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a b s t r a c t

The constrained smoother for solving the saddle point system arising from the constrained
minimization problem is a relaxation scheme such that the iteration remains in the con-
strained subspace. A multigrid method using constrained smoothers for saddle point sys-
tems is analyzed in this paper. Uniform convergence of two-level and W-cycle multigrid
methods, with sufficient many smoothing steps and full regularity assumptions, are ob-
tained for some stable finite element discretization of Stokes equations. For Braess–Sarazin
smoother, a convergence theory using only partial regularity assumption is also developed.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Due to their indefiniteness and poor spectral properties, saddle point problems are difficult to solve. Multigrid (MG)
methods, one of the most efficient solvers for symmetric positive definite problems, work less efficiently for saddle point
problems. In this paper, we shall design and analyze effective multigrid methods for the saddle point problems:
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=
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0


, (1)

where A is a symmetric and positive definite (SPD) operator and B is surjective. Eq. (1) arises from mixed finite element
methods discretization of partial differential equations (PDEs), notably the Stokes equations in fluid dynamics in which
A = −∆, and B = −div.

The main difficulty of developing robust and effective multigrid methods for the saddle point system (1) is due to the
constraint Bu = 0. Recall that the success of multigrid method relies on two ingredients: the high frequency can be damped
efficiently by the smoother, and the low frequency can be well approximated by the coarse grid correction. For saddle point
systems, however, both smoothing and coarse grid correction can easily violate the constraint.

We propose to use the constrained smoother which is defined as a relaxation scheme such that the iteration remains in
the constrained subspaceK = ker(B). For Stokes equations, this means that the velocity iteration is always divergence free.
To derive constrained smoothers, we introduce the operator AK = QKAQ T

K : K → K , where QK = I − BT (BBT )−1B is the
L2-projection to K , and rewrite the saddle point system (1) as a symmetric positive definite equation

AKu = QK f . (2)

We shall design smoothers for (1) based on smoothers for (2). The operator AK is introduced for the theoretical propose and
will not be formed explicitly. Namely the algorithm we derived will involve only components of the original saddle point
system.
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We shall show that Richardson iteration for solving (2) is the Braess–Sarazin (B–S) smoother [1] for (1), and Jacobi and
Gauss–Seidel iterations for (2) correspond to additive and multiplicative Schwarz smoothers considered in Schöberl [2],
which is better known as Vanka smoother [3] in the context of computational fluid dynamics.

For the coarse grid correction, the difficulty is that the constrained subspaces in consecutive levels are non-nested. To
overcome this non-nestedness, we propose to use a L2-type projection QK to bring the coarse grid correction back to K .
One generic choice is QK = QK which requires a Poisson type solver. When the pressure space consists of discontinuous
elements, following Schöberl [2], we can choose a localized L2 projection by using elements in the coarse grid as a non-
overlapping domain decomposition of the underlying domain. We would like to mention that when constrained subspaces
are nested, a multilevel method based on the constrained energy minimization and its convergence analysis has been
developed recently in [4].

It has been numerically observed that multiplicative Schwarz smoother leads to an efficient multigrid methods for
saddle point problems, however, theoretical analysis for the convergence is only available for less efficient additive versions
[2,5]. One contribution of this paper is to extend the smoothing property of the additive Schwarz smoother established by
Schöberl [2] to the multiplicative Schwarz smoothers.

With the smoothing property and the approximation property, we are able to prove that the two-level method and W-
cycle multigrid method using constrained smoothers converge uniformly provided the full regularity assumption of Stokes
equations and the assumption of sufficiently many smoothing steps.

Another contribution of this paper is to present a multigrid convergence proof without the full regularity assumption.
For scalar elliptic equations, theMG theory has undergone stages of development from regularity basedmultigrid theory [6]
to regularity free (or less) one [7–12]. Surprisingly enough the current MG theory for saddle point problems is still in the full
regularity stage [13,1,14–16]. Only very recently, Brenner, Li, and Sung [17] developed new multigrid methods for Stokes
equations andhave proved the uniform convergencewithout the full regularity assumption. Our smoother and consequently
the convergence analysis is different with that in [17].

We shall followBank andDupont [7] to present a convergence proof using only partial regularity assumption of the Stokes
equation. Consequently our analysis can be applied to more realistic problems especially for solutions with singularity. We
verify the approximation and smoothing property using an operator dependent norm for the Braess–Sarazin smoother. We
shall also follow Bramble, Pasciak, and Xu [18] to use the variable V-cycle multigrid as a preconditioner which can relax the
assumption of sufficiently many smoothing steps.

We are aware that more effective block preconditioners for the Stokes equations are available [19,20]. The analysis
here is of theoretical interest since the convergence of multigrid methods for Stokes equations with the partial regularity
assumption is rare.

The rest of this paper is structured as follows. In Section 2, we present the setting of the problem including notation and
different formulations of the saddle point system. In Section 3,we introduce constrained relaxation schemes and in Section 4,
we present the two-level method and W-cycle multigrid and prove their uniform convergence. In Section 5, we verify the
smoothing and approximation property for Vanka smoothers and in Section 6, we establish the convergence theory with
partial regularity assumption when using Braess–Sarazin smoother. We refer the reader to [1,2] for numerical results that
are consistent and supporting our theoretical results.

2. Problem setting

Let H be a Hilbert space equipped with inner product (·, ·) and V ⊂ H be a closed subspace. Suppose A : V → V is
a symmetric and positive definite (SPD) operator with respect to (·, ·), which introduces a new inner product (u, v)A :=

(Au, v) = (u, Av) on V . The norm associated to (·, ·) or (·, ·)A will be denoted by ∥ · ∥ or ∥ · ∥A, respectively. Let P be another
Hilbert space and let B : V → P be a linear operator continuous in ∥ · ∥A. With a slight abuse of notation, we still denote the
inner product of P by (·, ·). In most problems of consideration, the inner product (·, ·) for H is the vector L2-inner product
while for P it is the scalar L2-inner product.

