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FINITE ELEMENTS FOR DIVDIV CONFORMING

SYMMETRIC TENSORS IN THREE DIMENSIONS

LONG CHEN AND XUEHAI HUANG

Abstract. Finite element spaces on a tetrahedron are constructed for div div
-conforming symmetric tensors in three dimensions. The key tools of the con-
struction are the decomposition of polynomial tensor spaces and the charac-
terization of the trace operators. First, the div div Hilbert complex and its
corresponding polynomial complexes are presented. Several decompositions
of polynomial vector and tensor spaces are derived from the polynomial com-
plexes. Second, traces for the div div operator are characterized through a
Green’s identity. Besides the normal-normal component, another trace involv-
ing combination of first order derivatives of the tensor is continuous across the
face. Due to the smoothness of polynomials, the symmetric tensor element is
also continuous at vertices, and on the plane orthogonal to each edge. Besides,
a finite element for sym curl-conforming trace-free tensors is constructed follow-
ing the same approach. Putting all together, a finite element div div complex,
as well as the bubble functions complex, in three dimensions is established.

1. Introduction

In this paper, we shall construct finite element subspaces for the space

H(div div,Ω; S) := {τ ∈ L2(Ω; S) : div divτ ∈ L2(Ω)}, Ω ⊂ R
3,

which consists of symmetric tensors such that div divτ ∈ L2(Ω) with the inner div
applied row-wisely to τ resulting in a column vector for which the outer div operator
is applied. H(div div)-conforming finite elements can be applied to discretize the
linearized Einstein-Bianchi system [21, Section 4.11] and the mixed formulation of
the biharmonic equation [19].

Recently Christiansen and Hu [7] constructed a conforming discrete strain com-
plex on Clough-Tocher split in two dimensions which is the rotation of a two-
dimensional div div complex. Chen and Huang [6] constructed two-dimensional
H(div div)-conforming finite elements and a finite element div div complex in two
dimensions. The construction in three dimensions is much harder. The essential
difficulty arises from the three-dimensional div div Hilbert complex

RT
⊂−→ H1(Ω;R3)

dev grad−−−−−→ H(sym curl,Ω;T)
sym curl−−−−−→ H(div div,Ω; S)

div div−−−−→ L2(Ω) −→ 0,
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where RT = {ax+ b : a ∈ R, b ∈ R3}, H1(Ω;R3) and L2(Ω) are standard Sobolev
spaces, andH(sym curl,Ω;T) is the space of traceless tensor σ ∈ L2(Ω;T) such that
sym curlσ ∈ L2(Ω; S) with the row-wise curl operator. In the three-dimensional
div div complex, the Sobolev space before H(div div,Ω; S) consists of tensor func-
tions, whereas it consists of vector functions in two dimensions. For the sake of
comparison, the div div Hilbert complex in two dimensions is

RT
⊂−→ H1(Ω;R2)

sym curl−−−−−→ H(div div,Ω; S)
div div−−−−→ L2(Ω) −→ 0.

Finite element spaces for H1(Ω;R2) are relatively mature. Then the design of a
div div conforming finite element in two dimensions is relatively easy; see [6] and
also Section 5.4.

We start our construction from the following polynomial complexes

(1) RT
⊂ ��

Pk+2(Ω;R
3)

dev grad��
πRT

�� Pk+1(Ω;T)
sym curl��

·x
�� Pk(Ω; S)

div div ��
×x

�� Pk−2(Ω)
��

xxᵀ
�� 0

⊃
��

and reveal several decompositions of polynomial vector and tensor spaces from (1).
We then present a Green’s identity

(div div τ , v)K = (τ ,∇2v)K −
∑

F∈F(K)

∑
e∈E(F )

(nᵀ
F,eτn, v)e

−
∑

F∈F(K)

[(nᵀτn, ∂nv)F − (2 divF (τn) + ∂n(n
ᵀτn), v)F ] ,

and give a characterization of two traces for τ ∈ H(div div,K; S)

nᵀτn ∈ H−1/2
n (∂K), and 2 divF (τn) + ∂n(n

ᵀτn) ∈ H
−3/2
t (∂K),

see Section 4.3 for detailed definitions of these negative Sobolev space for traces.
Based on the decomposition of polynomial tensors and the characterization of

traces, we are able to construct two types of H(div div)-conforming finite element
spaces on a tetrahedron. Here we present the BDM-type (full polynomial) space
below. Let K be a tetrahedron and let k ≥ 3 be an integer. The shape function
space is Pk(K; S). The set of edges of K is denoted by E(K), the set of faces
by F(K), and the set of vertices by V(K). For each edge, we choose two normal
vectors n1 and n2. The degrees of freedom (DoFs) are given by

τ (δ) ∀ δ ∈ V(K),(2)

(nᵀ
i τnj , q)e ∀ q ∈ Pk−2(e), e ∈ E(K), i, j = 1, 2,(3)

(nᵀτn, q)F ∀ q ∈ Pk−3(F ), F ∈ F(K),(4)

(2 divF (τn) + ∂n(n
ᵀτn), q)F ∀ q ∈ Pk−1(F ), F ∈ F(K),(5)

(τ , ς)K ∀ ς ∈ ∇2
Pk−2(K),(6)

(τ , ς)K ∀ ς ∈ sym(Pk−2(K;T)× x),(7)

(τn,n× xq)F1
∀ q ∈ Pk−2(F1),(8)

where F1 ∈ F(K) is an arbitrary but fixed face. The last degree of freedom (8)
will be regarded as an interior degree of freedom to the tetrahedron K. Namely
even a face F is chosen in different elements, the degree of freedom (8) is double-
valued when defining the global finite element space. The RT-type (incomplete
polynomial) space can be obtained by further reducing the index of degrees of
freedom by 1 except the moment with ∇2Pk−2(K). To the best of our knowledge,
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these are the first H(div div)-conforming finite elements for symmetric tensors in
three dimensions. After our work, in [17], a new family of divdiv-conforming finite
elements is introduced for triangular and tetrahedral grids in a more unified way.
The constructed finite element spaces there are in H(div div,Ω; S) ∩H(div,Ω; S),
while ours is in H(div div,Ω; S) only which is more natural.

To help the understanding of our construction, we sketch a decomposition of
a finite element space associated to a generic differential operator d in Fig. 1,
where d∗ is the formal adjoint of d. The boundary degrees of freedom (4)-(5) are

trd

ker(d)

∩ ker(trd)
img(d∗)

Figure 1. Decomposition of a generic finite element space

obviously motivated by the Green’s formula and the characterization of the trace
of H(div div,Ω; S). The extra continuity (2)-(3) is to ensure the cancellation of the
edge term when adding element-wise Green’s identity over a mesh. All together (2)-
(5) will determine the trace on the boundary of a tetrahedron, i.e., the bottom box
in Fig. 1.

The interior moment of ∇2Pk−2(K) is to determine the image div div(Pk(K; S)∩
ker(tr)), which is isomorphism to img(∇2) – the upper right block in Fig. 1. To-
gether with sym(Pk−2(K;T)×x), the volume moments can determine the polyno-
mial of degree only up to k− 1. We then use the vanished trace and the symmetry
of the tensor to figure out the remaining degrees of freedom. The DoFs (7)-(8) will
determine ker(div div) ∩ ker(tr) – the upper left block in Fig. 1.

For the symmetric tensor space, it seems odd to have degrees of freedom not
symmetric, as a face is singled out in (8). In view of Fig. 1 and the exactness of
the polynomial div div complex (1), (7)-(8) can be replaced by

(9) (τ , ς)K ∀ ς ∈ sym curlBk+1(sym curl,K;T),

where Bk+1(sym curl,K;T) = Pk+1(K;T)∩H0(sym curl,K;T) is the so-called bub-
ble function space and will be characterized precisely in Section 5.2. Although (9)
is more symmetric, it is indeed not simpler than (7)-(8) in implementation as the
formulation of sym curlBk+1(symcurl,K;T) is much more complicated than poly-
nomials on a face.

With the help of the H(div div)-conforming finite elements for symmetric tensors
and two traces n × sym(τ × n)× n and n · τ × n of space H(symcurl,K;T), we
construct H(sym curl)-conforming finite elements for trace-free tensors. The space
of shape functions is P�+1(K;T) with � ≥ max{k − 1, 3}. The degrees of freedom
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are

τ (δ) ∀ δ ∈ V(K),

(symcurl τ )(δ) ∀ δ ∈ V(K),

(nᵀ
i (symcurl τ )nj , q)e ∀ q ∈ P�−2(e), e ∈ E(K), i, j = 1, 2,

(nᵀ
i τt, q)e ∀ q ∈ P�−1(e), e ∈ E(K), i = 1, 2,

(nᵀ
2(curl τ )n1 + ∂t(t

ᵀτt), q)e ∀ q ∈ P�(e), e ∈ E(K),

(n× sym(τ × n)× n, ς)F ∀ ς ∈ (∇⊥
F )

2
P�−1(F )⊕ sym(x⊗ P�−1(F ;R2)),

(n · τ × n, q)F ∀ q ∈ ∇FP�−3(F )⊕ x⊥
P�−1(F ), F ∈ F(K),

(τ , q)K ∀ q ∈ B�+1(symcurl,K;T).

