the direction of the x′-variables and thus exhibit fractional 
regularity. As a consequence, quasi-uniform refinement of Ω would not result in an efficient solution technique and then 
an adaptive loop driven by an a posteriori error estimator is essential to recover optimal rates of convergence.

In this work we derive a computable, efficient and, under certain assumptions, reliable a posteriori error estimator and 
design an adaptive procedure to solve problem (1.2). As the results of [29] show, meshes must be highly anisotropic in the 
extended dimension y if one intends for the method to be optimal. For this reason, it is imperative to design an a posteriori 
error estimator which is able to deal with such anisotropic behavior. Before proceeding with our analysis, it is instructive to 
comment about the anisotropic a posteriori error estimators and analysis advocated in the literature.

A posteriori error estimators are computable quantities, i.e., they may depend on the computed solution, mesh and 
data, but not on the exact solution. They provide information about the quality of approximation of the numerical solution. 
They are problem-dependent and may be used to make a judicious mesh refinement in order to obtain the best possible 
approximation with the least amount of computational resources. For isotropic discretizations, i.e., meshes where the aspect 
ratio of all cells is bounded independently of the refinement level, the theory of a posteriori error estimation is well 
understood. Starting with the pioneering work of Babuška and Rheinboldt [3], a great deal of work has been devoted to its 
study. We refer to [1,37] for an overview of the state of the art. However, despite of what might be claimed in the literature, 
the theory of a posteriori error estimation on anisotropic discretizations, i.e., meshes where the cells have disparate sizes in 
each direction, is still in its infancy.

To the best of our knowledge the first work that attempts to deal with anisotropic a posteriori error estimation is [34]. In 
this work, a residual a posteriori error estimator is introduced and allegedly analyzed on anisotropic meshes. However, such 
analysis relies on assumptions on the exact and discrete solutions and on the mesh, which are neither proved nor there is 
a way to explicitly enforce them in the course of computations; see [34, §6, Remark 3]. Subsequently, in [21] the concept of 
matching function is introduced in order to derive anisotropic a posteriori error indicators. The correct alignment of the grid 
with the exact solution is crucial to derive an upper bound for the error. Indeed, this upper bound involves the matching 
function, which depends on the error itself and then it does not provide a real computable quantity; see [21, Theorem 2]. 
For similar works in this direction see [23,22,28]. In [33], the anisotropic interpolation estimates derived in [16] are used to 
derive a Zienkiewicz–Zhu type of a posteriori error estimator. However, as properly pointed out in [33, Proposition 2.3], the 
ensuing upper bound for the error depends on the error itself, and thus, it is not computable.
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In our case, since the coefficient yα in (1.2) either degenerates (s < 1/2) or blows up (s > 1/2), the usual residual 
estimators do not apply: integration by parts fails! Inspired by [2,26], we deal with both the natural anisotropy of the 
mesh in the extended variable y and the nonuniform coefficient yα , upon considering local problems on cylindrical stars. 
The solutions of these local problems allow us to define a computable and anisotropic a posteriori error estimator which, 
under certain assumptions, is equivalent to the error up to data oscillations terms. In order to derive such a result, a 
computationally implementable geometric condition needs to be imposed on the mesh, which does not depend on the 
exact solution of problem (1.2). This approach is of value not only for (1.2), but in general for anisotropic problems since 
rigorous anisotropic a posteriori error estimators are not available in the literature.

The outline of this paper is as follows. Section 2 sets the framework in which we will operate. Notation and terminology 
are introduced in Section 2.1. We recall the definition of the fractional Laplacian on a bounded domain via spectral theory in 
Section 2.2 and, in Section 2.3, we introduce function spaces that are suitable to study problems (1.1) and (1.2). In Section 3
we review the a priori error analysis developed in [29]. The need for a new approach in a posteriori error estimation is 
examined in Section 4, where we show that the standard approaches either do not work or produce suboptimal results. This 
justifies the introduction of our new error estimator on cylindrical stars. Section 5 is the core of this work and is dedicated 
to the development and analysis of our new error estimator. After some preliminary setup carried out in Sections 5.1–5.2, 
in Section 5.3 we introduce and analyze an ideal error estimator that, albeit not computable, sets the stage for Section 5.4
where we devise a fully computable error estimator and show its equivalence, under suitable assumptions, to the error 
up to data oscillation terms. In Section 6 we review the components of a standard adaptive loop and comment on some 
implementation details pertinent to the problem at hand. Finally, we present numerical experiments that illustrate and 
extend our theory.

2. Notation and preliminaries

2.1. Notation

Throughout this work Ω is an open, bounded and connected domain of Rn , n ≥ 1, with polyhedral boundary ∂Ω . We 
define the semi-infinite cylinder with base Ω and its lateral boundary, respectively, by

C := Ω × (0,∞), ∂LC := ∂Ω × [0,∞).

Given Y > 0 we define the truncated cylinder with base Ω by CY := Ω × (0, Y ). The lateral boundary ∂LCY is defined 
accordingly.

Throughout our discussion we will be dealing with objects defined in Rn+1 and it will be convenient to distinguish the 
extended dimension. A vector x ∈ Rn+1, will be denoted by

x = (
x1, . . . , xn, xn+1) = (

x′, xn+1) = (
x′, y

)
,

with xi ∈R for i = 1, . . . , n + 1, x′ ∈ Rn and y ∈ R.
If X and Y are normed vector spaces, we write X ↪→ Y to denote that X is continuously embedded in Y . We denote 

by X ′ the dual of X and by ‖ · ‖X the norm of X . The relation a � b indicates that a ≤ Cb, with a constant C that does not 
depend on a or b nor the discretization parameters. The value of C might change at each occurrence.

2.2. The fractional Laplace operator

Our definition is based on spectral theory. For any f ∈ L2(Ω), the Lax–Milgram Lemma provides the existence and 
uniqueness of w ∈ H1

0(Ω) that solves

−�w = f in Ω, w = 0 on ∂Ω.

The operator (−�)−1 : L2(Ω) → L2(Ω) is compact, symmetric and positive, whence its spectrum {λ−1
k }k∈N is discrete, real, 

positive and accumulates at zero. Moreover, there exists {ϕk}k∈N ⊂ H1
0(Ω), which is an orthonormal basis of L2(Ω) and 

satisfies

−�ϕk = λkϕk in Ω, ϕk = 0 on ∂Ω. (2.1)

Fractional powers of the Dirichlet Laplace operator can then be defined for w ∈ C∞
0 (Ω) by

(−�)s w =
∞∑

k=1

λs
k wkϕk, (2.2)

where wk = ´
Ω

wϕk . By density (−�)s can be extended to the space

Hs(Ω) =
{

w =
∞∑

k=1

wkϕk :
∞∑

k=1

λs
k w2

k < ∞
}

=

⎧⎪⎨
⎪⎩

Hs(Ω), s ∈ (0, 1
2 ),

H1/2
00 (Ω), s = 1

2 ,

Hs (Ω), s ∈ ( 1 ,1).

(2.3)
0 2
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The characterization given by the second equality is shown in [25, Chapter 1]. For s ∈ (0, 1) we denote by H−s(Ω) the dual 
of Hs(Ω).

2.3. The Caffarelli–Silvestre extension problem

To exploit the Caffarelli–Silvestre result [7], or its variants [4,6,8], we need to deal with a nonuniformly elliptic equation. 
To this end, we consider weighted Sobolev spaces with the weight |y|α , α ∈ (−1, 1). If D ⊂ Rn+1, we then define L2(|y|α, D)

to be the space of all measurable functions defined on D such that

‖w‖2
L2(|y|α,D)

=
ˆ

D

|y|α w2 < ∞.