We are interested in solving the following saddle point system: For a given f ∈ H , find u ∈ V, p ∈ P such that

(Au, v) + (p, Bv) = (f , v) for all v ∈ V,

(Bu, q) = 0 for all q ∈ P ,

which will be written in the operator form
A BT

B O

 
u
p


=


f
0


. (3)

The operator matrix in (3) will be abbreviated as L = (A, BT
; B,O) and Eq. (3) can be written as L(u, p) = (f , 0). Here (·)T

is the adjoint with respect to the default inner product (·, ·) and a functional in the dual space H ′ is identified as an element
in H through the Riesz map induced by (·, ·). Throughout this paper, we assume the well-posedness of (3) and focus on its
efficient solvers.

We shall consider geometric multigrid methods for solving the saddle point problem (3) which arises from mixed
finite element method discretizations of elliptic partial differential equations. A typical and important example is the finite
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element discretization of Stokes equations −1u + ∇p = f , divu = 0 posed on a polygon or polyhedron domain Ω . For
another important example: Darcy systems using H(div) elements, we refer the reader to [4].

Let Th be a quasi-uniform mesh of Ω with mesh size h. We consider geometric multigrid methods in this paper and
thus assume Th is obtained by uniform refinements from an initial mesh T1 of Ω , i.e., there exists a sequence of meshes
T1, T2, . . . , TJ = Th. The mesh T1 is a shape regular mesh of Ω and Tk+1 is obtained by dividing each element in Tk into
small elements following appropriate refinement rules for different types of meshes. The mesh size Tk will be denoted by
hk. By the construction hk/hk+1 = 2. We are interested in solving the system in the finest grid but coarse grids will be used
to construct auxiliary problems such that only relaxation on each level is enough to produce an iterative solver convergent
with a rate independent of the mesh size.

Let K = ker(B) be the null space of B. The saddle point problem (3) can be reformulated to the following symmetric and
positive definite (SPD) problem in K: Find u ∈ K such that

(Au, v) = (f , v) for all v ∈ K. (4)
We introduce the operator AK : K → K as (AKu, v) = (Au, v) for all u, v ∈ K and the operator QK : H → K as the
(·, ·)-projection, i.e., for a given function f ∈ H, QK f ∈ K satisfies (QK f , v) = (f , v) for all v ∈ K . Then the operator form
of (4) is: Find u ∈ K such that

AKu = QK f in K. (5)
Last we define the Dirichlet energy:

E(v) =
1
2
∥v∥

2
A − (f , v), for v ∈ V. (6)

Eq. (5) is Euler’s equation of the following constrained minimization problem:
min
v∈K

E(v). (7)

Equivalently the saddle point problem (3) is the first order equation of (7) by introducing the Lagrangian multiplier p to
impose the constraint Bv = 0.

We shall switch our viewpoint from these three equivalent formulations: energy minimization in the constrained
subspace, the SPD problem in the constrained subspace, and the saddle point system in the non-constrained space.

We use notation a . b to denote there exists a positive constant C independent of the mesh size h, such that a ≤ Cb, and
a h b to denote a . b . a.

We use the standard definition of Sobolev spaces Hs(Ω) and Hs
0(Ω) with s ≥ 0. When s = 0, H0(Ω) coincides with the

space of square integrable functions L2(Ω).

3. Constrained relaxation of saddle point problems

The constrained relaxation for solving (3) is defined as a relaxation scheme such that the iteration remains in the
constrained subspace. For Stokes equations, this means that the velocity iteration is always divergence free. We will always
denote by u the solution to (3) and (5) and by uk the kth iteration of u for k = 0, 1, 2, . . . . We chose an initial guess u0

∈ K .
A trivial example is u0

= 0. Then, for a constrained relaxation, all uk
∈ K for k = 1, 2, . . . .

We first explore the relation between operator A : V → V and AK : K → K . Let IK : K → V be the natural inclusion
operator. By definition IK = Q T

K . Then it is easy to see that AK = QKAIK = QKAQ T
K .

Classical iterative methods for solving AKu = QK f would require the explicit form of AK . Since QK = I − BT (BBT )−1B
involving an inverse operator, AK may not be easy or efficient to form explicitly. We shall use the equivalence between (3)
and (5) to design smoothers for (3) without forming AK .

Remark 3.1. For some discrete Stokes systems, it is possible to find a so-called discrete divergence free basis of K and
each basis function is locally supported; see, e.g. [21, page 267]. Therefore a sparse representation of AK can be obtained
using this basis. The finding of such bases, however, is not easy and is problem dependent. More importantly, the condition
number of the reduced SPD system is much worse than that of the saddle point system. Essentially it is a fourth order
elliptic equation with an O(h−4) condition number rather than a constrained second order elliptic equation with an O(h−2)
condition number. Thus even if a sparse representation of AK is available, it is still better to solve the original saddle point
system. �

We first transfer the simplest iterative method, i.e., Richardson iteration for (5) to an iteration for solving (3). Recall that
Richardson iteration can be written as:

uk+1
= uk

+ ω−1(QK f − AKuk) = uk
+ ω−1QK(f − Auk). (8)

The error equation of (8) is

u − uk+1
= (I − ω−1AK)(u − uk) = QK(I − ω−1A)(u − uk). (9)

In view of (9), we should chose ω−1
∈ (0, 2/ρAK ) so that the iteration (8) converges, where ρM denotes the spectral radius

of operatorM .
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From theminimization point of view, Richardson iteration (8) is related to a gradient method for solving the constrained
minimization problem (7). The corresponding iteration for the saddle point system is: solve

ωI BT

B O

 
eu
ep


=


f − Auk

0


, (10)

and then update uk+1
= uk

+ eu. One can compute the inverse (ωI, B; BT ,O)−1 to verify the relation (9). This is exactly the
smoother developed by Braess and Sarazin [1].

Remark 3.2. In the implementation level, the identity operator I is realized by a mass matrix and the exact solve of (10)
can be approximated by using an easily invertible matrix, e.g., using the diagonal of the matrix representation of operator
A instead of the mass matrix. Then the inner product (·, ·) can be replaced by an equivalent mesh-dependent and weighted
l2-inner product of an Euclidean space which will not affect the analysis.