Combining previous finite elements for tensors and the vectorial Hermite ele-
ment in three dimensions, we arrive at a finite element div div complex in three
dimensions

RT
⊂−→ V h

dev grad−−−−−→ ΣT

h
sym curl−−−−−→ ΣS

h
div div−−−−→ Qh −→ 0

and the associated finite element bubble div div complex. Recently another finite el-
ement div div complex in three dimensions is devised in [16], where theH(sym curl)-
conforming finite elements for trace-free tensors and H1-conforming finite elements
for vectors employed in [16] are smoother than ours. Two-dimensional finite ele-
ment div div complexes can be found in [4,6,17]. And the rotated version, discrete
strain complexes, can be found in [7].

The rest of this paper is organized as follows. We present some operations for
vectors and tensors in Section 2. Two polynomial complexes related to the div div
complex and direct sum decompositions of polynomial spaces are shown in Sec-
tion 3. We derive the Green’s identity and characterize the trace of H(div div,Ω; S)
on polyhedrons in Section 4, and then construct the conforming finite elements for
H(div div,Ω; S) in three dimensions in Section 5. In Section 6 we construct con-
forming finite elements forH(symcurl,Ω;T). With previous devised finite elements
for tensors, we form a finite element div div complex in three dimensions in Sec-
tion 7.

2. Matrix and vector operations

In this section, we shall survey operations for vectors and tensors. In particular,
we shall distinguish operators applied to columns and rows of a matrix.

2.1. Matrix-vector products. The matrix-vector product Ab can be interpreted
as the inner product of b with the row vectors of A. We thus define the dot
operator A · b := Ab. Similarly we can define the row-wise cross product from the
right A× b. Here rigorously speaking when a column vector b is treated as a row
vector, notation bᵀ should be used. In most places, however, we will sacrifice this
precision for the ease of notation. When the vector is on the left of the matrix, the
operation is defined column-wise. For example, b · A := bᵀA. For dot products,
we will still mainly use the conventional notation, e.g. b · A · c = bᵀAc. But for
the cross products, we emphasize again the cross product of a vector from the left
is column-wise and from the right is row-wise. The transpose rule still works, i.e.
b × A = −(Aᵀ × b)ᵀ. Here again, we mix the usage of column vector b and row
vector bᵀ.
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The ordering of performing the row and column products does not matter which
leads to the associative rule of the triple products

b×A× c := (b×A)× c = b× (A× c).

Similar rules hold for b · A · c and b · A × c and thus parentheses can be safely
skipped when no differentiation is involved.

For two column vectors u,v, the tensor product u⊗v := uvᵀ is a matrix which
is also known as the dyadic product uv := uvᵀ with more clean notation (one ᵀ

is skipped). The row-wise product and column-wise product of uv with another
vector will be applied to the neighboring vector

x · (uv) = (x · u)vᵀ, (uv) · x = u(v · x),(10)

x× (uv) = (x× u)v, (uv)× x = u(v × x).(11)

2.2. Differentiation. We treat Hamilton operator ∇ = (∂1, ∂2, ∂3)
ᵀ as a column

vector. For a vector function u = (u1, u2, u3)
ᵀ, curlu = ∇× u, and divu = ∇ · u

are standard differential operations. Define ∇u := ∇uᵀ = (∂iuj), which can be
understood as the dyadic product of Hamilton operator ∇ and column vector u.

Applying matrix-vector operations to the Hamilton operator ∇, we get column-
wise differentiation ∇ ·A,∇×A, and row-wise differentiation A · ∇,A×∇. Con-
ventionally, the differentiation is applied to the function after the ∇ symbol. So a
more conventional notation is

A · ∇ := (∇ ·Aᵀ)ᵀ, A×∇ := −(∇×Aᵀ)ᵀ.

By moving the differential operator to the right, the notation is simplified and the
transpose rule for matrix-vector products can be formally used. Again the right
most column vector ∇ is treated as a row vector ∇ᵀ to make the notation cleaner.

In the literature, differential operators are usually applied row-wisely to tensors.
To distinguish with ∇ notation, we define operators in letters as

gradu := u∇ᵀ = (∂jui) = (∇u)ᵀ,

curlA := −A×∇ = (∇×Aᵀ)ᵀ,

divA := A · ∇ = (∇ ·Aᵀ)ᵀ.

Note that for vector functions, the differentiation written in letters are equivalent
to ∇ notation while for tensors they are slightly different. The double divergence
operator can be written as

div divA := ∇ ·A · ∇.

As the column and row operations are independent, the ordering of operations is
not important and parentheses can be skipped.

2.3. Matrix decompositions. Denote the space of all 3 × 3 matrices by M, all
symmetric 3 × 3 matrices by S, all skew-symmetric 3 × 3 matrices by K, and all
trace-free 3 × 3 matrices by T. For any matrix B ∈ M, we can decompose it into
symmetric and skew-symmetric parts as

B = sym(B) + skw(B) :=
1

2
(B +Bᵀ) +

1

2
(B −Bᵀ).
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We can also decompose it into a direct sum of a trace-free matrix and a scalar
matrix as

(12) B = devB +
1

3
tr(B)I := (B − 1

3
tr(B)I) +

1

3
tr(B)I.

Define the sym curl operator for a matrix A

sym curlA :=
1

2
(∇×Aᵀ + (∇×Aᵀ)ᵀ) =

1

2
(∇×Aᵀ −A×∇).

We define an isomorphism between R3 and the space of skew-symmetric matrices
K as follows: for a vector ω = (ω1, ω2, ω3)

ᵀ ∈ R
3,

mskwω :=

⎛⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞⎠ .

Obviously mskw : R3 → K is a bijection. We define vskw : M → R3 by vskw :=
mskw−1 ◦ skw.

We will use the following identities for smooth enough vector or matrix functions

skw(gradu) =
1

2
(mskw curlu),

skw(curlA) =
1

2
mskw [div(Aᵀ)− grad(tr(A))] ,(13)

divmskwu = − curlu,(14)

curl(uI) = −mskw grad(u),(15)

tr(τ × x) = −2x · vskw τ ,(16)

which can be verified by a direct calculation. More identities involving the matrix
operation and differentiation are summarized in [1].

2.4. Projections to a plane. Given a plane F with normal vector n, for a vector
v ∈ R3, we have the orthogonal decomposition

v = Πnv +ΠFv := (v · n)n+ (n× v)× n.

The vector Π⊥
Fv := n × v is also on the plane F and is a rotation of ΠFv by 90◦

counter-clockwise with respect to n. We treat Hamilton operator ∇ = (∂1, ∂2, ∂3)
ᵀ

as a column vector and define

∇⊥
F := n×∇, ∇F := ΠF∇ = (n×∇)× n.

For a scalar function v,

gradF v := ∇F v = ΠF (∇v),

curlF v := ∇⊥
F v = n×∇v

are the surface gradient and surface curl, respectively. For a vector function v,
∇F · v is the surface divergence

divF v := ∇F · v = ∇F · (ΠFv).

By the cyclic invariance of the mix product and the fact n is constant, the surface
rot operator is

rotFv := ∇⊥
F · v = (n×∇) · v = n · (∇× v),
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which is the normal component of ∇× v. The tangential trace of ∇× v is

(17) n× (∇× v) = ∇(n · v)− ∂nv.

By definition,

(18) rotFv = − divF (n× v), divF v = rotF (n× v).

Note that the three-dimensional curl operator restricted to a two-dimensional plane
F results in two operators: curlF maps a scalar to a vector, which is a rotation of
gradF , and rotF maps a vector to a scalar which can be thought of as a rotated
version of divF . The surface differentiations satisfy the property divF curlF = 0
and rotF gradF = 0 and when F is simply connected, ker(divF ) = img(curlF ) and
ker(rotF ) = img(gradF ).

Differentiation for two-dimensional tensors can be defined similarly.

3. Divdiv complex and polynomial complexes

In this section, we shall consider the div div complex and establish two related
polynomial complexes. We assume Ω ⊂ R3 is a bounded and Lipschitz domain,
which is topologically trivial in the sense that it is homeomorphic to a ball. Without
loss of generality, we also assume 0 = (0, 0, 0) ∈ Ω.