Similarly we define the weighted Sobolev space

H1(|y|α, D
) = {

w ∈ L2(|y|α, D
) : |∇w| ∈ L2(|y|α, D

)}
,

where ∇w is the distributional gradient of w . We equip H1(|y|α, D) with the norm

‖w‖H1(|y|α,D) = (‖w‖2
L2(|y|α,D)

+ ‖∇w‖2
L2(|y|α,D)

)1/2
. (2.4)

Since α ∈ (−1, 1) we have that |y|α belongs to the so-called Muckenhoupt class A2(R
n+1); see [15,17,27,36]. This, in 

particular, implies that H1(|y|α, D) equipped with the norm (2.4), is a Hilbert space and the set C∞(D) ∩ H1(|y|α, D) is 
dense in H1(|y|α, D) (cf. [36, Proposition 2.1.2, Corollary 2.1.6], [20] and [17, Theorem 1]). We recall now the definition of 
Muckenhoupt classes; see [27,36].

Definition 2.5 (Muckenhoupt class A2). Let ω be a weight and N ≥ 1. We say ω ∈ A2(R
N ) if

C2,ω = sup
B

( 
B

ω

)( 
B

ω−1
)

< ∞, (2.6)

where the supremum is taken over all balls B in RN .
If ω belongs to the Muckenhoupt class A2(RN ), we say that ω is an A2-weight, and we call the constant C2,ω in (2.6)

the A2-constant of ω.

To study problem (1.2) we define the weighted Sobolev space

H̊1
L

(
yα,C

) = {
w ∈ H1(yα,C

) : w = 0 on ∂LC
}
. (2.7)

As [29, (2.21)] shows, the following weighted Poincaré inequality holds:ˆ

C

yα w2 �
ˆ

C

yα|∇w|2, ∀w ∈ H̊1
L

(
yα,C

)
. (2.8)

Then, the seminorm on H̊1
L(yα, C) is equivalent to the norm (2.4). For w ∈ H1(yα, C), we denote by trΩ w its trace onto 

Ω × {0}, and we recall that the trace operator trΩ satisfies, (see [29, Proposition 2.5], [8, Proposition 2.1])

trΩ H̊1
L

(
yα,C

) =Hs(Ω), ‖ trΩ w‖Hs(Ω) ≤ CtrΩ ‖w‖H̊1
L (yα,C). (2.9)

Let us now describe the Caffarelli–Silvestre result and its extension to bounded domains; see [7,35]. Given f ∈ H−s(Ω), 
let u ∈ Hs(Ω) be the solution of (−�)su = f in Ω . We define the α-harmonic extension of u to the cylinder C , as the 
function U ∈ H̊1

L(yα, C), solution of problem (1.2), namely

(−�)su = ds
∂U

∂να
in Ω, where ds = 21−2s Γ (1 − s)

Γ (s)
.

Finally, we must mention that

CtrΩ ≤ d−1/2
s . (2.10)

Indeed, given ψ ∈ H̊1
L(yα, C) we define Ψ ∈ H̊1

L(yα, C) as the solution of

−div
(

yα∇Ψ
) = 0, in C, Ψ = 0, on ∂LC, Ψ = trΩ ψ on Ω × {0}.

It is standard to show that Ψ is the minimal norm extension of trΩ ψ . Moreover, separation of variables gives 
ds‖ trΩ ψ‖2

Hs(Ω)
= ‖∇Ψ ‖2

L2(yα,C)
[8, Proposition 2.1]. Therefore

‖ trΩ ψ‖2
Hs(Ω) = 1

ds
‖Ψ ‖2

H̊1
L (yα,C)

≤ 1

ds
‖ψ‖2

H̊1
L (yα,C)

.

Estimate (2.10) will be useful to obtain an upper bound of the error by the estimator.
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3. A priori error estimates

In an effort to make this contribution self-contained here we review the main results of [29], which deal with the a 
priori error analysis of discretizations of problem (1.1). This will also serve to make clear the limitations of this theory, 
thereby justifying the quest for an a posteriori error analysis. To do so in this section, and this section only, we will assume 
the following regularity result, which is valid if, for instance, the domain Ω is convex [18]

‖w‖H2(Ω) � ‖�x′ w‖L2(Ω), ∀w ∈ H2(Ω) ∩ H1
0(Ω). (3.1)

Since C is unbounded, problem (1.2) cannot be directly approximated with finite-element-like techniques. However, as 
[29, Proposition 3.1] shows, the solution U of problem (1.2) decays exponentially in the extended variable y so that, by 
truncating the cylinder C to CY and setting a vanishing Dirichlet condition on the upper boundary y = Y , we only incur in 
an exponentially small error in terms of Y [29, Theorem 3.5].

Define

H̊1
L

(
yα,CY

) = {
v ∈ H1(yα,CY

) : v = 0 on ∂LCY ∪ Ω × {Y }}.
Then, the aforementioned problem reads: find v ∈ H̊1

L(yα, CY ) such that
ˆ

CY

yα∇v∇φ = ds〈 f , trΩ φ〉H−s(Ω)×Hs(Ω), (3.2)

for all v ∈ H̊1
L(yα, CY ), where 〈·, ·〉H−s(Ω)×Hs(Ω) denotes the duality pairing between H−s(Ω) and Hs(Ω), which is well 

defined as a consequence of (2.9).
If U and v denote the solution of (1.2) and (3.2), respectively, then [29, Theorem 3.5] provides the following exponential 

estimate∥∥∇(U − v)
∥∥

L2(yα,C)
� e−√

λ1Y /4‖ f ‖H−s(Ω),

where λ1 denotes the first eigenvalue of the Dirichlet Laplace operator and Y is the truncation parameter.
In order to study the finite element discretization of problem (3.2) we must first understand the regularity of the solu-

tion U , since an error estimate for v , solution of (3.2), depends on the regularity of U as well [29, §4.1]. We recall that 
[29, Theorem 2.7] reveals that the second order regularity of U is much worse in the extended direction, namely

‖�x′U ‖L2(yα,C) + ‖∂y∇x′U ‖L2(yα,C) � ‖ f ‖H1−s(Ω), (3.3)

‖Uyy‖L2(yβ ,C) � ‖ f ‖L2(Ω), (3.4)

where β > 2α + 1. This suggests that graded meshes in the extended variable y play a fundamental role. In fact, estimates 
(3.3)–(3.4) motivate the construction of a mesh over CY as follows. We first consider a graded partition IY of the interval 
[0, Y ] with mesh points

yk =
(

k

M

)γ

Y , k = 0, . . . , M, (3.5)

where γ > 3/(1 −α) = 3/(2s). We also consider TΩ = {K } to be a conforming and shape regular mesh of Ω , where K ⊂ Rn

is an element that is isoparametrically equivalent either to the unit cube [0, 1]n or the unit simplex in Rn . The collection of 
these triangulations TΩ is denoted by TΩ . We construct the mesh TY as the tensor product triangulation of TΩ and IY . 
In order to obtain a global regularity assumption for TY , we assume that there is a constant σY such that if T1 = K1 × I1
and T2 = K2 × I2 ∈ TY have nonempty intersection, then

hI1

hI2

≤ σY , (3.6)

where hI = |I|. It is well known that this weak regularity condition on the mesh allows for anisotropy in the extended 
variable (cf. [14,29]). The set of all triangulations of CY that are obtained with this procedure and satisfy these conditions 
is denoted by T. Fig. 1 shows an example of this type of meshes in three dimensions.

For TY ∈ T, we define the finite element space

V(TY ) = {
W ∈ C0(CY ) : W |T ∈ P1(K ) ⊗ P1(I) ∀T ∈ TY , W |ΓD = 0

}
, (3.7)

where ΓD = ∂LCY ∪ Ω × {Y } is called the Dirichlet boundary; the space P1(K ) is P1(K ) — the space of polynomials of total 
degree at most 1, when the base K of an element T = K × I is simplicial. If K is an n-rectangle P1(K ) stands for Q1(K )

— the space of polynomials of degree not larger than 1 in each variable. We also define U(TΩ) = trΩ V(TY ), i.e., a P1(K )

finite element space over the mesh TΩ .
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Fig. 1. A three dimensional graded mesh of the cylinder (0, 1)2 × (0, Y ) with 392 degrees of freedom. The mesh is constructed as a tensor product of 
a quasi-uniform mesh of (0, 1)2 with cardinality 49 and the image of the quasi-uniform partition of the interval (0, 1) with cardinality 8 under the 
mapping (3.5).