It is a coincidence that, for Richardson iteration, it is simply replacing A byωI in the saddle point systemwhich resembles
the Richardson iteration for solving A. Other classical iterative methods such as Jacobi and Gauss–Seidel methods for the
SPD formulation (5) correspond to more delicate formulations of the saddle point system. For example, when all operators
are represented by matrices, using (diag(A), BT

; B,O) in (10) will not lead to Jacobi method for solving (5) which requires
diag(AK).

We shall interpret Gauss–Seidel or Jacobi iterations based on the subspace correction method [10]. Let
V = V1 + V2 + · · · + VN , Vi ⊂ V, i = 1, . . . ,N,

be a space decomposition of V satisfying the condition
K = K1 + K2 + · · · + KN , with Ki = Vi ∩ ker(B), i = 1, . . . ,N.

Note that the conditionK =
N

i=1 Ki requires a careful choice of the space decompositionV =
N

i=1 Vi. Roughly speaking,
each subspace Vi should be big enough to contain a basis function of K and each basis function of K should be contained
in at least one Vi.

Denote by Qi : V → Ki the (·, ·)-projection and Ai
K = QiAQ T

i the restriction of A to the subspace Ki. The parallel
(additive) subspace correction method (PSC) is:

uk+1
= uk

+

N
i=1

(Ai
K)−1Qi(f − Auk).

The successive (multiplicative) subspace correction (SSC) method is:
Let v0

= uk, for i = 1, 2, . . . ,N , solve Ai
Kei = Qi(f − Avi−1) and update vi

= vi−1
+ ei. The new iteration is uk+1

= vN .

SSC and PSC differ in the update of the residual. In SSC, when solving the local problem in Ki, the residual is updated
while in PSC it is not. From the energy minimization point of view, SSC will always reduce the energy while PSC does not
and usually an appropriate scaling factor is needed. Therefore SSC is more effective. On the other hand, PSC is more friendly
to parallel computing.

It is well known that SSC corresponds to Gauss–Seidel type iteration and PSC is Jacobi type iteration [10].
We now transfer SSC or PSC for (5) to iterative methods for the saddle point system. Let Ai : Vi → Vi and Bi : Vi →

Pi := P ∩ B(Vi) be the restriction of A and B to the subspace Vi and Pi, respectively. Given a residual ri, the local problem
Ai

Kei = Qiri in the subspace Ki corresponds to a small saddle point system in Vi × Pi:
Ai BT

i
Bi O

 
ei
pi


=


ri
0


. (11)

Therefore SSC for solvingAKu = QK f based on the space decompositionK =
N

i=1 Ki can be interpreted as amultiplicative
Schwarzmethod for solving the saddle point problembased on the decompositionV =

N
i=1 Vi. Similarly PSC is the additive

Schwarz method.
Denote by RK the corresponding operator of SSC or PSC for solving (5), i.e.,

uk+1
= uk

+ RK(QK f − AKuk).

Then the error equation is

u − uk+1
= (I − RKAK)(u − uk) := SK(u − uk). (12)

The operator RK is introduced for the ease of analysis. In implementation, for a given residual r , the action RK r can be
realized by solving small saddle point problems (11) consecutively (SSC) or in parallel (PSC). Explicit formulation of RK is
not easy and not necessary, but possible, see e.g. [22,23].

4. Multigrid methods using constrained smoothers

Following the convention, we use subscript H to denote quantities associated to coarse spaces VH ⊂ V and PH ⊂ P
which are usually constructed on a coarse grid with grid size H = 2h. We denote by IH : VH → V the natural inclusion
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which is usually skipped if no confusion arises. The adjoint ITH is the restriction (of residual) from V → VH . One difficulty
of applying standard multigrid methods to saddle point systems is the non-nestedness of the constrained subspaces, i.e., in
general KH ⊄ K although VH ⊂ V . To overcome it, we introduce another operator QK : V → K which brings a function
in V back to the constrained space K and require that QK restricted to K is the identity operator. One generic choice is
QK = QK . The restriction of QK to KH can be thought of as a prolongation operator between non-nested spaces KH → K .

4.1. Two-level method and its convergence

A two-level method using a constrained smoother RK is presented below and themultigrid V-cycle orW-cycle multigrid
can be obtained by recursion.

uk+1
= TM (uk, f ).

Set v1 = uk.
(1) Pre-smoothing. For i = 1, . . . ,m, vi+1 = vi + RKQK(f − Avi).
(2) Coarse grid correction: eH = A−1

KH
QKH I

T
H(f − Avm+1).

(3) Prolongate the correction back to the kernel space: e = QK IHeH .
(4) Update the approximation: vm+2 = vm+1 + e.
(5) Post-smoothing. For i = m + 2, . . . , 2m + 1, vi+1 = vi + RKQK(f − Avi).

Set uk+1
= v2m+2.

In the pre- andpost-smoothing, the projection of the residualQK r , with r = f−Avi, is not computed explicitlywhenusing
the constrained smoother. Since in the fine space the subspace Ki ⊂ K , the action (QKAr, vi) = (Ar, vi) for vi ∈ Ki ⊂ K
can be computed without computing QKAr .

In the coarse grid problem, again, evaluation of the projectionQKH is not needed either. The correction eH = A−1
KH

QKH (ITHr)
will be obtained by solving the following saddle point problem in the coarse space:

AH BT
H

BH O

 
eH
qH


=


ITHr
0


. (13)

After we obtained a correction in the coarse grid, say eH ∈ KH , since KH ⊄ K , the direct update using eH will be out
of the subspace K . Thus in step (3), we do need to compute the projection QKeH . A generic choice is QK = QK which
requires a Poisson-type solver in the case of Stokes equations. When the space of Lagrange multiplier is discontinuous, we
can construct such a QK by solving local problems. Specific examples will be given in the next section.