Recall that a Hilbert complex is a sequence of Hilbert spaces connected by a
sequence of linear operators satisfying the property: the composition of two con-
secutive operators vanishes. As all complexes considered in this paper are Hilbert
complexes, we will abbreviate a Hilbert complex as a complex. If the range of each
map is the kernel of the succeeding map, then a complex is called exact. As Ω is
topologically trivial, the following de Rham Complex of Ω is exact

(19) 0 −→ H1(Ω)
grad−−−→ H(curl; Ω)

curl−−→ H(div; Ω)
div−−→ L2(Ω) −→ 0,

where H(curl,Ω) := {v ∈ L2(Ω;R3) : curlv ∈ L2(Ω;R3)},H(div,Ω) := {v ∈
L2(Ω;R3) : div v ∈ L2(Ω)}.

3.1. The div div complex. The div div complex in three dimensions reads as [1,19]

(20) RT
⊂−→ H1(Ω;R3)

dev grad−−−−−→ H(sym curl,Ω;T)
sym curl−−−−−→ H(div div,Ω; S)

div div−−−−→ L2(Ω) −→ 0,

where RT := {ax+ b : a ∈ R, b ∈ R3} is the space of shape functions of the lowest
order Raviart-Thomas element [22]. For completeness, we prove the exactness of
the complex (20) following [19].

Theorem 3.1. Assume Ω is a bounded and topologically trivial Lipschitz domain
in R3. Then (20) is an exact complex.

Proof. We verify that the composition of consecutive operators vanishes from left
to right. Take a function v = ax+ b ∈ RT , then gradv = aI and dev I = 0. For
any v ∈ C2(Ω;R3), it holds from (15) that

sym curl dev gradv = symcurl

(
gradv − 1

3
(div v)I

)
= −1

3
sym curl((div v)I)

=
1

3
symmskw(grad(div v)) = 0.
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By the density argument, we get sym curl dev gradH1(Ω;R3) = 0. For any τ ∈
C3(Ω;T),

div div sym curl τ =
1

2
∇ · (∇× τᵀ − τ ×∇) · ∇ = 0.

Again by the density argument, div div sym curlH(sym curl,Ω;T) = 0. Thus (20)
is a complex.

We then verify the exactness of (20) from the right to the left.
(1) div divH(div div,Ω; S) = L2(Ω).

Recursively applying the exactness of de Rham complex (19), we can prove
div divH(div div,Ω;M) = L2(Ω) without the symmetry requirement, where the
space H(div div,Ω;M) = {τ ∈ L2(Ω;M) : div div τ ∈ L2(Ω)}.

Any skew-symmetric τ can be written as τ = mskw v for v = vskw(τ ). Assume
v ∈ C2(Ω;R3); it follows from (14) that

(21) div divτ = div divmskw v = − div(curlv) = 0.

Since div div τ = 0 for any smooth skew-symmetric tensor field τ , we obtain

div divH(div div,Ω; S) = div divH(div div,Ω;M) = L2(Ω).

(2)H(div div,Ω; S)∩ker(div div) = symcurlH(sym curl,Ω;T), i.e. if div divσ = 0
and σ ∈ H(div div,Ω; S), then there exists a τ ∈ H(sym curl,Ω;T), s.t. σ =
symcurl τ .

Since div(divσ) = 0, by the exactness of the de Rham complex and identity (14),
there exists v ∈ L2(Ω;R3) such that

divσ = curlv = − div(mskw v).

Namely div(σ + mskw v) = 0. By the existence of regular potentials (cf. [10]),
there exists τ̃ ∈ H1(Ω;M) such that

curl τ̃ = σ +mskw v.

By the symmetry of σ, we have

σ = symcurl τ̃ = sym curl(dev τ̃ ) +
1

3
sym curl ((tr τ̃ )I) .

From (15) we get

sym curl ((tr τ̃ )I) = − sym(mskw grad(tr τ̃ )) = 0,

which indicates σ = symcurl τ with τ = dev τ̃ ∈ H1(Ω;T).
(3) H(sym curl,Ω;T) ∩ ker(symcurl) = dev gradH1(Ω;R3), i.e. if sym curl τ = 0
and τ ∈ H(sym curl,Ω;T), then there exists a v ∈ H1(Ω;R3), s.t. τ = dev gradv.

Since sym(curl τ ) = 0 and tr τ = 0, we have from (13) that

curl τ = skw(curl τ ) =
1

2
mskw [div(τ ᵀ)− grad(tr(τ ))] =

1

2
mskw(div(τ ᵀ)).

Then by (14),

curl(div(τ ᵀ)) = − div(mskw div(τ ᵀ)) = −2 div(curl τ ) = 0.

Thus there exists w ∈ L2(Ω) satisfying div(τᵀ) = 2 gradw, which together with (15)
implies

curl τ = mskw gradw = − curl(wI).
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Namely curl(τ + wI) = 0. Hence there exists v ∈ H1(Ω;R3) such that τ =
−wI + gradv. Noting that τ is trace-free, we achieve

τ = dev τ = dev gradv.

(4) H1(Ω;R3) ∩ ker(dev grad) = RT , i.e. if dev gradv = 0 and v ∈ H1(Ω;R3),
then v ∈ RT .

Notice that

(22) gradv =
1

3
(div v)I.

Apply curl on both sides of (22) and use (15) to get

−mskw grad(div v) = curl((div v)I) = 3 curl(gradv) = 0.

Hence div v is a constant, which combined with (22) implies that v is a linear
function. Assume v = Ax + b with A ∈ M and b ∈ R

3; then (22) becomes
A = 1

3 tr(A)I, and consequently v ∈ RT .
Thus the complex (20) is exact. �

The div div complex (20) is the so-called domain complex. By [1, Theorem 2],
there exist bounded regular potentials. For example, for τ ∈ H(div div,Ω; S) and
div div τ = 0, there exists a regular potential σ ∈ H1(Ω;T) s.t. sym curlσ = τ .

3.2. A polynomial div div complex. Given a bounded domain G ⊂ R3 and
a non-negative integer m, let Pm(G) stand for the set of all polynomials in G
with the total degree no more than m, and Pm(G;X) with X being M, S, K,

T or R3 denotes the tensor or vector version. Recall that dimPk(G) =
(
k+3
3

)
,

dimM = 9, dim S = 6, dimK = 3, and dimT = 8. For a linear operator T defined
on a finite dimensional linear space V , we have the relation

(23) dimV = dimker(T ) + dim img(T ),

which can be used to count dim img(T ) provided the space ker(T ) is identified and
vice versa.

The polynomial de Rham complex is

(24) R
⊂−→ Pk+1(Ω)

grad−−−→ Pk(Ω;R
3)

curl−−→ Pk−1(Ω;R
3)

div−−→ Pk−2(Ω) −→ 0.

As Ω is topologically trivial, complex (24) is also exact, i.e., the range of each map
is the kernel of the succeeding map.

Lemma 3.2. The polynomial div div complex

(25)RT
⊂−→ Pk+2(Ω;R

3)
dev grad−−−−−→ Pk+1(Ω;T)

sym curl−−−−−→ Pk(Ω; S)
div div−−−−→ Pk−2(Ω) −→ 0

is exact.

Proof. Clearly (25) is a complex due to Theorem 3.1. We then verify the exactness.
(1) Pk+2(Ω;R

3) ∩ ker(dev grad) = RT . By the exactness of the complex (20),

RT ⊆ Pk+2(Ω;R
3) ∩ ker(dev grad) ⊆ H1(Ω;R3) ∩ ker(dev grad) = RT .

(2) Pk+1(Ω;T) ∩ ker(sym curl) = dev gradPk+2(Ω;R
3), i.e. if sym curl τ = 0 and

τ ∈ Pk+1(Ω;T), then there exists a v ∈ Pk+2(Ω;R
3), s.t. τ = dev gradv.

As sym curl τ = 0, there exists v ∈ H1(Ω;R3) satisfying τ = dev gradv, i.e.
τ = gradv − 1

3 (div v)I. Then we get from (15) that

mskw(grad div v) = − curl((div v)I) = 3 curl(τ − gradv) = 3 curl τ ,
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which implies grad div v = 3vskw(curl τ ) ∈ Pk(Ω;R
3). Hence div v ∈ Pk+1(Ω).

And thus gradv = τ + 1
3 (div v)I ∈ Pk+1(Ω;M). As a result v ∈ Pk+2(Ω;R

3).
(3) div div Pk(Ω; S) = Pk−2(Ω). Recursively applying the exactness of de Rham
complex (24), we can prove div divPk(Ω;M) = Pk−2(Ω). Then from (21) we have
that

div div Pk(Ω; S) = div div Pk(Ω;M) = Pk−2(Ω).