The Galerkin approximation of (3.2) is given by the unique function VTY ∈V(TY ) such that
ˆ

CY

yα∇VTY ∇W = ds〈 f , trΩ W 〉H−s(Ω)×Hs(Ω), ∀W ∈V(TY ). (3.8)

Existence and uniqueness of VTY immediately follows from V(TY ) ⊂ H̊1
L(yα, CY ) and the Lax–Milgram Lemma. It is trivial 

also to obtain a best approximation result à la Cea. This best approximation result reduces the numerical analysis of problem 
(3.8) to a question in approximation theory which in turn can be answered with the study of piecewise polynomial inter-
polation in Muckenhoupt weighted Sobolev spaces; see [29,30]. Exploiting the Cartesian structure of the mesh is possible to 
handle anisotropy in the extended variable, construct a quasi-interpolant ΠTY : L1(CY ) →V(TY ), and obtain

‖v − ΠTY v‖L2(yα,T ) � hK ‖∇x′ v‖L2(yα,ST ) + hI‖∂y v‖L2(yα,ST ),∥∥∂x j (v − ΠTY v)
∥∥

L2(yα,T )
� hK ‖∇x′∂x j v‖L2(yα,ST ) + hI‖∂y∂x j v‖L2(yα,ST ),

with j = 1, . . . , n + 1; see [29, Theorems 4.6–4.8] and [30] for details. However, since Uyy ≈ y−α−1 as y ≈ 0, we realize 
that U /∈ H2(yα, CY ) and the second estimate is not meaningful for j = n + 1. In view of estimate (3.4) it is necessary to 
measure the regularity of Uyy with a stronger weight and thus compensate with a graded mesh in the extended dimension. 
This makes anisotropic estimates essential.

Notice that #TY = M #TΩ , and that #TΩ ≈ Mn implies #TY ≈ Mn+1. Finally, if TΩ is shape regular and quasi-uniform, 
we have hTΩ

≈ (#TΩ)−1/n . All these considerations allow us to obtain the following result; see [29, Theorem 5.4] and [29, 
Corollary 7.11].

Theorem 3.9 (A priori error estimate). Let TY ∈ T be a tensor product grid, which is quasi-uniform in Ω and graded in the extended 
variable so that (3.5) holds. If V(TY ) is defined by (3.7) and VTY ∈ V(TY ) is the Galerkin approximation defined by (3.8), then we 
have

‖U − VTY ‖H̊1
L (yα,C) �

∣∣log(#TY )
∣∣s

(#TY )−1/(n+1)‖ f ‖H1−s(Ω),

where Y ≈ log(#TY ). Alternatively, if u denotes the solution of (1.1), then∥∥u − VTY (·,0)
∥∥
Hs(Ω)

�
∣∣log(#TY )

∣∣s
(#TY )−1/(n+1)‖ f ‖H1−s(Ω).

Remark 3.10 (Domain and data regularity). The results of Theorem 3.9 hold true only if f ∈ H1−s(Ω) and the domain Ω is 
such that (3.1) holds.

4. A posteriori error estimators: the search for a new approach

The function U , solution of the α-harmonic extension problem (1.2), has a singular behavior on the extended variable y, 
which is compensated by considering anisotropic meshes in this direction as dictated by (3.5). However, the solution U , 
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Fig. 2. Computational rate of convergence #(TY )−s/2 for an isotropic adaptive algorithm for n = 1, s = 0.2 and s = 0.6.

may also have singularities in the direction of the x′-variables and thus exhibit fractional regularity, which would not 
allow us to attain the almost optimal rate of convergence given by Theorem 3.9. In fact, as Remark 3.10 indicates, it is 
necessary to require that f ∈ H1−s(Ω) and that the domain has the property (3.1) in order to have an almost optimal rate 
of convergence. If any of these two conditions fail singularities may develop in the direction of the x′-variables, whose 
characterization is as yet an open problem; see [29, §6.3] for an illustration of this situation. The objective of this work is 
to derive a computable, efficient and, under suitable assumptions, reliable a posteriori error estimator for the finite element 
approximation of problem (3.2) which can resolve such singularities via an adaptive algorithm.

Let us begin by exploring the standard approaches advocated in the literature. We will see that they fail, thereby justify-
ing the need for a new approach, which we will develop in Section 5.

4.1. Residual estimators

Simply put, the so-called residual error estimators use the strong form of the local residual as an indicator of the error. 
To obtain the strong form of the equation, integration by parts is necessary. Let us consider an element T ∈ TY and integrate 
by parts the termˆ

T

yα∇VTY · ∇W =
ˆ

∂T

W yα∇VTY · ν −
ˆ

T

div
(

yα∇VTY

)
W ,

where ν denotes the unit outer normal to T . Since α ∈ (−1, 1) the boundary integral is meaningless for y = 0. As we see, 
even the very first step (integration by parts) in the derivation of a residual a posteriori error estimator fails! At this point 
there is nothing left to do but to consider a different type of estimator.

4.2. Local problems on stars over isotropic refinements

Inspired by [2,26] we can construct, over shape regular meshes, a computable error estimator based on the solution of 
small discrete problems on stars. Its construction and analysis is similar to the developments of Section 5 so we shall not 
dwell on this any further. Since we consider shape regular meshes, such estimator is equivalent to the error up to data 
oscillation without any additional conditions on the mesh, but under some suitable assumptions; see Section 5 for details. 
Then, we have designed an adaptive algorithm driven by such a posteriori error estimator on shape regular meshes [10,26], 
and here we illustrate its performance with a simple but revealing numerical example. We let Ω = (0, 1) and s ∈ (0, 1). The 
right hand side is f (x′) = π2s sin(πx′), so that u(x′) = sin(πx′), and the solution U to (1.2) is

U
(
x′, y

) = 21−sπ s

Γ (s)
sin

(
πx′)Ks(π y),

where Ks denotes the modified Bessel function of the second kind; see [29, §2.4] for details. We point out that 
for the α-harmonic extension we are solving a two dimensional problem so the optimal rate of convergence in the 
H1(yα, C)-seminorm that we expect is O(#T −0.5

Y ). Fig. 2 shows the experimental rate of convergence of this algorithm 
for the cases s = 0.2 and s = 0.6 which, as we see, is

O
(
#T

−s/2
Y

)
and coincides with the suboptimal one obtained with quasi-uniform refinement; see [29, §5.1]. These numerical experiments 
show that adaptive isotropic refinement cannot be optimal, thus justifying the need to introduce cylindrical stars together 
with a new anisotropic error estimator, which will treat the x′-coordinates and the extended direction, y, separately.
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5. A posteriori error estimators: cylindrical stars

It has been proven rather challenging to derive and analyze a posteriori error estimators over a fairly general anisotropic 
mesh. For this reason, we introduce an implementable geometric condition which will allow us to consider graded meshes 
in Ω in order to compensate for possible singularities in the x′-variables, while preserving the anisotropy in the extended 
direction, necessary to retain optimal orders of approximation. We thus assume the following condition over the family of 
meshes T: there exists a positive constant CT such that for every mesh TY ∈ T

hY ≤ CThz′ , (5.1)

for all the interior nodes z′ of TΩ , where hY denotes the largest mesh size in the y direction, and hz′ ≈ |Sz′ |1/n; see 
Section 5.1 for the precise definition of hz′ and Sz′ . We remark that this condition is satisfied in the case of quasi-uniform 
refinement in the variable x′ , which is a consequence of the convexity of the function involved in (3.5). In fact, a simple 
computation shows

hY = yM − yM−1 = Y
Mγ

(
(M)γ − (M − 1)γ

) ≤ γ
Y
M

, (5.2)

where γ > 3/(1 − α) = 3/(2s). We must reiterate that this mesh restriction is fully implementable. We refer the reader to 
Section 6 for more details on this.

Remark 5.3 (s-Independent mesh grading). We point out that the term γ = γ (s) in (5.2) deteriorates as s becomes small 
because γ > 3/(2s). However, a modified mesh grading in the y-direction has been proposed in [12, §7.3], which does not 
change the ratio of degrees of freedom in Ω and the extended dimension by more than a constant and provides a uniform 
bound with respect to s ∈ (0, 1), i.e., hY ≤ CY /M where C does not depends on s.