If we introduce the operator PH : V → VH as PH = A−1
KH

QKH I
T
HA, then the error operator of the two-level method (TM) is

SmK(I − QKPH)SmK = SmKQK(I − PH)SmK . (14)

Here we use the property QKv = v when v ∈ K .
We shall prove the uniform convergence of this two-level method from which convergence of the W-cycle follows

from the standard recursive argument. As usual, we present the following assumptions on the smoother and coarse grid
correction.

(S) Smoothing property. There exists a function η(m) with property limm→∞ η(m) = 0 such that

∥SmKv∥A . η(m)ρ
1/2
AK

∥v∥, for all v ∈ K.

(R) The smoother RK is symmetric, non-singular, and satisfies

(R−1
K v, v) ≥ (AKv, v), for all v ∈ K.

(A) Approximation property of the coarse grid correction:

∥(I − PH)v∥ . ρ
−1/2
AK

∥v∥A for all v ∈ V.

Due to the non-nestedness of constrained subspaces, we need one more assumption of the prolongation operator QK .
(Q ) The operator QK : V → K is stable in ∥ · ∥-norm and preserves K . Namely QK |K is identity and

∥QKv∥ . ∥v∥, for all v ∈ V.

Theorem 4.1. Assume that
• the smoother RK satisfies the assumptions (S) and (R).
• the coarse grid correction PH satisfies the approximation property (A).
• the operator QK satisfies the assumption (Q ).
Then the two-level method converges in A-norm with sufficiently many smoothing steps. More precisely, there exists a constant C
independent of the size of the problem such that

∥u − uk+1
∥A ≤ Cη(m)∥u − uk

∥A.
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Proof. The assumption (R) implies σ(RKAK) ∈ (0, 1]. Then SK = I−RKAK is a contraction in A-norm. Recall that the error
equation is

u − uk+1
= SmKQK(I − PH)SmK(u − uk).

We then use the assumptions to estimate the A-norm of the error operator. For any v ∈ K ,

∥SmKQK(I − PH)SmKv∥A . η(m)ρ
1/2
AK

∥QK(I − PH)SmKv∥

≤ η(m)ρ
1/2
AK

∥(I − PH)SmKv∥ . η(m)∥SmKv∥A . η(m)∥v∥A.

The desired inequality then follows. �

4.2. W-cycle method and convergences

We present the standard recursive formulation of the W-cycle using TM. We introduce one more index l for levels. The
coarsest level is l = 1 and the finest one is l = J .

uk+1
= W-cycle (uk, f , l)

If l == 1, then
uk+1

= uk
+ A−1

K QK(f − uk); return;
else
Set v1 = uk.
(1) Pre-smoothing. For i = 1, . . . ,m, vi+1 = vi + RKQK(f − Avi).
(2) Coarse grid correction: let rH = ITH(f − Avm+1)

(a) ẽH = W-cycle(0, rH , l − 1);
(b) eH = W-cycle(ẽH , rH , l − 1).

(3) Prolongate the correction back to the kernel space: e = QK IHeH .
(4) Update the approximation: vm+2 = vm+1 + e.
(5) Post-smoothing. For i = m + 2, . . . , 2m + 1, vi+1 = vi + RKQK(f − Avi).

Set uk+1
= v2m+2.

Use the standard recursive argument, we can prove the uniform convergence of W-cycle.

Theorem 4.2. Assume that in each level
• the smoother RK satisfies the assumptions (S) and (R).
• the coarse grid correction PH satisfies the approximation property (A).
• the operator QK satisfies the assumption (Q ).
Then the W-cycle multigrid converges in A-norm with sufficient many smoothing steps. More precisely, there exists a constant C
independent of the size of the problem such that, when m is large enough,

∥u − uk+1
∥A ≤ Cη(m)∥u − uk

∥A.

5. Application to Stokes equations

In this section, we apply our approach to design and analyze multigrid methods for saddle point systems arising from
finite element discretization of Stokes equations. Here we focus on stationary Stokes problems.

Consider Stokes equations with Dirichlet boundary condition posed on a polygon/polyhedral domain Ω ⊂ Rd, d = 2, 3,
− 1u + ∇p = f , divu = 0 in Ω, u = 0, on ∂Ω. (15)

Let L20(Ω) := {q ∈ L2(Ω),


Ω
q = 0} endowed with L2-norm ∥ · ∥ and L2-inner product (·, ·), and (H1

0 (Ω))d := {u ∈

(L2(Ω))d, ∇u ∈ (L2(Ω))d×d, u|∂Ω = 0} with norm | · |1 := ∥∇(·)∥. The weak formulation of (15) is: find u ∈ (H1
0 (Ω))d, p ∈

L20(Ω) such that

(∇u, ∇v) − (p, divv) = (f , v) for all v ∈ (H1
0 (Ω))d,

−(divu, q) = 0 for all q ∈ L20(Ω).

Given a quasi-uniformmesh Th with mesh size h, we consider inf–sup stable finite element spaces. The setting is: spaces
(V, P ) = (Vh, Ph) are stable finite element pair based on Th. Space H = (L2(Ω))d with the L2 inner-product (·, ·). The A
inner-product is (Au, v) = (∇u, ∇v). The operator B = −div and A = −∆. We shall use subscript h or H , respectively, to
indicate operators restricted to spaces on Th or TH . The coarse grid size H = 2h.

It is well known that ρAh , ρAKh
= O(h−2).



2860 L. Chen / Computers and Mathematics with Applications 70 (2015) 2854–2866

5.1. Approximation property

In this subsection, we denote the exact solution of Stokes equations by (u, p) and the finite element approximation based
on triangulation Th by (uh, ph). Notice that for all existing stable finite element pairs, we have first order convergence of u
and p, i.e.,

∥u − uh∥1 + ∥p − ph∥ . h (∥u∥2 + ∥p∥1) . (16)

To verify the approximation property in L2-norm, we need the following full regularity assumption.
(Reg) Let u ∈ (H1

0 (Ω))d, p ∈ L20(Ω) be the weak solution of Stokes equations (15) with a given data f ∈ L2(Ω). Then
u ∈ (H2(Ω) ∩ H1

0 (Ω))d and p ∈ H1(Ω) and

∥u∥2 + ∥p∥1 . ∥f ∥.