(4) Pk(Ω; S) ∩ ker(div div) = symcurlPk+1(Ω;T).
Obviously sym curlPk+1(Ω;T) ⊆ (Pk(Ω; S) ∩ ker(div div)). As div div : Pk(Ω; S)

→ Pk−2(Ω) is surjective by step (3), using (23), we have

dimPk(Ω; S) ∩ ker(div div) = dimPk(Ω; S)− dimPk−2(Ω)

= 6

(
k + 3

3

)
−
(
k + 1

3

)
=

1

6
(5k3 + 36k2 + 67k + 36).(26)

Thanks to results in steps (1) and (2), we can count the dimension of sym curl
Pk+1(Ω;T)

dim symcurl Pk+1(Ω;T) = dimPk+1(Ω;T)− dimdev gradPk+2(Ω;R
3)

= dimPk+1(Ω;T)− (dimPk+2(Ω;R
3)− dimRT )

= 8

(
k + 4

3

)
− 3

(
k + 5

3

)
+ 4

=
1

6
(5k3 + 36k2 + 67k + 36).(27)

We conclude that Pk(Ω; S) ∩ ker(div div) = symcurl Pk+1(Ω;T) as the dimensions
match, cf. (26) and (27).

Therefore the complex (25) is exact. �

3.3. A Koszul complex. The Koszul complex corresponding to the de Rham
complex (24) is

(28) 0 −→ Pk−2(Ω)
x−→ Pk−1(Ω;R

3)
×x−−→ Pk(Ω;R

3)
·x−→ Pk+1(Ω) −→ 0,

where the operators are appended to the right of the polynomial, i.e. vx, v×x, or
v · x. The following complex is a generalization of the Koszul complex (28) to the
div div complex (25), where operator πRT : C1(Ω;R3) → RT is defined as

πRTv := v(0, 0, 0) +
1

3
(div v)(0, 0, 0)x,

and other operators are appended to the right of the polynomial, i.e., pxxᵀ, τ ×x,
or τ ·x. The Koszul operator xxᵀ can also be obtained using the Poincaré operator
constructed in [8], but others are simpler than those in [8].

Lemma 3.3. The following polynomial sequence

(29) 0
⊂−→ Pk−2(Ω)

xxᵀ
−−−→ Pk(Ω; S)

×x−−→ Pk+1(Ω;T)
·x−→ Pk+2(Ω;R

3)
πRT−−−→ RT −→ 0

is an exact complex.
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Proof. In the sequence (29) only the mapping Pk(Ω; S)
×x−→ Pk+1(Ω;T) is less obvi-

ous, which can be justified by the identity (16).
To verify (29) is a complex, we use the product rule (10)-(11):

pxxᵀ × x = px(x× x)ᵀ = 0, (τ × x) · x = 0.

To verify πRT (τ · x) = 0 for τ ∈ Pk+1(Ω;T), we use the formula

(30) div(τ · x) = div(τ ᵀ) · x+ tr τ = xᵀ div(τ ᵀ),

and therefore evaluating at 0 is zero.
We then verify the exactness of (29).

(1) πRTPk+2(Ω;R
3) = RT .

It is straightforward to verify

(31) πRTv = v ∀ v ∈ RT .

Namely πRT is a projector. Consequently, the operator πRT : Pk+2(Ω;R
3) → RT

is surjective as RT ⊂ P1(Ω;R
3).

(2) Pk+2(Ω;R
3)∩ker(πRT ) = Pk+1(Ω;T)·x, i.e. if πRTv = 0 and v ∈ Pk+2(Ω;R

3),
then there exists a τ ∈ Pk+1(Ω;T), s.t. v = τ · x.

Since v(0, 0, 0) = 0, by the fundamental theorem of calculus,

v =

(∫ 1

0

gradv(tx) dt

)
x.

Using the decomposition (12), we conclude that there exist τ 1 ∈ Pk+1(Ω;T) and
q ∈ Pk+1(Ω) such that v = τ 1x+ qx. Again by (30), we have

πRT (qx) = πRTv − πRT (τ 1x) = 0,

which indicates (div(qx))(0, 0, 0) = 0. As div(qx) = (x · ∇)q + 3q, we conclude
q(0, 0, 0) = 0. Again using the fundamental theorem of calculus to conclude that
there exists q1 ∈ Pk(Ω;R

3) such that q = qᵀ
1x. Taking τ = τ 1 +

3
2xq

ᵀ
1 − 1

2q
ᵀ
1xI ∈

Pk+1(Ω;T), we get

τx = τ 1x+ xqᵀ
1x = τ 1x+ qx = v.

(3) Pk(Ω; S)∩ ker((·)×x) = Pk−2(Ω)xx
ᵀ, i.e. if τ ×x = 0 and τ ∈ Pk(Ω; S), then

there exists a q ∈ Pk−2(Ω), s.t. τ = qxxᵀ.
Thanks to τ × x = 0, there exists v ∈ Pk−1(Ω;R

3) such that τ = vxᵀ. By the
symmetry of τ , it follows

(xvᵀ)× x = (vxᵀ)ᵀ × x = τ × x = 0,

which indicates v×x = 0. Then there exists q ∈ Pk−2(Ω) satisfying v = qx. Hence
τ = qxxᵀ.
(4) Pk+1(Ω;T) ∩ ker((·) · x) = Pk(Ω; S)× x.

It follows from steps (1) and (2) that

dim(Pk+1(Ω;T) ∩ ker((·) · x)) = dimPk+1(Ω;T)− dim(Pk+1(Ω;T)x)

= dimPk+1(Ω;T)− dim(Pk+2(Ω;R
3) ∩ ker(πRT ))

= dimPk+1(Ω;T)− dimPk+2(Ω;R
3) + 4

=
1

6
(5k3 + 36k2 + 67k + 36).(32)
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And by step (3),

dim(Pk(Ω; S)× x) = dimPk(Ω; S)− dim(Pk(Ω; S) ∩ ker((·)× x))

= dimPk(Ω; S)− dim(Pk−2(Ω)xx
ᵀ)

=
1

6
(5k3 + 36k2 + 67k + 36),

which together with (32) implies Pk+1(Ω;T) ∩ ker((·) · x) = Pk(Ω; S)× x.
Therefore the complex (29) is exact. �

3.4. Decomposition of polynomial tensors. Those two complexes (25) and (29)
can be combined into one double-direction complex

RT
⊂ ��

Pk+2(Ω;R
3)

dev grad��
πRT

�� Pk+1(Ω;T)
sym curl��

·x
�� Pk(Ω; S)

div div ��
×x

�� Pk−2(Ω)
��

xxᵀ
�� 0

⊃
�� .

Unlike the Koszul complex for vector functions, we do not have the identity prop-
erty applied to homogenous polynomials. Fortunately decomposition of polynomial
spaces using Koszul and differential operators still holds.

LetHk(Ω) := Pk(Ω)/Pk−1(Ω) be the space of homogeneous polynomials of degree
k. Then by Euler’s formula

(33) x · ∇q = kq ∀ q ∈ Hk(Ω).

Due to (33), we have

Pk(Ω) ∩ ker(x · ∇) = P0(Ω),(34)

Pk(Ω) ∩ ker(x · ∇+ �) = {0}(35)

for any positive number �.
It follows from (31) and the complex (29) that

Pk+2(Ω;R
3) = Pk+1(Ω;T)x⊕RT .

We then move to the space Pk+1(Ω;T).

Lemma 3.4. We have the decomposition

(36) Pk+1(Ω;T) = (Pk(Ω; S)× x)⊕ dev gradPk+2(Ω;R
3).

Proof. Let us count the dimension.

dimPk+1(Ω;T) = 8

(
k + 4

3

)
,

while by the exactness of the Koszul complex (29)

dimPk(Ω; S)× x = dimPk(Ω; S)− xxᵀ
Pk−2(Ω)

= 6

(
k + 3

3

)
−
(
k + 1

3

)
,

dimdev gradPk+2(Ω;R
3) = dimPk+2(Ω;R

3)− ker(dev grad)

= 3

(
k + 5

3

)
− 4.

By a direct computation, the dimension of space on the left hand side is the sum-
mation of the dimension of the two spaces on the right hand side in (36). So we
only need to prove that the sum in (36) is a direct sum.
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Take τ = dev grad q for some q ∈ Pk+2(Ω;R
3), and also assume τ ∈ Pk(Ω; S)×x.

We have τ · x = (dev grad q) · x = 0, that is

(37) (grad q) · x =
1

3
(div q)x.

Since div((gradq) · x) = (1 + x · grad) div q, applying the divergence operator div
on both sides of (37) gives

(1 + x · grad) div q =
1

3
(3 + x · grad) div q.

Hence (x · grad) div q = 0, which together with (34) indicates div q ∈ P0(Ω). Due
to (37), (grad q) ·x is a linear function. It follows from (33) that q ∈ P1(Ω;R

3) and
τ = dev grad q ∈ P0(Ω;T), which together with τ · x = 0 implies τ = 0. �

Finally we present a decomposition of space Pk(Ω; S). Let

Ck(Ω; S) := sym curl Pk+1(Ω;T), C
⊕
k (Ω; S) := xxᵀ

Pk−2(Ω).