5.1. Preliminaries

Let us begin the discussion on a posteriori error estimation with some terminology and notation. Given a node z on 
the mesh TY , we exploit the tensor product structure of TY , and we write z = (z′, z′′) where z′ and z′′ are nodes on the 
meshes TΩ and IY respectively.

Given a cell K ∈ TΩ , we denote by N (K ) and N̊ (K ) the set of nodes and interior nodes of K , respectively. We set

N (TΩ) =
⋃

K∈TΩ

N (K ), N̊ (TΩ) =
⋃

K∈TΩ

N̊ (K ).

Given T ∈ TY , we define N (T ) and N̊ (T ) accordingly, i.e., as the set of nodes and interior and Neumann nodes of T , 
respectively. Similarly, we define N̊ (TY ) and N (TY ). Any discrete function W ∈ V(TY ) is uniquely characterized by its 
nodal values on the set N̊ (TY ). Moreover, the functions φz ∈ V(TY ), z ∈ N̊ (TY ), such that φz(w) = δzw for all w ∈ N (TY )

are the canonical basis of V(TY ), i.e.,

W =
∑

z∈N̊ (TY )

W (z)φz.

The functions {φz : z ∈ N̊ (TY )} are the so-called shape functions of V(TY ). Analogously, given a node z′ ∈ N̊ (TΩ), we also 
consider the discrete functions ϕz′ ∈ U(TΩ) = trΩ V(TY ) defined by ϕz′ (w′) = δz′w′ for all w′ ∈ N (TΩ). The set {ϕz′ : z′ ∈
N̊ (TΩ)} is the canonical basis of U(TΩ).

The shape functions {φz : z ∈ N (TY )} satisfy two properties which will prove useful in the sequel. First, we have the 
so-called partition of unity property, i.e.,∑

z∈N (TY )

φz = 1 in C̄Y . (5.4)

Second, for any z ∈ N̊ (TY ), the corresponding shape function φz belongs to V(TY ) whence we have the so-called Galerkin 
orthogonality, i.e.,ˆ

CY

yα∇(v − VTY )∇φz = 0. (5.5)

The partition of unity property also holds for the shape functions {ϕz′ : z′ ∈ N (TΩ)}:∑
′

ϕz′ = 1 in Ω̄.
z ∈N (TΩ)
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Given z′ ∈ N (TΩ) and the associated shape function ϕz′ , we define the extended shape function ϕ̃z′ by ϕ̃z′(x′, y) =
ϕz′(x′)1(0,Y )(y). These functions satisfy the following partition of unity property:∑

z′∈N (TΩ)

ϕ̃z′ = 1 in C̄Y . (5.6)

Given z′ ∈ N (TΩ), we define the star around z′ as

Sz′ =
⋃
K�z′

K ⊂ Ω,

and the cylindrical star around z′ as

Cz′ :=
⋃{

T ∈ TY : T = K × I, K � z′} = Sz′ × (0,Y ) ⊂ CY .

Given an element K ∈ TΩ we define its patch as S K := ⋃
z′∈K Sz′ . For T ∈ TY its patch ST is defined similarly. Given 

z′ ∈ N (TΩ) we define its cylindrical patch as

Dz′ :=
⋃{

Cw′ : w′ ∈ Sz′
} ⊂ CY .

For each z′ ∈ N (TΩ) we set hz′ := min{hK : K � z′}.

5.2. Local weighted Sobolev spaces

In order to define the local a posteriori error estimators we first need to define some local weighted Sobolev spaces.

Definition 5.7 (Local spaces). Given z′ ∈ N (TΩ) and its associated cylindrical star Cz′ , we define

W(Cz′) = {
w ∈ H1(yα,Cz′

) : w = 0 on ∂Cz′ \ Ω × {0}}.
The space W(Cz′ ) defined above is Hilbert due to the fact that the weight |y|α belongs to the class A2(R

n+1); see 
Definition 2.5. Moreover, as the following result shows, a weighted Poincaré-type inequality holds and, consequently, the 
semi-norm ‖ |w‖ |Cz′ = ‖∇w‖L2(yα,Cz′ ) defines a norm on W(Cz′ ); see also [29, §2.3].

Proposition 5.8 (Weighted Poincaré inequality). Let z′ ∈ N (TΩ). If the function w ∈W(Cz′ ), then we have

‖w‖L2(yα,Cz′ ) � Y ‖|w‖|Cz′ . (5.9)

Proof. By density [36, Corollary 2.1.6], it suffices to reduce the considerations to a smooth function w . Given x′ ∈ Sz′ , we 
have that w(x′, Y ) = 0 so that

w
(
x′, y

) = −
Ŷ

y

∂y w
(
x′, ξ

)
dξ.

Multiplying the expression above by |y|α , integrating over Cz′ , and using the Cauchy Schwarz inequality, we arrive at

ˆ

Cz′

|y|α∣∣w
(
x′, y

)∣∣2
dx′ dy ≤

ˆ

Cz′

|y|α
( Ŷ

0

|ξ |α∣∣∂y w
(
x′, ξ

)∣∣2
dξ

Ŷ

0

|ξ |−α dξ

)
dx′ dy

=
Ŷ

0

|y|α dy

Ŷ

0

|ξ |−α dξ

ˆ

Cz′

|ξ |α∣∣∂y w
(
x′, ξ

)∣∣2
dx′ dξ

≤ C2,|y|α Y 2
ˆ

Cz′

|y|α∣∣∂y w
(
x′, y

)∣∣2
dx′ dy,

where in the third inequality we used that yα ∈ A2(R
n+1). In conclusion,

‖w‖L2(yα,Cz′ ) � Y ‖∂y w‖L2(yα,Cz′ ),

which is (5.9). �
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Remark 5.10 (Anisotropic weighted Poincaré inequality). Let z′ ∈ N (TΩ). If w ∈W(Cz′ ), then by extending the one-dimensional 
argument in the proof of Proposition 5.8 to an n-dimensional setting, we can also derive

‖w‖L2(yα,Cz′ ) � hz′ ‖∇x′ w‖L2(yα,Cz′ ).

5.3. An ideal a posteriori error estimator

Here we define an ideal a posteriori error estimator on anisotropic meshes which is not computable. However, it provides 
the intuition required to define a discrete and computable error indicator, as explained in Section 5.4. On the basis of 
assumption (5.1), we prove that this ideal error estimator is equivalent to the error without any oscillation terms.

Inspired by [2,9,26] we define ζz′ ∈W(Cz′ ) to be the solution ofˆ

Cz′

yα∇ζz′∇ψ = ds〈 f , trΩ ψ〉H−s(Ω)×Hs(Ω) −
ˆ

Cz′

yα∇VTY ∇ψ, (5.11)

for all ψ ∈W(Cz′ ). The existence and uniqueness of ζz′ ∈W(Cz′ ) is guaranteed by the Lax–Milgram Lemma and the weighted 
Poincaré inequality of Proposition 5.8. The continuity of the right hand side of (5.11), as a linear functional in W(Cz′ ), follows 
from (2.9) and the Cauchy–Schwarz inequality. We then define the global error estimator

ẼTY =
( ∑

z′∈N (TΩ)

Ẽ 2
z′

)1/2

, (5.12)

in terms of the local error indicators

Ẽz′ = ‖|ζz′ ‖|Cz′ . (5.13)

The properties of this ideal estimator are as follows.