Using the standard duality argument and the above full regularity assumption, we can get the following approximation
result in L2-norm:

∥u − uh∥ . h2
∥f ∥. (17)

We then verify the approximation property (A). Note that we are solving the discrete Stokes equation on Th and the
coarse spaces are based on TH . The approximation property is given by the error estimate between two consecutive meshes
Th and TH .

Theorem 5.1. Assume (Reg) holds for Stokes equations. Let PH : Vh → VH be defined as PH = A−1
KH

QKH I
T
HAh. Then the following

approximation property holds:

∥vh − PHvh∥ . h∥vh∥A for all vh ∈ Vh.

Proof. Let f = Ahvh and (v, p) be the solution of Stokes equations with data f . Then vh and vH = PHvh are the Galerkin
approximation of v in Vh and VH , respectively. By the triangle inequality, the L2-error estimate (17), the inverse inequality,
and the fact H/h ≤ C , we have

∥vh − PHvh∥ ≤ ∥v − vh∥ + ∥v − vH∥ . H2
∥Avh∥ . H∥vh∥A . h∥vh∥A.

This completes the proof. �

5.2. Constrained smoothers

To define a constrained smoother, it suffices to give a space decomposition V =
Nh

i=1 Vi such that K =
Nh

i=1 Ki with
Ki = Vi ∩ ker(B). The key of an effective constrained smoother is to identify the support of the local spaces Vi. On the one
side, the size of the local problem should be small such that local problems are efficient to solve. On the other side, the space
Vi should be big enough to enclose a basis function of K . Note that we do not need to figure out a discrete divergence-free
basis but only need to know the support of a basis function. In the following, we will give the sub-domain ω for specific
examples and the local problem is solving Stokes equations with Dirichlet boundary condition on ∂ω. We refer the reader
to Sarin [24] for algebraic ways to identify patches of divergence free basis which might be helpful on designing algebraic
multigrid methods for Stokes problems.

A rule of thumb is that, when the pressure space is discontinuous, chose the vertex patch of the triangulation. More
specifically, when the pressure is piecewise constant, the velocity is quadratic Lagrange element or Crouzeix–Raviart (CR)
non-conforming linear finite element space [25], the support of two type of discrete divergence free functions (vertex-type
and edge-type) will be contained in the vertex patch; see [26,27]. On rectangular grids, for the Q2 −P1 (bi-quadratic velocity
and discontinuous linear pressure) pair, the vertex patch also contains the support of four types of discrete divergence free
functions; see [21, page 271].

For Q2 −Q1 (continuous bi-quadratic velocity and continuous bi-linear pressure), we can still use the vertex patch which
consists of a 2 × 2 sub-mesh and contains the support of discrete divergence free basis functions [28]. For lowest order
Taylor–Hood P2 − P1 elements, i.e., the velocity is continuous quadratic element and the pressure is continuous linear
element, in addition to the vertex patch, we need to solve additional local problems in a triangle patch which is defined
as the union of triangles sharing edges with a given triangle. The discrete divergence free basis will be contained either in
the vertex patch or the triangle patch; see [29,30].

5.3. Prolongation operator

We discuss several choices of QK . One universal choice will be the L2 projection to K . Namely we chose QK = QK

which requires a Poisson solver. As remarked in [1], this is practical since a lot of efficient Poisson solvers are available and
the Poisson equations need only be solved with low accuracy.

When thepressure space is discontinuous,we can chose local L2 (orH1)-projections. For each triangle T ∈ TH , we consider
the L2-projection restricted to KT = {v ∈ K, suppv ⊆ T̄ }. A similar local H1-projection was proposed by Schöberl in [2].



L. Chen / Computers and Mathematics with Applications 70 (2015) 2854–2866 2861

The stability of QK in L2-norm is trivial. When v is already in K , the solution to the local problems is itself and thus this
operator preserves functions v ∈ K .

5.4. Smoothing property of additive Schwarz smoothers

A smoothing property for additive Schwarz smoothers has been established by Schöberl [2]. Herewe review his approach
briefly and will extend to the multiplicative case in the next subsection.

Assume the space decomposition V =
N

i=1 Vi satisfying K =
N

i=1 Ki with Ki = Vi ∩ K . The additive Schwarz
smoother RK based on this space decomposition can be written as RK = ωDK := ω

N
i=1 A

−1
Ki

QKi , where the parameter ω
is chosen approximately such that (R) is satisfied. It is well known that, e.g., [11]

(D−1
K v, v) =: ∥v∥

2
D−1

K

= inf
N
i=1

vi=v,vi∈Ki

N
i=1

∥vi∥
2
A. (18)

In [2], Schöberl has proved the following inequality:

∥v∥
[D−1

K ,A]1/2
≤ ch−1

∥v∥, (19)

where ∥ · ∥
[D−1

K ,A]1/2
is the interpolation norm between ∥ · ∥D−1

K
and ∥ · ∥A norm with parameter 1/2.

The smoothing property

∥SmKv∥A . m−1/2
∥v∥D−1

K
(20)

is well known [6] and by our choice of the relaxation parameter ω, the operator SK is a contraction in A-norm, i.e.,

∥SmKv∥A ≤ ∥v∥A. (21)
Then interpolation gives the smoothing property

∥SmKv∥A . m−1/4
∥v∥

[D−1
K ,A]1/2

. m−1/4h−1
∥v∥.

5.5. Smoothing property of multiplicative Schwarz smoothers

In this subsection, we verify the symmetric multiplicative Schwarz smoother (or Vanka smoother) satisfies assumptions
(R) and (S).

Let RK be the operator of SSC based on the space decomposition K =
N

i=1 Ki. The symmetrized Vanka smoother RK

is an operator defined by the relation

I − RKAK = (I − RT
KAK)(I − RKAK). (22)

Note that the relaxation RT
K is realized by applying multiplicative Schwarz method in the reversed ordering, i.e., if RK is

solving local problems from i = 1, 2, . . . ,N , then RT
K is from i = N, N − 1, . . . , 1.