Their dimensions are

(38) dimCk(Ω; S) =
1

6
(5k3 + 36k2 + 67k + 36), dimC

⊕
k (Ω; S) =

1

6
(k3 − k).

The calculation of dimC
⊕
k (Ω; S) is easy and dimCk(Ω; S) is detailed in (27).

Lemma 3.5. We have

(i) div div(xxᵀq) = (k + 4)(k + 3)q for any q ∈ Hk(Ω).
(ii) div div : C⊕

k (Ω; S) → Pk−2(Ω) is a bijection.

(iii) Pk(Ω; S) = Ck(Ω; S)⊕ C
⊕
k (Ω; S).

Proof. Since div(xxᵀq) = (div(xq) + q)x and div(xq) = (x · ∇)q + 3q, we get

(39) div div(xxᵀq) = div(((x · ∇+ 4)q)x) = (x · ∇+ 3)(x · ∇+ 4)q.

Hence property (i) follows from (33). Property (ii) is obtained by writing Pk−2(Ω) =⊕k−2
i=0 Hi(Ω). Now we prove property (iii). First the dimension of space on the left

hand side is the summation of the dimension of the two spaces on the right hand
side in (iii). Assume q ∈ Pk−2(Ω) satisfies xx

ᵀq ∈ Ck(Ω; S), which means

div div(xxᵀq) = 0.

Thus q = 0 from (39) and (35) and consequently property (iii) holds. �

For the simplification of the degrees of freedom, we need another decomposition
of the symmetric tensor polynomial space, which can be derived from the polyno-
mial Hessian complex

(40) P1(Ω)
⊂ ��

Pk+2(Ω)
hess ��

π1v
�� Pk(Ω; S)

curl ��
xᵀτx
�� Pk−1(Ω;T)

div ��
sym(τ×x)
�� Pk−2(Ω;R

3) ��
dev(vxᵀ)
�� 0

⊃
�� ,

where π1v := v(0, 0, 0)+xᵀ(∇v)(0, 0, 0). A proof of the exactness of (40) is similar
to that of Lemma 3.3 and can be found in [5]. Based on (40), we have the following
decomposition of symmetric polynomial tensors.

Lemma 3.6. It holds

(41) Pk(Ω; S) = ∇2
Pk+2(Ω)⊕ sym(Pk−1(Ω;T)× x).
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Proof. Obviously the space on the right is contained in the space on the left. We
then count the dimensions of spaces on both sides:

dimPk(Ω; S) = 6

(
k + 3

3

)
= (k + 3)(k + 2)(k + 1),

dim∇2
Pk+2(Ω) = dimPk+2(Ω)− dimP1(Ω) =

(
k + 5

3

)
− 4,

dim sym(Pk−1(Ω;T)× x) = dimPk−1(Ω;T)− dimPk−2(Ω;R
3)

= 8

(
k + 2

3

)
− 3

(
k + 1

3

)
=

1

6
(k + 1)k(5k + 19).(42)

Then by a direct calculation,

dim∇2
Pk+2(Ω) + dim sym(Pk−1(Ω;T)× x) = dimPk(Ω; S) = k3 + 6k2 + 11k + 6.

We only need to prove that the sum is direct.
For any τ = ∇2q with q ∈ Pk+2(Ω) satisfying τ ∈ sym(Pk−1(Ω;T)×x), it follows

(x · ∇)((x · ∇)q − q) = xᵀ(∇2q)x = 0. Applying (34) and (33), we get q ∈ P1(Ω)
and ∇2q = 0. Thus the decomposition (41) holds. �

Similarly for a two-dimensional domain F ⊂ R
2, we have the following div div

polynomial complex and its Koszul complex

(43) RT
⊂ ��

Pk+1(F ;R2)
sym curlF��

πRT

�� Pk(F ; S)
divF divF��

·x⊥
�� Pk−2(F ) ��

xxᵀ
�� 0

⊃
�� ,

where πRTv := v(0, 0) + 1
2 (div v)(0, 0)x, x

⊥ = (x2,−x1)
ᵀ is the rotation of x =

(x1, x2)
ᵀ. A two-dimensional Hessian polynomial complex and its Koszul complex

are

(44) P1(F )
⊂ ��

Pk+2(F )
∇2

F ��
π1

�� Pk(F ; S)
rotF ��

xᵀτx
�� Pk−1(F ) ��

sym(x⊥vᵀ)
�� 0

⊃
�� ,

where π1v := v(0, 0) + xᵀ(∇v)(0, 0). Verification of the exactness of these two
complexes can be found in [6] which leads to the decompositions

Pk(F ; S) = symcurlF Pk+1(F ;R2)⊕ xxᵀ
Pk−2(F ),

Pk(F ; S) = ∇2
FPk+2(F )⊕ sym(x⊥

Pk−1(F ;R2)).

4. Green’s identities and traces

We first present a Green’s identity based on which we can characterize two traces
of H(div div,Ω; S) on polyhedrons and give a sufficient continuity condition for a
piecewise smooth function to be in H(div div,Ω; S).

4.1. Notation. Let {Th}h>0 be a regular family of polyhedral meshes of Ω. Our
finite element spaces are constructed for tetrahedrons but some results, e.g., traces
and Green’s formula etc., hold for general polyhedrons. For each element K ∈ Th,
denote by nK the unit outward normal vector to ∂K, which will be abbreviated as n
for simplicity. Let Fh, F i

h, Eh, E i
h, Vh and V i

h be the union of all faces, interior faces,
edges, interior edges, vertices and interior vertices of the partition Th, respectively.
For any F ∈ Fh, fix a unit normal vector nF and two unit tangent vectors tF,1

and tF,2, which will be abbreviated as t1 and t2 without causing any confusions.
For any e ∈ Eh, fix a unit tangent vector te and two unit normal vectors ne,1 and
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ne,2, which will be abbreviated as n1 and n2 without causing any confusions. For
K being a polyhedron, denote by F(K), E(K) and V(K) the set of all faces, edges
and vertices of K, respectively. For any F ∈ Fh, let E(F ) be the set of all edges of
F . And for each e ∈ E(F ), denote by nF,e the unit vector being parallel to F and
outward normal to ∂F . Furthermore, set

F i(K) := F(K) ∩ F i
h, E i(F ) := E(F ) ∩ E i

h.

4.2. Green’s identities. We first derive a Green’s identity for smooth functions
on polyhedrons.

Lemma 4.1 (Green’s identity for div div operator in 3D). Let K be a polyhedron,
and let τ ∈ C2(K; S) and v ∈ H2(K). Then we have

(div div τ , v)K = (τ ,∇2v)K −
∑

F∈F(K)

∑
e∈E(F )

(nᵀ
F,eτn, v)e

−
∑

F∈F(K)

[(nᵀ
eτn, ∂nv)F − (2 divF (τne) + ∂n(n

ᵀτn), v)F ] .(45)

Proof. We start from the standard integration by parts

(div div τ , v)K = −(div τ ,∇v)K +
∑

F∈F(K)

(nᵀ div τ , v)F

=
(
τ ,∇2v

)
K
−

∑
F∈F(K)

(τn,∇v)F +
∑

F∈F(K)

(nᵀ div τ , v)F .

We then decompose ∇v = ∂nvn+∇F v and apply the Stokes theorem to get

(τn,∇v)F = (τn, ∂nvn+∇F v)F

= (nᵀτn, ∂nv)F − (divF (τn), v)F +
∑

e∈E(F )

(nᵀ
F,eτn, v)e.

Now we rewrite the term

(nᵀ div τ , v)F = (div(τn), v)F = (divF (τn), v)F + (∂n(n
ᵀτn), v)F .

Thus the Green’s identity (45) follows by merging all terms. �

When the domain is smooth in the sense that E(K) is an empty set, the term∑
F∈F(K)

∑
e∈E(F )(n

ᵀ
F,eτn, v)e disappears. When v is continuous on edge e, this

term will define a jump of the tensor τ .
A similar Green’s identity in two dimensions is included here for later usage. To

avoid confusion with the three-dimensional version, ne is used to emphasize it is a
normal vector of edge e of polygon F and differential operators with subscript F
are used.

Lemma 4.2 (Green’s identity for div div operator in 2D). Let F be a polygon, and
let τ ∈ C2(F ; S) and v ∈ H2(F ). Then we have

(divF divF τ , v)F = (τ ,∇2
F v)F −

∑
e∈E(K)

∑
δ∈∂e

signe,δ(t
ᵀτne)(δ)v(δ)

−
∑

e∈E(K)

[(nᵀ
eτne, ∂nv)e − (2∂t(t

ᵀτne) + ∂n(n
ᵀ
eτne), v)e] ,
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where

signe,δ :=

{
1, if δ is the end point of e,

−1, if δ is the start point of e.