Proposition 5.14 (Ideal estimator). Let v ∈ H̊1
L(yα, CY ) and VTY ∈V(TY ) solve (3.2) and (3.8), respectively. Then, the ideal estimator 

ẼTY , defined in (5.12)–(5.13), satisfies∥∥∇(v − VTY )
∥∥

L2(yα,CY )
� ẼTY , (5.15)

and for all z′ ∈ N (TΩ)

Ẽz′ ≤ ∥∥∇(v − VTY )
∥∥

L2(yα,Cz′ )
. (5.16)

Proof. If eTY := v − VTY denotes the error, then for any w ∈ H̊1
L(yα, CY ) we have

ˆ

CY

yα∇eTY ∇w = ds〈 f , trΩ w〉H−s(Ω)×Hs(Ω) −
ˆ

CY

yα∇VTY ∇w

= ds
〈
f , trΩ(w − W )

〉
H−s(Ω)×Hs(Ω)

−
ˆ

CY

yα∇VTY ∇(w − W )

=
∑

z′∈N (TΩ)

ds
〈
f , trΩ

[
(w − W )ϕ̃z′

]〉
H−s(Ω)×Hs(Ω)

−
ˆ

Cz′

yα∇VTY ∇[
(w − W )ϕ̃z′

]

for any W ∈ V(TY ), where to derive the expression above we have used Galerkin orthogonality (5.5) and the partition of 
unity property (5.6).

Notice that for each z′ ∈ N (TΩ) the function (w − W )ϕ̃z′ ∈ W(Cz′ ). Indeed, if z′ is an interior node,

(w − W )ϕ̃z′ |∂Cz′ \Ω×{0} = 0 (5.17)

because of the vanishing property of the shape function ϕz′ on ∂ Sz′ together with the fact that w = W = 0 on Ω × {Y }; 
otherwise, if z′ is a Dirichlet node then w = W = 0 on ∂Cz′ , and we get (5.17).

Set W = ΠTY w , where ΠTY denotes the quasi-interpolation operator introduced in [29, §4]; see also [30]. This yields a 
bound on ‖ |(w − W )ϕ̃z′ ‖ |Cz′ as follows:

∥∥∣∣(w − ΠTY w)ϕ̃z′
∥∥∣∣2
Cz′

�
ˆ

C ′

yα
∣∣∇(w − ΠTY w)

∣∣2
ϕ̃2

z′ +
ˆ

C ′

yα|w − ΠTY w|2|∇x′ ϕ̃z′ |2 � ‖|w‖|2Dz′ .
z z
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To bound the first term above we use the local stability of ΠTY [29, Theorems 4.7 and 4.8] together with the fact that 
0 ≤ ϕ̃z′ ≤ 1 for all x ∈ CY . For the second term we resort to the local approximation properties of ΠTY [29, Theorems 4.7 
and 4.8]ˆ

Cz′

yα|w − ΠTY w|2|∇x′ ϕ̃z′ |2 � 1

h2
z′

(
h2

z′ ‖∇x′ w‖2
L2(yα,Dz′ )

+ h2
Y ‖∂y w‖2

L2(yα,Dz′ )
)
� ‖|w‖|2Dz′ , (5.18)

where we used that |∇x′ ϕ̃z′ | = |∇x′ϕz′ | � h−1
z′ together with (5.1).

Set ψz′ = (w − ΠTY w)ϕ̃z′ ∈ W(Cz′ ) as test function in (5.11) to obtainˆ

CY

yα∇eTY ∇w =
∑

z′∈N (TΩ)

ˆ

Cz′

yα∇ζz′∇ψz′ �
∑

z′∈N (TΩ)

‖|ζz′ ‖|Cz′ ‖|w‖|Dz′

�
( ∑

z′∈N (TΩ)

‖|ζz′ ‖|2Cz′

)1/2

‖∇w‖L2(yα,CY ) = ẼTY ‖∇w‖L2(yα,CY ),

where we used that ‖ |ψz′ ‖ |Cz′ � ‖ |w‖ |Dz′ and the finite overlapping property of the stars Sz′ . Since w is arbitrary, we set 
w = eTY and obtain (5.15).

Finally, inequality (5.16) is immediate:

Ẽ 2
z′ = ‖|ζz′ ‖|2Cz′ =

ˆ

Cz′

yα∇ζz′∇ζz′ =
ˆ

Cz′

yα∇eTY ∇ζz′ ≤ ‖∇eTY ‖L2(yα,Cz′ )‖|ζz′ ‖|Cz′ .

This concludes the proof. �
Remark 5.19 (Anisotropic meshes). Examining the proof of Proposition 5.14, we realize that a critical part of (5.18) consists of 
the application of inequality (5.1), which we recall reads: hY ≤ CThz′ for all z′ ∈ N (TΩ). Therefore, Proposition 5.14 shows 
how the resolution of local problems on cylindrical stars allows for anisotropic meshes on the extended variable y and 
graded meshes in Ω . The latter enables us to compensate possible singularities in the x′-variables.

Remark 5.20 (Relaxing the mesh condition). Owing to the anisotropy of the mesh, condition (5.1) can be violated only near 
the top of the cylinder. Near the bottom of the cylinder, the size of the elements will be much smaller than hz′ . If one 
could prove that the error v − VTY decays exponentially (as the exact solution v does) an examination of the proof of 
Proposition 5.14 reveals that condition (5.1) can be removed. Proving this decay, however, requires local pointwise error 
estimates which are not available and are currently under investigation.

5.4. A computable a posteriori error estimator

Although Proposition 5.14 shows that the error estimator ẼTY is ideal, it has an insurmountable drawback: for each node 
z′ ∈ N (TΩ), it requires knowledge of the exact solution ζz′ to the local problem (5.11) which lies in the infinite dimensional 
space W(Cz′ ). This makes this estimator not computable. However, it provides intuition and establishes the basis to define a 
discrete and computable error estimator. To achieve this, let us now define local discrete spaces and local computable error 
indicators, on the basis of which we will construct our global error estimator.

Definition 5.21 (Discrete local spaces). For z′ ∈ N (TΩ), define the discrete space

W(Cz′) = {
W ∈ C0(C̄Y ) : W |T ∈ P2(K ) ⊗ P2(I) ∀T = K × I ∈ Cz′ , W |∂Cz′ \Ω×{0} = 0

}
,

where, if K is a quadrilateral, P2(K ) stands for Q2(K ) — the space of polynomials of degree not larger than 2 in each 
variable. If K is a simplex, P2(K ) corresponds to P2(K ) ⊕ B(K ) where where P2(K ) stands for the space of polynomials of 
total degree at most 2, and B(K ) is the space spanned by a local cubic bubble function.

We then define the discrete local problems: for each cylindrical star Cz′ we define ηz′ ∈W(Cz′ ) to be the solution ofˆ

Cz′

yα∇ηz′∇W = ds〈 f , trΩ W 〉H−s(Ω)×Hs(Ω) −
ˆ

Cz′

yα∇VTY ∇W , (5.22)

for all W ∈W(Cz′ ). We also define the global error estimator

ETY =
( ∑

′
E 2

z′

) 1
2
, (5.23)
z ∈N (TΩ)
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in terms of the local error indicators

Ez′ = ‖|ηz′ ‖|Cz′ . (5.24)

We next explore the connection between the estimator (5.23) and the error. We first prove a local lower bound for the 
error without any oscillation term and free of any constant.

Theorem 5.25 (Localized lower bound). Let v ∈ H̊1
L(yα, CY ) and VTY ∈ V(TY ) solve (3.2) and (3.8) respectively. Then, for any 

z′ ∈ N (TΩ), we have

Ez′ ≤ ∥∥∇(v − VTY )
∥∥

L2(yα,Cz′ )
. (5.26)

Proof. The proof repeats the arguments employed to obtain inequality (5.16). Let z′ ∈ N (TΩ), and let ηz′ and Ez′ be as in 
(5.22) and (5.24). Then,

E 2
z′ = ‖|ηz′ ‖|2Cz′ =

ˆ

Cz′

yα∇ηz′∇ηz′ =
ˆ

Cz′

yα∇eTY ∇ηz′ ≤ ‖|eTY ‖|Cz′ ‖|ηz′ ‖|Cz′ ,

which concludes the proof. �
Remark 5.27 (Strong efficiency). The oscillation and constant free lower bound (5.26) implies a strong concept of efficiency: 
the relative size of Ez′ dictates mesh refinement regardless of fine structure of the data f , and thus works even in the 
pre-asymptotic regime.

To obtain an upper bound we must assume the following.