From the energy minimization point of view, the energy is strictly decreasing for the multiplicative Schwarz method
which implies the contraction of the operator S̄K = I − RK and therefore (R) holds for RK . Indeed any symmetrized
scheme defined by the relation (22) will satisfy (R). A short proof is as follows. Since AK is SPD, (I − RT

KAK)(I − RKAK) =

(I − RKAK)∗(I − RKAK) is SPD, where the adjoint (·)∗ is with respect to (·, ·)AK . Therefore λmin(I − RKAK) ≥ 0 which
implies ρ(RKAK) ≤ 1. Obviously RK is SPD. So this verifies that RK satisfies (R).

Let Pi : K → Ki be the projection in (·, ·)A inner product, i.e., Piv ∈ Ki satisfies (Piv, wi)A = (v, wi)A for all wi ∈ Ki.
We have the following characterization of the norm introduced by RK : for all v ∈ K

(R
−1
K v, v) = ∥v∥

2
A + inf

J
i=0

vi=v,vi∈Ki

N
i=1

Pi J
j=i+1

vj

 2
A. (23)

The identity (23) can be found in [11]. A simple proof of (23) is given in [23].

Lemma 5.2. Assume that the space decompositionK =
N

i=1 Ki is finite overlapping, i.e., the cardinality of n(i) = {j ∈ [1,N] |

Kj ∩ Ki ≠ ∅} is uniformly bounded for all i = 1, 2, . . . ,N, and the inequality (19) holds. Then RK satisfies the smoothing prop-
erty (S).

Proof. By the finite overlapping property, we have

N
i=1

Pi J
j=i+1

vj


2

A

.

N
i=0


j∈n(i)

∥vj∥
2
A .

N
i=0

∥vi∥
2
A, and ∥v∥

2
A .

N
i=0

∥vi∥
2
A.
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Therefore we have, for symmetric multiplicative Schwarz smoother RK ,

(R
−1
K v, v) . (D−1

K v, v). (24)

The smoothing property

∥SmKv∥A . m−1/2
∥v∥

R−1
K

. m−1/2
∥v∥D−1

K
, (25)

is proved as before. Since RK satisfies (R), the operator SK is a contraction in A-norm:

∥SmKv∥A ≤ ∥v∥A. (26)

Then interpolation gives the smoothing property

∥SmKv∥A . m−1/4
∥v∥

[D−1
K ,A]1/2

. m−1/4h−1
∥v∥. �

The finite overlapping property is usually true for finite element methods. The inequality (19) has been established
in [2] for P2 − P0 pair (continuous and piecewise quadratic element for the velocity and piecewise constant element
for the pressure) and can be proved similarly for other stable pairs with discontinuous pressure spaces. Together with
the approximation property proved in Theorem 5.1, we thus have proved the uniform convergence of W-cycle multigrid
methods for solving Stokes equations withmultiplicative Schwarz smoothers. Note that in [2], it shows numerically that the
multiplicative Schwarz smoothers ismore effectivewhile the theoretical analysis in [2] is restricted to the additive case only.

6. Convergence theory with partial regularity assumption

Results obtained in the previous sections require the full regularity assumption and sufficiently many smoothing steps.
In some scenario, e.g., the domain Ω is concave with a reenter corner, the full regularity assumption is violated and only
partial regularity assumption holds. We shall follow Bank and Dupont [7] to prove the multigrid convergence with partial
regularity assumption for the B–S smoother. The key is to verify the approximation and the smoothing property using an
operator dependent norm. We shall also follow Bramble, Pasciak, and Xu [18] to use the variable V-cycle multigrid as a
preconditioner which can relax the assumption of sufficiently many smoothing steps.

6.1. Fractional norm and stability

We will use a fractional norm defined by the SPD operator AK : K → K . For s ∈ [0, 2] and v ∈ K , we define

|||v|||s := ∥As/2
K v∥.

Obviously |||v|||0 = ∥v∥ and |||v|||1 = ∥v∥A and thus by interpolation |||v|||s h ∥v∥s for all v ∈ K and s ∈ [0, 1].

Lemma 6.1. The L2 projection QK is stable in |||·|||s for all s ∈ [0, 1].

Proof. By definition |||QK |||0 = ∥QK∥ = 1. By Lemma 1 in [14], we have the stability of QK in A-norm, i.e., |||QK |||1 =

∥QK∥A ≤ C . Interpolation then leads to the result. �

6.2. Two-level method and its convergence

We present the two-level method using a constrained smoother RK below.

uk+1
= TM-R (uk, f )

Set v1 = uk.
(1) Pre-smoothing. For i = 1, . . . ,m, vi+1 = vi + RKQK(f − Avi).
(2) Project the residual to the kernel space: r = QK(f − Avm+1).
(3) Coarse grid correction: eH = A−1

KH
ITKH

ITHr .
(4) Prolongate the correction back to the kernel space: e = QK IH IKH eH .
(5) Update the approximation: vm+2 = vm+1 + e.
(6) Post-smoothing. For i = m + 2, . . . , 2m + 1, vi+1 = vi + RKQK(f − Avi).

Set uk+1
= v2m+2.

Comparing with the two-level method TM, the difference of TM-R is that: when transfer the residual to the coarse grid,
we add one L2-projection QK before applying the restriction from V to VH and QK = QK in the prolongation step. The use
of QK will increase the computational cost a little bit but the benefit is that now the error operator of TM-R is symmetric in
the (·, ·)A inner-product.
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Lemma 6.2. Let uk+1
= TM-R (uk, f ). Define E by the relation u − uk+1

= E(u − uk). Then E is symmetric in the (·, ·)A inner-
product.