Here the trace 2∂t(t
ᵀτne) + ∂n(n

ᵀ
eτne) = ∂t(t

ᵀτne) + nᵀ
e div τ is called the

effective transverse shear force respectively for τ being a moment and nᵀ
eτne is the

normal bending moment in the context of elastic mechanics [11].

4.3. Traces and continuity across the boundary. The Green’s identity (45)
motivates the definition of two trace operators for function τ ∈ H(div div,K; S):

tr1(τ ) = nᵀτn,

tr2(τ ) = 2 divF (τn) + ∂n(n
ᵀτn) = divF (τn) + nᵀ div τ .

We first recall the trace of the space H(div div,K; S) on the boundary of poly-

hedron K (cf. [12, Lemma 3.2] and [20,23]). Let H
1/2
00 (F ) be the closure of C∞

0 (F )

with respect to the norm ‖·‖H1/2(∂K), which includes all functions inH1/2(F ) whose

continuation to the whole boundary ∂K by zero belongs to H1/2(∂K). Define the
following trace spaces

H
1/2
n,0 (∂K) := {∂nv|∂K : v ∈ H2(K) ∩H1

0 (K)}

= {g ∈ L2(∂K) : g|F ∈ H
1/2
00 (F ) ∀ F ∈ F(K)}

with norm
‖g‖

H
1/2
n,0 (∂K)

:= inf
v∈H2(K)∩H1

0(K)

∂nv=g

‖v‖2,

and

H
3/2
t,0 (∂K) := {v|∂K : v ∈ H2(K), ∂nv|∂K = 0, v|e = 0 for each edge e ∈ E(K)}

with norm
‖g‖

H
3/2
t,0 (∂K)

:= inf
v∈H2(K)

∂nv=0,v=g

‖v‖2.

Let H
−1/2
n (∂K) := (H

1/2
n,0 (∂K))′ for tr1, and H

−3/2
t (∂K) := (H

3/2
t,0 (∂K))′ for tr2.

Lemma 4.3 (Lemma 3.2 in [12]). For any τ ∈ H(div div,K; S), it holds

‖nᵀτn‖
H

−1/2
n (∂K)

+ ‖2 divF (τn) + ∂n(n
ᵀτn)‖

H
−3/2
t (∂K)

� ‖τ‖H(div div,K).

Conversely, for any gn ∈ H
−1/2
n (∂K) and gt ∈ H

−3/2
t (∂K), there exists some

τ ∈ H(div div,K; S) such that

nᵀτn|∂K = gn, 2 divF (τn) + ∂n(n
ᵀτn) = gt,

‖τ‖H(div div,K) � ‖gn‖H−1/2
n (∂K)

+ ‖gt‖H−3/2
t (∂K)

.

The hidden constants depend only the shape of the domain K.

Notice that the term (nᵀ
F,eτn, v)e in the Green’s identity (45) is not covered

by Lemma 4.3. Indeed, the full characterization of the trace of H(div div,K; S) is
defined by (div divτ , v)−

(
τ ,∇2v

)
K
, which cannot be equivalently decoupled [12,

Lemma 3.2]. It is possible, however, to face-wisely localize the trace if imposing
additional smoothness.

We present a sufficient continuity condition for piecewise smooth functions to be
in H(div div,Ω; S).
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Lemma 4.4 (cf. Proposition 3.6 in [12]). Let τ ∈ L2(Ω; S) such that

(i) τ |K ∈ H(div div,K; S) for each polyhedron K ∈ Th;
(ii) (2 divF (τnF ) + ∂nF

(nᵀτn))|F ∈ L2(F ) is single-valued for each F ∈ F i
h;

(iii) (nᵀτn)|F ∈ L2(F ) is single-valued for each F ∈ F i
h;

(iv) (nᵀ
i τnj)|e ∈ L2(e) is single-valued for each e ∈ E i

h, i, j = 1, 2,

then τ ∈ H(div div,Ω; S).

Proof. For any v ∈ C∞
0 (Ω), we get from the Green’s identity (45) that

(τ ,∇2v) =
∑

K∈Th

(div div τ , v)K +
∑

K∈Th

∑
F∈Fi(K)

∑
e∈Ei(F )

(nᵀ
F,eτn, v)e

+
∑

K∈Th

∑
F∈Fi(K)

[(nᵀτn, ∂nv)F − (2 divF (τn) + ∂n(n
ᵀτn), v)F ] .

Since the terms in (ii)-(iv) are single-valued and each interior face is repeated twice
in the summation with opposite orientation, it follows

〈div div τ , v〉 =
∑

K∈Th

(div div τ , v)K .

Thus we have τ ∈ H(div div,Ω; S) by the definition of derivatives of the distribu-
tion, and (div div τ )|K = div div(τ |K) for each K ∈ Th. �

For any piecewise smooth τ ∈ H(div div,Ω; S), the single-valued term (nᵀ
i τnj)|e

in Lemma 4.4(iv) implies that there is some compatible condition for τ at each
vertex δ ∈ V i

h. Indeed, for any δ ∈ V i
h and F ∈ F i

h with δ being a vertex of F , let
n1 = t1 ×nF and n2 = t2 ×nF , where t1 and t2 are the unit tangential vectors of
two edges of F sharing δ. Then by (iv) we have

�nᵀ
1τn1�F (δ)=�nᵀ

2τn2�F (δ)=�nᵀ
FτnF �F (δ)=�nᵀ

1τnF �F (δ)=�nᵀ
2τnF �F (δ)=0,

where �·�F is the jump across F . Hence this suggests the tensor value at vertex as
the degree of freedom when defining the finite element.

Continuity of (nᵀ
i τnj)|e is a sufficient but not necessary condition for functions

in H(div div,Ω; S). Sufficient and necessary conditions are presented in [12, Propo-
sition 3.6].

5. Divdiv conforming finite elements

In this section we construct conforming finite element space for H(div div,Ω; S)
and prove the unisolvence.

5.1. Finite element spaces for symmetric tensors. Let K be a tetrahedron.
Take the space of shape functions

Σ�,k(K) := C�(K; S)⊕ C
⊕
k (K; S)

with k ≥ 3 and � ≥ max{k − 1, 3}. Recall that
C�(K; S) = symcurl P�+1(K;T), C

⊕
k (K; S) = xxᵀ

Pk−2(K).

By Lemma 3.5, we have

Pmin{�,k}(K; S) ⊆ Σ�,k(K) ⊆ Pmax{�,k}(K; S) and Σk,k(K) = Pk(K; S).

The most interesting cases are � = k − 1 and � = k, which are analogous to
RT (incomplete polynomial) and BDM (complete polynomial) H(div)-conforming
elements for the vector functions, respectively.
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For each edge, we choose two normal vectors n1 and n2. The degrees of freedom
are given by

τ (δ) ∀ δ ∈ V(K),(46)

(nᵀ
i τnj , q)e ∀ q ∈ P�−2(e), e ∈ E(K), i, j = 1, 2,(47)

(nᵀτn, q)F ∀ q ∈ P�−3(F ), F ∈ F(K),(48)

(2 divF (τn) + ∂n(n
ᵀτn), q)F ∀ q ∈ P�−1(F ), F ∈ F(K),(49)

(τ , ς)K ∀ ς ∈ ∇2
Pk−2(K),(50)

(τ , ς)K ∀ ς ∈ sym(P�−2(K;T)× x),(51)

(τn,n× xq)F1
∀ q ∈ P�−2(F1),(52)

where F1 ∈ F(K) is an arbitrary but fixed face. The DoF (52) is regarded as interior
to the tetrahedron K, that is (52) will be double-valued if F ∈ F i

h is selected in
different elements.

Before we prove the unisolvence, we give a characterization of the space of shape
functions restricted to edges and faces, and derive some consequences of vanishing
degrees of freedom.

Lemma 5.1. For any τ ∈ Σ�,k(K), we have

nᵀ
i τnj |e ∈ P�(e), nᵀτn|F ∈ P�(F ), 2 divF (τn) + ∂n(n

ᵀτn)|F ∈ P�−1(F )

for each edge e ∈ E(K), each face F ∈ F(K) and i, j = 1, 2.

Proof. Take any τ = xxᵀq ∈ C
⊕
k (K; S) with q ∈ Pk−2(K). Since nᵀ

i x is constant
on each edge of K and nᵀx is constant on each face of K,

nᵀ
i τnj |e = (nᵀ

i x)(n
ᵀ
jx)q ∈ Pk−2(e), nᵀτn|F = (nᵀx)2q ∈ Pk−2(F ),

and

2 divF (τn) + ∂n(n
ᵀτn) = (divF (τn) + nᵀ div τ )|F

= nᵀx(divF (xq) + div(xq) + q) ∈ Pk−2(F ).