Conjecture 5.28 (Operator Mz′ ). For every z′ ∈ N (TΩ) there is a linear operator Mz′ : W(Cz′ ) → W(Cz′ ) such that, for all w ∈
W(Cz′ ), satisfies:

• For every cell K ∈ TΩ such that K ⊂ Sz′ˆ

K×{0}
trΩ(w −Mz′ w) = 0. (5.29)

• For every cell T ⊂ Cz′ and every W ∈ V(TY )ˆ

T

yα∇(w −Mz′ w)∇W = 0. (5.30)

• Stability

‖|Mz′ w‖|Cz′ � ‖|w‖|Cz′ , (5.31)

where the hidden constant is independent of the discretization parameters but may depend on α.

We next introduce the so-called data oscillation. For every z′ ∈ N (TΩ), we define the local data oscillation as

oscz′( f )2 := dsh2s
z′ ‖ f − f z′ ‖2

L2(Sz′ )
(5.32)

where f z′ |K ∈R is the average of f over K , i.e.,

f z′ |K :=
 

K

f . (5.33)

The global data oscillation is defined as

oscTΩ
( f )2 :=

∑
z′∈N (TΩ)

oscz′( f )2. (5.34)

We also define the total error indicator

τTΩ
(VTY , Sz′) := (

E 2
z′ + oscz′( f )2)1/2 ∀z′ ∈ N (TΩ), (5.35)

which will be used to mark elements for refinement in the adaptive finite element method proposed in Section 6. Let 
KT = {Sz′ : z′ ∈ N (TΩ)} and, for any M ⊂ KT , we set
Ω Ω
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τTΩ
(VTY ,M ) :=

( ∑
Sz′ ∈M

τTΩ
(VTY , Sz′)2

)1/2

. (5.36)

With the aid of the operators Mz′ and under the assumption that Conjecture 5.28 holds, we can bound the error by the 
estimator, up to oscillation terms.

Theorem 5.37 (Global upper bound). Let v ∈ H̊1
L(yα, CY ) and VTY ∈ V(TY ) solve (3.2) and (3.8), respectively. If f ∈ L2(Ω) and 

Conjecture 5.28 holds, then the total error estimator τTΩ
(VTY , KTΩ

), defined in (5.36) satisfies∥∥∇(v − VTY )
∥∥

L2(yα,CY )
� τTΩ

(VTY ,KTΩ
). (5.38)

Proof. Let eTY = v − VTY denote the error and let ψz′ = (w − ΠTY w)ϕ̃z′ ∈ W(Cz′ ), for any w ∈ H̊1
L(yα, CY ), where ΠTY

is the quasi-interpolation operator introduced in [29, §4] and [30, §5]; recall the estimate ‖ |ψz′ ‖ |Cz′ � ‖ |w‖ |Dz′ obtained as 
part of the proof of Proposition 5.14. Following the proof of Proposition 5.14, we haveˆ

CY

yα∇eTY ∇w =
∑

z′∈N (TΩ)

ˆ

Cz′

yα∇eTY ∇ψz′

=
∑

z′∈N (TΩ)

ˆ

Cz′

yα∇eTY ∇Mz′ψz′ −
∑

z′∈N (TΩ)

ˆ

Cz′

yα∇eTY ∇(ψz′ −Mz′ψz′).

We now examine each term separately. First, for every z′ ∈ N (TΩ) we have Mz′ψz′ ∈W(Cz′ ), whence the definition of the 
discrete local problem (5.22) yields∑

z′∈N (TΩ)

ˆ

Cz′

yα∇eTY ∇Mz′ψz′ =
∑

z′∈N (TΩ)

ˆ

Cz′

yα∇ηz′∇Mz′ψz′

≤
( ∑

z′∈N (TΩ)

E 2
z′

)1/2( ∑
z′∈N (TΩ)

‖|ψz′ ‖|2Cz′

)1/2

� ETY ‖∇w‖L2(yα,CY ),

where in the last inequality we used the stability assumption (5.31) of the operator Mz′ , the inequality ‖ |ψz′ ‖ |Cz′ � ‖ |w‖ |Dz′ , 
and the finite overlapping property of the stars Cz′ .

Second, for any z′ ∈ N (TΩ), we use the conditions (5.29) and (5.30) imposed on the operator Mz′ to deriveˆ

Cz′

yα∇eTY ∇(ψz′ −Mz′ψz′) = ds

ˆ

Sz′

( f − f z′) trΩ(ψz′ −Mz′ψz′),

where we used that ∇VTY is constant on every T . Moreover, since f z′ is the L2(Sz′ ) projection onto piecewise constants of 
f we have that, for any � such that �|K ∈Rˆ

Sz′

( f − f z′) trΩ(ψz′ −Mz′ψz′) =
ˆ

Sz′

( f − f z′)
(
trΩ(ψz′ −Mz′ψz′) − �

)

≤ ‖ f − f z′ ‖L2(Sz′ )
∥∥trΩ(ψz′ −Mz′ψz′) − �

∥∥
L2(Sz′ )

.

After suitably choosing �, and using a standard interpolation-type estimate, we getˆ

Sz′

( f − f z′) trΩ(ψz′ −Mz′ψz′) � hs
z′ ‖ f − f z′ ‖L2(Sz′ )

∥∥trΩ(ψz′ −Mz′ψz′)
∥∥
Hs(Ω)

.

Consequently,

∑
z′∈N (TΩ)

ˆ

Cz′

yα∇eTY ∇(ψz′ −Mz′ψz′ ) ≤
∑

z′∈N (TΩ)

CtrΩ dshs
z′ ‖ f − f z′ ‖L2(Sz′ )‖|ψz′ −Mz′ψz′ ‖|Cz′ � oscTΩ

( f )‖∇w‖L2(yα,CY ),

where we applied the trace inequality (2.9), the estimate (2.10) on CtrΩ , the stability assumption (5.31) of Mz′ , the bound 
‖ |ψz′ ‖ |Cz′ � ‖ |w‖ |Dz′ , and the finite overlapping property of the stars Cz′ .

Collecting the above estimates, we obtain the asserted bound (5.38). �
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Remark 5.39 (Role of oscillation). Definition 5.21 of W(Cz′ ) is meant to provide enough degrees of freedom for existence of 
the operator Mz′ satisfying (5.29)–(5.31). This leads to a solution free oscillation term (5.32). Otherwise, if we were not able 
to impose (5.30), then the oscillation (5.32) should be supplemented by the term

oscz′(VTY ) := ∥∥yα∇VTY − σ z′
∥∥

L2(y−α,Cz′ )
,

with σ z′ being the local average of yα∇VTY , for (5.38) to be valid. This term cannot be guaranteed to be of higher order 
due to the presence of the weight y−α . In fact, computations show that, for s > 1

2 (or α < 0), the magnitude of oscz′(VTY )

is of lower order than the actual error estimator Ez′ unless a stronger mesh grading in the extended direction is employed 
to control this term. This can be achieved, for instance, by taking the largest grading parameter γ in (3.5) for ±α, namely 
γ > 3/(1 − |α|). Numerical experiments show no degradation of the convergence rate, expressed in terms of degrees of 
freedom, for the ensuing meshes TY with stronger anisotropic refinement.

Remark 5.40 (Construction of Mz′ ). The construction of the operator Mz′ is an open problem. We design the local space 
W(Cz′ ) in order to provide enough degrees of freedom for the existence of the operator Mz′ satisfying (5.29)–(5.31). The 
numerical experiments of Section 6 provide consistent computational evidence that the upper bound (5.38) is valid without 
oscz′(VTY ), and thus indirect evidence of the existence of Mz′ with the requisite properties (5.29)–(5.31).

6. Numerical experiments

Here we explore computationally the performance and limitations of the a posteriori error estimator introduced in 
Section 5.4 with a series of test cases. To do so, we start by formulating an adaptive finite element method (AFEM) based 
on iterations of the loop

SOLVE → ESTIMATE → MARK → REFINE. (6.1)

6.1. Design of AFEM

The modules in (6.1) are as follows:

• SOLVE: Given a mesh TY we compute the Galerkin solution of (3.2):

VTY = SOLVE(TY ).