Proof. We write out the error operator first

E = SmK(I − QK IH IKHA
−1
KH

ITKH
ITHQ

T
KAK)SmK , (27)

and explain step by step. The extra projection in step (2) is to realize the action AK(·) = QKA(·). The restriction ITH : V → VH

is applied to elements in V . So we need the natural inclusion IK = Q T
K : K → V after the action AK . The action of operator

A−1
KH

ITKH
is realized by solving the saddle point system in the coarse grid. Afterwe obtain eH ∈ KH , we embed it toVH through

IKH : KH → VH and then to V through IH : VH → V . The projection QK from V to K is applied to bring the iteration back
to K .

Since QK IH IKHA
−1
KH

ITKH
ITHQ

T
K , SK , and AK are symmetric operators from K → K , we conclude E : K → K is symmetric

in the A inner-product. �

To prove the uniform convergence of TM-Rwithout the full regularity assumption, wemodify the smoothing property to:
(Sα) Smoothing property. There exist a constant α ∈ (0, 1] and a constant cs such thatSmKv


1+α

≤

 cs
2m

α/2
ρ

α/2
AK

∥v∥A, for all v ∈ K. (28)

We then define a slightly different coarse grid correction operator PH : K → KH ⊂ V as PH = IH IKHA
−1
KH

ITKH
ITHQ

T
KAK

and formulate the approximation property using the fractional norm.
(Aα) Approximation property. There exist a constant α ∈ (0, 1] and a constant ca such that

|||(I − PH)v|||1−α ≤ caρ
−α/2
AK

∥v∥A, for all v ∈ K.

Theorem 6.3. Assume that
• the smoother RK satisfies the assumptions (R) and (Sα).
• the coarse grid correction PH satisfies the approximation property (Aα).

Then the two-level algorithms TW-R converges in the energy normwhen the smoothing step m is sufficiently large. More precisely,
there exists a constant C = C(cs, ca, α) such that

∥u − uk+1
∥A ≤

C
(2m)α/2

∥u − uk
∥A.

Proof. Since the error operator E = SmK(I − QKPH)SmK : K → K is symmetric with respect to (·, ·)A, we can estimate ∥E∥A
by proving (Ev, v)A . (v, v)A for all v ∈ K as follows:

(Ev, v)A = ((I − QKPH)SmKv, SmKv)A

≤
(I − QKPH)SmKv


1−α

SmKv


1+α

≤
(I − PH)SmKv


1−α

 cs
2m

α/2
ρ

α/2
AK

∥v∥A

≤ ca
 cs
2m

α/2
∥v∥

2
A.

In the third step, we write I − QKPH = QK(I − PH) and use the stability of QK in |||·|||1−α norm; see Lemma 6.1. �

Again using the standard recursive argument, we can obtain the uniform convergence ofW-cycle when smoothing steps
are sufficiently large. The formulation of algorithm and results are similar and thus skipped here.

6.3. Smoothing property

We shall derive the smoothing property (Sα) from the following smoothing property (Sρ) which is easier to verify.
(Sρ) Smoothing property of high frequency. There exists a constant cs such that

(R−1
K v, v) ≤ csρAK (v, v) for all v ∈ K. (29)

We use the notation of comparing symmetric operators: for two SPD operators M and O, we write M ≤ O if (Mv, v) ≤

(Ov, v) for all v in K or V . We can write (29) as R−1
K ≤ csρAK I which is equivalent to I ≤ csρAKRK . Multiplying AK from left

and right, we get another form of (Sρ)

A2
K ≤ csρAK AKRKAK = csρAK AK(I − SK),
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which can be written in the following rigorous way:

(AKv, AKv) ≤ csρAK ((I − SK)v, v)AK , for all v ∈ K. (30)

Lemma 6.4. Assume a constrained smoother RK satisfy (R) and (Sρ). Then the smoothing property (Sα) holds for α = 1.

Proof. As we mentioned earlier, the symmetry of RK implies SK is symmetric in (·, ·)AK . The assumption (R) implies SK is
a contraction.

We use formulation (30) of the assumption (Sρ) and the symmetry of SK to get

(AKSmKv, AKSmKv) ≤ csρAK ((I − SK)SmKv, SmKv)A = csρAK ((I − SK)S2mK v, v)A.

From the elementary inequality

x2m ≤
1
2m

1 − x2m

1 − x
, for x ∈ [0, 1),

we obtain the corresponding operator form

((I − SK)SmKu, SmKu)A ≤
1
2m

((I − S2mK )u, u)A.

Since SK is a contraction, ρ(I − S2mK ) ≤ 1, and consequently we get the desirable inequality

∥AKSmKv∥
2

≤
cs
2m

ρAK ∥v∥
2
AK

. � (31)

As noted in [1], let vm
= SmKv and q = −(BBT )−1BAvm. We can write the norm

∥AKSmKv∥ = ∥QKAvm
∥ = ∥Avm

− BT (BBT )−1BAvm
∥ = ∥Avm

+ BTq∥.

Namely we can find a pressure term q ∈ P to write the smoothing property in the form

∥Avm
+ BTq∥2

≤
cs
2m

ρA∥v∥
2
A. (32)

The extra pressure term comes naturally in the evaluation of AK .

Theorem 6.5. Assume a constrained smoother RK satisfy (R) and (Sρ). Then the smoothing property (Sα) holds for anyα ∈ [0, 1].

Proof. For α = 0, since RK satisfy (R), SK is a contraction and thus (28) holds for α = 0. The case α = 1 has been proved
in Lemma 6.4. Interpolation will lead to the conclusion. �

We shall verify the B–S smoother, which is the Richardson iteration for (5), will satisfy the assumptions (R) and (Sρ) and
consequently prove that B–S smoother satisfies the smoothing property (Sα).

Recall that B–S smoother corresponds to RK = ω−1QK . To satisfy (R), we requireω ≥ ρAK . Amore practical requirement
is ω ≥ ρA ≥ ρAK since A, not AK , is explicitly formed. Assumption (Sρ) will hold with constant cs = ω/ρAK . Therefore we
obtain the smoothing property (Sα) for B–S smoother.

Corollary 6.6. Assume ρAK ≤ ω ≤ csρAK . Then B–S smoother satisfies the smoothing property (Sα) for any α ∈ [0, 1].