Thus we conclude the results from the requirement � ≥ k − 1. �

Lemma 5.2. For any τ ∈ Σ�,k(K) with the degrees of freedom (46)-(51) vanishing,
we have

nᵀ
i τnj |e = 0 ∀ e ∈ E(K), i, j = 1, 2,(53)

nᵀτn|F = 0 ∀ F ∈ F(K),(54)

(2 divF (τn) + ∂n(n
ᵀτn))|F = 0 ∀ F ∈ F(K),(55)

div div τ = 0,

(τ , ς)K = 0 ∀ ς ∈ P�−1(K; S).(56)

Proof. According to Lemma 5.1, we acquire (53)-(55) from the vanishing degrees of
freedom (46)-(49) directly. The scalar function nᵀτn|F is the standard Lagrange
element and the vanishing function value τ (δ) at vertices is used to ensure (54).

Noting that div div τ ∈ Pk−2(K), we get from the Green’s identity (45), (53)-
(55) and the vanishing degrees of freedom (50) that div div τ = 0. Applying the
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Green’s identity (45) and (53)-(55), it follows

(τ ,∇2v)K = 0 ∀ v ∈ H2(K),

which together with (51) and the decomposition (41) yields (56). �

With previous preparations, we prove the unisolvence as follows. For any τ ∈
Σ�,k(K) satisfying div div τ = 0, since div div : C⊕

k (K; S) → Pk−2(K) is a bijection
by Lemma 3.5, we have τ ∈ C�(K; S) ⊆ P�(K; S). By (56) the volume moments
can only determine the polynomial of degree up to �− 1.

We then use the vanished trace. Similar to the RT and BDM elements [2], the
vanishing normal-normal trace (54) implies the normal-normal part of τ is zero.
To determine the normal-tangential terms, further degrees of freedom are needed.

Unlike the traditional approach by transforming back to the reference element,
we will choose an intrinsic coordinate. For ease of presentation, denote the four
faces in F(K) by Fi, which is opposite to the ith vertex ofK, and by ni the outward
unit normal vector of Fi for i = 1, 2, 3, 4. Let ti be the unit tangential vector of
the edge from vertex 4 to vertex i; see Fig. 2. The set of three vectors {t1, t2, t3}
forms a basis of R3 although they may not be orthogonal in general. Consequently
{titᵀj }3i,j=1 forms a basis of the second order tensor and tᵀi ni �= 0 for i = 1, 2, 3.

Let λi(x) be the ith barycentric coordinate with respect to the tetrahedron K for

Figure 2. Local coordinate formed by three edge vectors

i = 1, 2, 3, 4. Then λi|Fi
= 0 and ∇λi = −cini for some ci > 0.

Theorem 5.3. The degrees of freedom (46)-(52) are unisolvent for Σ�,k(K).

Proof. We first count the number of DoFs (46)-(52). Calculation of DoF (51) can
be found in (42). The number of DoFs (46)-(52) is

24 + 18(�− 1) + 2[(�− 1)(�− 2) + (�+ 1)�]

+
1

6
(k3 − k)− 4 +

1

6
�(�− 1)(5�+ 14) +

1

2
�(�− 1)

=
1

6
(5�3 + 36�2 + 67�+ 36) +

1

6
(k3 − k),

which is the same as dimΣ�,k(K), cf. (38).
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Take any τ ∈ Σ�,k(K) and suppose all the degrees of freedom (46)-(52) vanish.
We are going to prove the function τ = 0. Using the local coordinate sketched in
Fig. 2, we can expand τ as

τ =

3∑
i,j=1

τijtit
ᵀ
j with τij =

nᵀ
i τnj

(tᵀi ni)(t
ᵀ
jnj)

.

Then τ is represented as a matrix (τij). As τ is symmetric, τij = τji. By (54), it
follows

τii|Fi
=

1

(tᵀi ni)2
nᵀ

i τni|Fi
= 0, i = 1, 2, 3.

Thus there exists q�−1 ∈ P�−1(K) satisfying τii = λiq�−1 for i = 1, 2, 3. Taking
ς = q�−1nin

ᵀ
i in (56) will produce

(57) τii = 0, i = 1, 2, 3.

Namely the diagonal of τ is zero. So far, in the chosen coordinate, nᵀ
4τn4 = 0 has

no simple formulation and will be used later on.
On the other hand, from (53) we have ΠF1

(τn1) ∈ H0(divF1
, F1). As nᵀ

1τn1 =
(tᵀ1n1)

2τ11 = 0 inK, cf. (57), it follows ∂n1
(nᵀ

1τn1)|F1
= 0. Therefore (55) becomes

2 divF1
(τn1)|F1

= 0.

Hence there exists q�−2 ∈ P�−2(F1) such that (n1 × (τn1))|F1
= ∇F1

(bF1
q�−2),

where bF1
is the cubic bubble function on face F1. Together with (52) and the fact

divF1
(xP�−2(F1)) = P�−2(F1), we get (n1 × (τn1))|F1

= 0. Thus (τn1)|F1
= 0.

Then there exists q�−1 ∈ P�−1(K;R3) such that τn1 = λ1q�−1, combined with (56),
yields τn1 = 0. That is the first row of τ is zero, i.e. τ11 = τ12 = τ13 = 0.

By the symmetry, now τ = 2τ23 sym(t2t
ᵀ
3). Multiplying τ by n4 from both sides

and restricting to F4, we have

τ23|F4
=

1

2

nᵀ
4τn4

(tᵀ2n4)(t
ᵀ
3n4)

|F4
= 0.

The denominator is non-zero as t2, t3 are non-tangential vectors of face F4. Again
there exists q�−1 ∈ P�−1(K) satisfying τ23 = λ4q�−1. Taking ς = sym(t2t

ᵀ
3)q�−1

in (56) gives τ23 = 0. We thus have τ = 0 and consequently the uni-solvence. �

Due to (49), it is arduous to figure out the explicit basis functions of Σ�,k(K),
which are dual to the degrees of freedom (46)-(52). Alternatively we can hybridize
the degrees of freedom (49), and use the basis functions of the standard Lagrange
element [6].

5.2. Polynomial bubble function spaces. Let

B�,k(div div,K; S) := {τ ∈ Σ�,k(K) : all degrees of freedom (46)-(49) vanish}.
Together with vanishing (50), we can conclude that div div τ = 0. In view of Fig. 1
and Lemma 5.2, the last two sets of DoFs (51)-(52) can be replaced by

(τ , ς)K ∀ ς ∈ B�,k(div div,K; S) ∩ ker(div div).

Next we give characterization of B�,k(div div,K; S) ∩ ker(div div).
By the exactness of div div complex (20), if div div τ = 0 and tr(τ ) = 0, it is pos-

sible that τ = symcurlσ for some σ ∈ B�+1(sym curl,K;T) := H0(sym curl,K;T)
∩P�+1(K;T). We will give an explicit characterization of B�+1(sym curl,K;T),
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show B�,k(div div,K; S) ∩ ker(div div) = symcurlB�+1(sym curl,K;T), and conse-
quently get a set of computable and symmetric DoFs.

We begin with a characterization of the trace of functions in H(sym curl,K;T).

Lemma 5.4 (Green’s identity for sym curl operator). Let K be a polyhedron, and
let τ ∈ H1(K;M) and σ ∈ H1(K; S). Then we have

(sym curl τ ,σ)K = (τ , curlσ)K −
∑

F∈F(K)

(symΠF (τ × n)ΠF ,ΠFσΠF )F

−
∑

F∈F(K)

(n · τ × n,n · σΠF )F .

Proof. As σ is symmetric,

(sym curl τ ,σ)K = (curl τ ,σ)K = (τ , curlσ)K − (τ × n,σ)∂K .

On each face, we expand the boundary term

(τ × n,σ)F = (ΠF (τ × n)ΠF ,ΠFσΠF )F + (n · τ × n,n · σΠF )F .

Then we use the fact ΠFσΠF is symmetric to arrive at the desired identity. �

Based on the Green’s identity, we introduce the following trace operators for
H(sym curl) space

(1) tr1(τ ) := ΠF sym(τ × n)ΠF ,
(2) tr⊥1 (τ ) := n× sym(τ × n)× n,
(3) tr2(τ ) := n · τ × n.

Both tr1(τ ) and tr⊥1 (τ ) are symmetric tensors on each face and tr2(τ ) is a vector
function. Obviously tr1(τ ) = 0 if and only if tr⊥1 (τ ) = 0 as tr⊥1 (τ ) is just a rotation
of tr1(τ ). Using the trace operators, H(symcurl) polynomial bubble function space
can be defined as

B�+1(sym curl,K;T) := {τ ∈ P�+1(K;T) : (n · τ × n)|F = 0,

(n× sym(τ × n)× n)|F = 0 ∀ F ∈ F(K)}.