• ESTIMATE: Given VTY we calculate the local error indicators (5.24) and the local oscillations (5.32) to construct the 
total error indicator of (5.35):{

τTΩ
(VTY , Sz′)

}
Sz′ ∈KTΩ

= ESTIMATE(VTY ,TY ).

• MARK: Using the so-called Dörfler marking [13] (bulk chasing strategy) with parameter 0 < θ ≤ 1, we select a set

M = MARK
({

τTΩ
(VTY , Sz′)

}
Sz′ ∈KΩ

, VTY

) ⊂ KTΩ

of minimal cardinality that satisfies

τTΩ
(VTY ,M ) ≥ θτTΩ

(VTY ,KTΩ
).

• REFINE: We generate a new mesh T ′
Ω by bisecting all the elements K ∈ TΩ contained in M based on the newest-

vertex bisection method; see [32,31]. We choose the truncation parameter as Y = 1 + 1
3 log(#T ′

Ω) to balance the 
approximation and truncation errors; see [29, Remark 5.5]. We construct the mesh I ′

Y by the rule (3.5), with a number 
of degrees of freedom M sufficiently large so that condition (5.1) holds. This is attained by first creating a partition I ′

Y

with M ≈ (#T ′
Ω)1/n and checking (5.1). If this condition is violated, we increase the number of points until we get the 

desired result. The new mesh

T ′
Y = REFINE(M ),

is obtained as the tensor product of T ′
Ω and I ′

Y .

6.2. Implementation

The AFEM (6.1) is implemented within the MATLAB© software library iFEM [11]. The stiffness matrix of the discrete 
system (3.8) is assembled exactly, and the forcing boundary term is computed by a quadrature formula which is exact for 
polynomials of degree 4. The resulting linear system is solved by using the multigrid method with line smoother introduced 
and analyzed in [12].
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To compute the solution ηz′ to the discrete local problem (5.22), we loop around each node z′ ∈ N (TΩ), collect data 
about the cylindrical star Cz′ and assemble the small linear system (5.22) which is solved by the built-in direct solver of 
MATLAB©. All integrals involving only the weight and discrete functions are computed exactly, whereas those also involving 
data functions are computed element-wise by a quadrature formula which is exact for polynomials of degree 7.

For convenience, in the MARK step we change the estimator from star-wise to element-wise as follows: We first scale 
the nodal-wise estimator as E 2

z′ /(#Sz′ ) and then, for each element K ∈ TΩ , we compute

E 2
K :=

∑
z′∈K

E 2
z′ .

The scaling is introduced so that 
∑

K∈TΩ
E 2

K = ∑
z′∈N (TΩ) E

2
z′ . The cell-wise data oscillation is now defined as

oscK ( f )2 := dsh2s
K ‖ f − f̄ K ‖2

L2(K )
,

where f̄ K denotes the average of f over the element K . This quantity is computed using a quadrature formula which is 
exact for polynomials of degree 7.

Unless specifically mentioned, all computations are done without explicitly enforcing the mesh restriction (5.1), which 
shows that this is nothing but an artifact in our proofs; see Remark 5.20. How to remove this assumption is currently under 
investigation. Nevertheless, computations (not shown here for brevity) show that optimality is still retained if one imposes 
(5.1).

For the cases where the exact solution to problem (3.8) is available, the error is computed by using the identity∥∥∇(v − VTY )
∥∥2

L2(yα,CY )
= ds

ˆ

Ω

f trΩ(v − VTY ),

which follows from Galerkin orthogonality and integration by parts. Thus, we avoid evaluating the singular/degenerate 
weight yα and reduce the computational cost. The right hand side of the equation above is computed by a quadrature 
formula which is exact for polynomials of degree 7. On the other hand, if the exact solution is not available, we introduce 
the energy

E(w) = 1

2

ˆ

CY

yα|∇w|2 − ds〈 f , trΩ w〉H−s(Ω)×Hs(Ω),

where w ∈ H̊1
L(yα, CY ) and f ∈H−s(Ω). Consequently, Galerkin orthogonality implies

E(VTY ) − E(v) = 1

2

∥∥∇(v − VTY )
∥∥2

L2(yα,CY )
,

where v ∈ H̊1
L(yα, CY ) and VTY ∈ V(TY ) denote the solution to problems (3.2) and (3.8), respectively. We remark that for 

a discrete function W the energy E(W ) can be computed simply using a matrix–vector product. Then, an approximation of 
the error in the energy norm can be obtained by computing(

2
(

E(VTY ) − E(VT ∗
Y
)
)) 1

2 ,

where VT ∗
Y

is the Galerkin approximation to v on a very fine grid T ∗
Y , which is obtained by a uniform refinement of the 

last adaptive mesh.
We also compute the effectivity index of our a posterior error estimator defined as the ratio of the estimator and the true 

error, i.e.,

τTΩ
(VTY ,KTΩ

)

‖∇(v − VTY )‖L2(yα,CY )

,

as well as the aspect ratio of elements T

hK

hI
∀T = K × I ∈ TY .

6.3. Smooth and compatible data

The purpose of this numerical example is to show how the error estimator (5.23)–(5.24) based on the solution of local 
problems on anisotropic cylindrical stars allows us to recover optimality of our AFEM. We recall that adaptive isotropic 
refinement cannot be optimal; see Section 4.2. We consider Ω = (0, 1)2 and f (x1, x2) = sin(2πx1) sin(2πx2). Then, the 
exact solution to (1.1) is given by u(x1, x2) = 8−sπ2s sin(2πx1) sin(2πx2).

The asymptotic relation ‖∇(U − VTY )‖L2(yα,CY ) ≈ #(TY )−1/3 is shown in Fig. 3 which illustrates the quasi-optimal decay 
rate of our AFEM driven by the error estimator (5.23)–(5.24) for all choices of the parameter s considered. These examples 
show that anisotropy in the extended dimension is essential to recover optimality of our AFEM.
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Fig. 3. Computational rate of convergence for our anisotropic AFEM on the smooth and compatible right hand side of Section 6.3 for n = 2 and s = 0.2, 0.4, 
0.6 and s = 0.8. The left panel shows the decrease of the error with respect to the number of degrees of freedom, whereas the right one that for the total 
error estimator. In all cases we recover the optimal rate #(TY )−1/3. The aspect ratios, averaged over x′ , of the cells on the bottom layer [0, y1] in the finest 
mesh are: 1.65 × 1011, 6.30 × 104, 396 and 36.2, respectively. The average effectivity indices are 1.47, 1.61, 1.61, 1.62, respectively.

Fig. 4. Computational rate of convergence for our anisotropic AFEM on the smooth but incompatible right hand side of Section 6.4 for n = 2 and s = 0.2, 0.4, 
0.6 and s = 0.8. The left panel shows the decrease of the error with respect to the number of degrees of freedom, whereas the right one that for the total 
error indicator. In all cases we recover the optimal rate #(TY )−1/3. Notice that, for s < 1

2 , the right hand side f = 1 /∈ H
1−s(Ω) and so a quasi-uniform

mesh in Ω does not deliver the optimal rate of convergence [29, §6.3]. The aspect ratios, averaged over x′ , of the cells on the bottom layer [0, y1] in the 
finest mesh are: 2.09 × 1011, 6.03 × 104, 387 and 33.4, respectively. The average effectivity indices are 1.34, 1.41, 1.51, 1.67, respectively.

6.4. Smooth but incompatible data

The numerical example presented in [29, §6.3] shows that the results of Theorem 3.9 are sharp in the sense that the 
regularity f ∈ H1−s(Ω) is indeed necessary to obtain an optimal rate of convergence with a quasi-uniform mesh in the 
x′-direction. The heuristic explanation for this is that a certain compatibility between the data and the boundary condition 
is necessary. The results of [29, §6.3] also show that, in some simple cases, one can guess the nature of the singularity 
that is introduced by this incompatibility and a priori design a mesh that captures it, thus recovering the optimal rate of 
convergence. Evidently, this is not possible in all cases and here we show that the a posteriori error estimator (5.23)–(5.24)
automatically produces a sequence of meshes that yield the optimal rate of convergence.