Remark 6.7. For B–S smoother, AK = ω(I − SK) and one can prove a better smoothing property in L2-norm ∥AKSmK∥ =

ω∥(I−SK)SmK∥ ≤ Cω/m; see [1]. Here we consider the convergence in A-norm and the best smoothing property (for α = 1)
is in the order of 1/

√
m.

Remark 6.8. For the symmetrized multiplicative Schwarz smoother, it satisfies the assumption (R). But assumption (Sρ) is
unlikely true. Consider smoothers based on a decomposition K =

N
i=1 Ki in the finest level with dimKi = O(1) and

Ki ⊂ K . Then (Sρ) would be true if the decomposition is stable in L2-norm, i.e.

inf
vi=v

N
i=1

∥vi∥
2 . ∥v∥

2 for all v ∈ K. (33)

For some v ∈ K , we can find φ in an appropriate finite element space such that v = curlφ. Since vi ∈ Ki, it may happen
vi = curlφi, then we would get a stable decomposition of φ in H1-norm. Such H1 stable decomposition of φ does not exist
using only subspaces with O(1) size in one level only.
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6.4. Approximation property

We then verify the approximation property using the following partial regularity assumption.
(Regα) Let u ∈ (H1

0 (Ω))d, p ∈ L20(Ω) be the weak solution of Stokes equations (15) with a given data f ∈ L2(Ω). Then
u ∈ (H1+α(Ω) ∩ H1

0 (Ω))d, p ∈ Hα(Ω) and

∥u∥1+α + ∥p∥α . ∥f ∥α−1 (34)

holds for some α ∈ (1/2, 1].

Theorem 6.9. Assume (Regα) holds for Stokes equations. Define PH : K → KH ⊂ V as PH = IH IKHA
−1
KH

ITKH
ITHQ

T
KAK . Then the

following approximation property holds:

|||(I − PH)uh|||1−α . hα
∥uh∥A, for all uh ∈ Kh. (35)

Proof. We denote by (uh, ph) the solution to

(uh, vh)A + (ph, Bvh) = (AKuh, vh) for all vh ∈ Vh, (36)
(Buh, qh) = 0 for all qh ∈ Ph. (37)

By the inf–sup condition, we can chose vh ∈ Vh such that Bvh = ph and ∥vh∥A . ∥ph∥. Choosing such vh in (36), we can
bound the L2 norm of ph as

∥ph∥2
≤ |(Auh,QKvh)| + |(uh, vh)A| ≤ ∥uh∥A∥vh∥A . ∥uh∥A∥ph∥,

which implies

∥ph∥ . ∥uh∥A. (38)

By definition of PH , there exists a pH ∈ PH such that (PHuh, pH) satisfy equations

(PHuh, vH)A + (pH , BvH) = (AKuh, vH) for all vH ∈ VH ,

(BPHuh, qH) = 0 for all qH ∈ PH .

Similar to (38), we have ∥pH∥ . ∥PHuh∥A ≤ ∥uh∥A.
We thus obtain the orthogonality

((I − PH)uh, vH)A = −(ph − pH , BvH), for all vH ∈ VH ,

(B(I − PH)uh, qH) = 0, for all qH ∈ PH .

We now estimate the norm |||(I − PH)uh|||1−α by the standard duality argument. Let ρ ∈ Hα−1(Ω) and η ∈ (H1+α(Ω) ∩

H1
0 (Ω))d, χ ∈ Hα(Ω) satisfy

(η, v)A + (χ, Bv) = (ρ, v) for all v ∈ (H1
0 (Ω))d, (39)

(Bη, q) = 0 for all q ∈ L20(Ω). (40)

By the partial regularity assumption (Regα), we have

∥η∥1+α + ∥χ∥α . ∥ρ∥α−1.

We chose v = (I − PH)uh in (39), to get, for any ηH ∈ KH and χH ∈ PH ,

(ρ, (I − PH)uh) = (η, (I − PH)uh)A + (χ, B(I − PH)uh)

= (η − ηH , (I − PH)uh)A + (B(η − ηH), ph − pH) + (χ − χH , B(I − PH)uh)

. Hα (∥η∥1+α + ∥χ∥α) [∥(I − PH)uh∥A + ∥ph∥ + ∥pH∥]

. hα
∥ρ∥α−1∥uh∥A,

which implies

∥(I − PH)uh∥1−α = sup
ρ∈H1−α

(ρ, (I − PH)uh)

∥ρ∥α−1
. hα

∥(I − PH)uh∥A ≤ hα
∥uh∥A. �

With the smoothing property (Sα) and the approximation property (Aα) using only partial regularity assumption, we can
conclude that the W-cycle multigrid using the B–S smoother is uniform convergent in A-norm if the smoothing steps are
sufficiently large. Note that a convergence result of multigrid methods using B–S smoother has been obtained in [1] but in
l2-norm and with the full regularity assumption.
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6.5. Variable V-cycle multigrid preconditioner

In the convergence analysis of the two-grid and W-cycle multigrid methods, we require the smoothing steps that are
sufficiently large. Now we discuss possible ways of relaxing this requirement.

We can view the operator QK : KH → K as the prolongation operator between the non-nested spaces KH and K .
Combining the stability ∥QK∥A ≤ C , the smoothing property (Sρ), the assumption (R), and the approximation property,
we can apply the framework developed in [18] for non-nested multigrid methods to conclude that the condition number
κ(VMGAK) . 1when variable V-cyclemultigrid VMG is used. Here variable V-cycle refers to a V-cyclewith variable number of
smoothing steps in each level. Moving from fine to coarse grids, the sequence of smoothing steps is geometrically increasing
with a certain factor. A typical choice is: 1, 2, 3, 5, 8, 12, 18 . . . . Variable V-cycle has the same computation complexity as
the W-cycle but the error operator of the variable V-cycle can be proven to be SPD while that of W-cycle could be non-
SPD [18].

Thus preconditioned conjugate gradient (PCG) method can be used for solving the SPD problem (5); see the formulation
in Braess and Dahmen [14]. Note that in the evaluation of AK , an extra L2-projection is needed.
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