We consider Ω = (0, 1)2 and f = 1. Owing to definition (2.3), we have that a function in H1−s(Ω), for 1 − s > 1
2 , 

must have a vanishing trace on the boundary. Therefore, for s < 1
2 , we have that f /∈ H1−s(Ω) and we cannot invoke the 

results of Theorem 3.9. Nevertheless, as the results of Fig. 4 show, we recover the optimal rate of convergence. Due to the 
aforementioned incompatibility the solution must have a boundary layer, which an adaptive grid resolves by having a larger 
density near the boundary, as it is illustrated in Fig. 5. This is the reason why a quasi-uniform mesh in the x′-direction will 
not produce an optimal rate of convergence.

6.5. L-shaped domain with compatible data

The result of Theorem 3.9 relies on the assumption that the Laplace operator −�x′ on Ω supplemented with Dirichlet 
boundary conditions possesses optimal smoothing properties, i.e., (3.1). As it is well known [18], (3.1) holds when Ω is a 
convex polyhedron. Let us then consider the case when this condition is not met.

We consider the classical L-shaped domain Ω = (−1, 1)2 \ (0, 1) × (−1, 0) and f (x1, x2) = sin(2πx1) sin(πx2), which is 
a smooth and compatible right hand side, i.e., f = 0 on ∂Ω , for all values of s ∈ (0, 1). The results of Fig. 6 show the 
experimental rates of convergence and confirm that our AFEM is able to capture the singularity that the reentrant corner in 
the domain introduces and recover the optimal rate of convergence. As the exact solution of this problem is not known, we 
compute the rate of convergence by comparing the computed solution with one obtained on a very fine mesh.
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Fig. 5. Adaptive grids for the smooth but incompatible right hand side of Section 6.4. The left panel shows the mesh for s = 0.2, the right that for s = 0.4.

Fig. 6. Computational rate of convergence for our anisotropic AFEM on the smooth and compatible right hand side over an L-shaped domain of Section 6.5
for n = 2 and s = 0.2, 0.4, 0.6 and s = 0.8. The left panel shows the decrease of the error with respect to the number of degrees of freedom, whereas the 
right one that for the total error indicator. In all cases we recover the optimal rate #(TY )−1/3. As the exact solution of this problem is not known, we 
compute the rate of convergence by comparing the computed solution with one obtained on a very fine mesh. The aspect ratios, averaged over x′ , of the 
cells on the bottom layer [0, y1] in the finest mesh are: 2.56 × 1011, 1.20 × 105, 667 and 56.7, respectively. The average effectivity indices are 1.73, 1.77, 
1.73, 1.74, respectively.

Fig. 7. Computational rate of convergence for our anisotropic AFEM on the smooth but incompatible right hand side over an L-shaped domain of Section 6.6
for n = 2 and s = 0.2, 0.4, 0.6 and s = 0.8. The left panel shows the decrease of the error with respect to the number of degrees of freedom, whereas the 
right one that for the total error indicator. In all cases we recover the optimal rate #(TY )−1/3. As the exact solution of this problem is not known, we 
compute the rate of convergence by comparing the computed solution with one obtained on a very fine mesh. The aspect ratios, averaged over x′ , of the 
cells on the bottom layer [0, y1] in the finest mesh are: 2.24 × 1011, 1.02 × 105, 632 and 55.6, respectively. The average effectivity indices are 1.36, 1.40, 
1.44, 1.49, respectively.

6.6. L-shaped domain with incompatible data

Let us combine the singularity introduced by the data incompatibility of Section 6.4 and the reentrant corner explored 
in Section 6.5. To do so, we again consider the L-shaped domain Ω = (−1, 1)2 \ (0, 1) × (−1, 0) and f = 1. As the results 
of Fig. 7 show, we again recover the optimal rate of convergence for all possible cases of s. As the exact solution of this 
problem is not known, we compute the rate of convergence by comparing the computed solution with one obtained on a 
very fine mesh.

We display some meshes in Fig. 8. As expected, when s < 1
2 the data f = 1 is incompatible with the equation and this 

causes a boundary layer on the solution. To capture it, the AFEM refines near the boundary. In contrast, when s > 1
2 the 

refinement is only near the reentrant corner, since there is no boundary layer anymore.
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Fig. 8. Adaptively graded mesh for an L-shaped domain with incompatible data (see Section 6.6): s = 0.2 (left) and s = 0.8 (right). As expected, when s < 1
2

the data f = 1 is incompatible with the equation and this causes a boundary layer on the solution. To capture it, our AFEM refines near the boundary. In 
contrast, when s > 1

2 the refinement is only near the reentrant angle, since there is no boundary layer anymore.

Fig. 9. Computational rate of convergence for our anisotropic AFEM on the problem with discontinuous coefficients described in Section 6.7 for n = 2 and 
s = 0.2, 0.4, 0.6 and s = 0.8. The left panel shows the decrease of the error with respect to the number of degrees of freedom, whereas the right one that 
for the total error indicator. In all cases we recover the optimal rate #(TY )−1/3. As the exact solution of this problem is not known, we compute the rate 
of convergence by comparing the computed solution with one obtained on a very fine mesh. The aspect ratios, averaged over x′, of the cells on the bottom 
layer [0, y1] in the finest mesh are: 3.74 × 1011, 1.21 × 105, 719 and 69.1, respectively. The average effectivity indices are 1.55, 1.64, 1.69, 1.71, respectively.

6.7. Discontinuous coefficients

In this example we compute the fractional powers of a general elliptic operator with piecewise discontinuous coefficients. 
We invoke the formulas derived by Kellog [19] (see also [32, §5.4]) to construct an exact solution to the particular case: 
Ω = (−1, 1)2, f (x1, x2) = ((x1)2 − 1)((x2)2 − 1) and

Lw = −divx′(A∇x′ w),

with

A =
{

�I, x1x2 > 0,

I, x1x2 ≤ 0,

where I denotes the identity tensor and � = 161.4476387975881. This problem is well known as a pathological case, where 
the solution is barely in H1

0(Ω).
On the other hand, as the results of [29, §7] show, the problem: find u such that

Lsu = f , in Ω u|∂Ω = 0

also admits an extension, which can be discretized with the techniques and ideas presented in [29, §7]. We can also write an 
a posteriori error estimator based on cylindrical stars and design an adaptive loop. Fig. 9 demonstrates that the associated 
decay rate is optimal: (TY )−1/3 for all the considered cases.

6.8. The role of oscillation

Let us explore the role of oscillation as discussed in Remark 5.39. We consider the same example as in Section 6.6, but 
we set in Definition 5.21 P2(K ) = P2(K ). In this case the discrete local space W(Cz′ ) does not have enough degrees of 
freedom to impose (5.30). Consequently, in order to have (5.38) the oscillation (5.32) must be supplemented by the term

oscz′(VTY ) = ∥∥yα∇VTY − σ z′
∥∥

L2(y−α,Cz′ )
, (6.2)

where σ z′ is the local average of yα∇VTY .
Fig. 10 shows the experimental rates of convergence obtained by our AFEM for the total error where the oscillation term 

(5.32) is supplemented with (6.2). As we can see, especially for s = 0.8, the results are not optimal. To remedy this we 
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Fig. 10. Experimental rate of convergence for the example of Section 6.6 but with P2(K ) = P2(K ) in Definition 5.21. In this case, the oscillation (5.32)
must be supplemented by (6.2) to attain an upper bound. The expression (6.2) possesses a singularity and weight which cannot be captured with the mesh 
grading necessary for optimal approximation orders; this yields suboptimal decay rates (left figure). However, a graded mesh with γ > 3/(1 − |α|) in (3.5)
gives optimal decay rates (right figure).

notice that a graded mesh is able to capture the singular behavior of (6.2). Indeed, the underlying weight in this expression 
is y−α , so that a grading parameter in (3.5) of γ > 3/(1 − |α|) would yield an optimal decay for (6.2). For this reason, 
setting γ > 3/(1 − |α|), we are able to obtain an optimal decay rates for both the error and the oscillation (6.2) and all 
values of s. The results shown in Fig. 10 confirm this.
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