We shall give an explicit characterization of B�+1(symcurl,K;T).

Lemma 5.5. Let τ ∈ B�+1(sym curl,K;T). It holds

(58) τ |e = 0 ∀ e ∈ E(K).

Proof. It is straightforward to verify (58) on the reference tetrahedron for which
e = (1, 0, 0) and two normal vectors of the face containing e are n1 = (1, 0, 0) and
n2 = (0, 0, 1). To avoid complicated transformation of trace operators, we provide
a proof using an intrinsic basis of T on K.

Take any edge e ∈ E(K) with the tangential vector t. Let n1 and n2 be the unit
outward normal vectors of two faces sharing edge e. Set si := t × ni for i = 1, 2.
By a direction computation, we get on edge e for i = 1, 2 that

nᵀ
i τt = (ni · τ × ni) · si = 0,

nᵀ
i τsi = −(ni · τ × ni) · t = 0,

tᵀτt− sᵀi τsi = 2t · sym(τ × ni) · si = 2si · (ni × sym(τ × ni)× ni) · t = 0,

tᵀτsi = −t · sym(τ × ni) · t = si · (ni × sym(τ × ni)× ni) · si = 0.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1128 LONG CHEN AND XUEHAI HUANG

Both span{s1, s2} and span{n1,n2} form the same normal vector space of edge e;
then the last identity implies

tᵀτni = 0.

Then it is sufficient to prove the eight trace-free tensors

(59) n1t
ᵀ, n2t

ᵀ, n1s
ᵀ
1 , n2s

ᵀ
2 , t n

ᵀ
1 , tn

ᵀ
2 , t t

ᵀ − s1s
ᵀ
1 , t t

ᵀ − s2s
ᵀ
2

are linearly independent. Assume there exist ci ∈ R for i = 1, . . . , 8 such that

c1n1t
ᵀ + c2n2t

ᵀ + c3n1s
ᵀ
1 + c4n2s

ᵀ
2 + c5t n

ᵀ
1 + c6t n

ᵀ
2

+c7(t t
ᵀ − s1s

ᵀ
1) + c8(t t

ᵀ − s2s
ᵀ
2) = 0.

Multiplying the last equation by t from the right and left respectively, we obtain

c1n1 + c2n2 + (c7 + c8)t = 0, c5n
ᵀ
1 + c6n

ᵀ
2 + (c7 + c8)t

ᵀ = 0.

Hence c1 = c2 = c5 = c6 = c7 + c8 = 0, which yields

c3n1s
ᵀ
1 + c4n2s

ᵀ
2 + c7(s2s

ᵀ
2 − s1s

ᵀ
1) = 0.

Multiplying the last equation by n1 from the right, it follows

(s2 · n1)(c4n2 + c7s2) = 0.

As a result c4 = c7 = 0, and then c3 = 0. �

We write P�+1(K;T) as P�+1(K)⊗ T and use the barycentric coordinate repre-
sentation of a polynomial. That is a polynomial p ∈ P�+1(K) which has a unique
representation in terms of

(60) p = λα1
1 λα2

2 λα3
3 λα4

4 ,

4∑
i=1

αi = �+ 1, αi ∈ N.

Lemma 5.5 implies that p must contain a face bubble bF = λiλjλk where (i, j, k)
are three vertices of F . Otherwise, if p = λαi

i λ
αj

j , αi+αj = �+1, then p is not zero

on the edge (i, j).
We consider the subspace bFP�−2(K)⊗T and identify its intersection with ker(tr).

Due to the face bubble bF , the polynomial is zero on the other faces. So we only
need to consider the trace on face F . Without loss of generality, we can choose the
coordinate s.t. nF = (0, 0, 1). Choose the canonical basis of T associated to this
coordinate. Then a direct calculation to find out ker(tr) ∩ T consists of⎛⎝0 0 1

0 0 0
0 0 0

⎞⎠ ,

⎛⎝0 0 0
0 0 1
0 0 0

⎞⎠ , and

⎛⎝1 0 0
0 1 0
0 0 −2

⎞⎠ .

Switching to an intrinsic basis, we obtain the following explicit characterization of
B�+1(sym curl,K;T).

Lemma 5.6. For each face F , we choose two unit tangent vectors t1, t2 s.t.
(t1, t2,nF ) forms an orthonormal basis of R3. Then

(61) B�+1(sym curl,K;T) = span{pbFψF
i , p ∈ P�−2(K), F ∈ F(K), i = 1, 2, 3},

where the three trace-free tensors are:

ψF
1 = t1n

ᵀ
F , ψF

2 = t2n
ᵀ
F , ψF

3 = t1t
ᵀ
1 + t2t

ᵀ
2 − 2nFn

ᵀ
F .
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Proof. Using the formulae (10)-(11), by the direct calculation, we can easily show
ψF
i ∈ ker(trF ) ∩ T for each face F and i = 1, 2, 3, where trF denotes the trace

operators (tr1, tr2) restricted to F . As dim ker(trF ) ∩ T = 3, we conclude that

ker(trF ) ∩ (bFP�−2(K)⊗ T) = span{pbFψF
i , p ∈ P�−2(K), i = 1, 2, 3}.

By Lemma 5.5 we know that

ker(tr) ∩ (P�+1 ⊗ T) = ∪F ker(trF ) ∩ (bFP�−2(K)⊗ T)

and thus (61) follows. �
We only give a generating set of the bubble function space as the 12 constant

matrices {ψF
1 , ψ

F
2 , ψ

F
3 , F ∈ F(K)} are not linearly independent. Next we find out

a basis from this generating set.

Lemma 5.7. Let (i, j, k) be three vertices of face F and P�−2(F ) = {λα1
i λα2

j λα3

k , α1

+α2+α3 = �−2, αi∈N, i=1, 2, 3}. Define BF,�+1 := bFP�−2(F )⊗span{ψF
1 , ψ

F
2 , ψ

F
3 }

and BK,�+1 = bKP�−3(K)⊗ span{ψF
1 , ψ

F
2 , F ∈ F(K)}. Then

(62) B�+1(sym curl,K;T) = ⊕F∈F(K)BF,�+1 ⊕ BK,�+1,

and consequently

dimB�+1(sym curl,K;T) =
2

3
�(�− 1)(2�+ 5) =

1

3
(4�3 + 6�2 − 10�).

Proof. The 12 constant matrices {ψF
1 , ψ

F
2 , ψ

F
3 , F ∈ F(K)} are not linearly indepen-

dent as dimT = 8. Among them, {ψF
1 , ψ

F
2 , F ∈ F(K)} forms a basis of T which

can be proved as verifying the linear independence of (59) in Lemma 5.5 or see [15].
For each pbF , with p ∈ P�−2(K), we can group into either bKP�−3(K) or

bFP�−2(F ) depending on if the polynomial p|F is zero or not, respectively. That is,
for one fixed face F :

bFP�−2(K) = bFP�−2(F )⊕ bKP�−3(K).

The sum is direct in view of the barycentric representation (60) of a polynomial.
Then coupled with {ψF

i }, we get the basis (62) of the bubble function space.
The dimension of B�+1(sym curl,K;T) is

4 · 3 · dimP�−2(F ) + 8 dimP�−3(K) =
1

3
(4�3 + 6�2 − 10�),

as required. �
We then verify sym curlB�+1(sym curl,K;T) ⊆ B�,k(div div,K; S) by verifying

all boundary DoFs vanish.

Lemma 5.8. Let τ ∈ B�+1(sym curl,K;T). Assume edge e ∈ E(K) is shared by
faces Fi and Fj. It holds nᵀ

i (symcurl τ )nj |e = 0.

Proof. For the ease of notation, let σ = symcurl τ . Suppose

τ =
∑

F∈F(K)

3∑
l=1

qF,lbFψ
F
l

with qF,l ∈ P�−2(K). By bF |e = 0, we get

nᵀ
i σnj |e =

∑
F∈F(K)

3∑
l=1

qF,l|e(nᵀ
i sym curl(bFψ

F
l )nj)|e.
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Since λi|e = λj |e = 0, we can see that (ni × nF · ∇bF )|e = (nj × nF · ∇bF )|e = 0.
Thus for l = 1, 2,

2(nᵀ
i sym curl(bFψ

F
l )nj)|e

= −(ni · (bF tlnF )×∇ · nj)|e − (nj · (bF tlnF )×∇ · ni)|e
= ni · tl(nF × nj · ∇bF )|e + nj · tl(nF × ni · ∇bF )|e
= 0.

Next consider l = 3. When F �= Fj , the face bubble bF has a factor λj , which
implies (nj ×∇bF )|e = 0. Thus

(nᵀ
i curl(bFψ

F
3 )nj)|e = −(ni · (bFψF

3 )×∇ · nj)|e = (ni · ψF
3 · (nj ×∇bF ))|e = 0.

When F = Fj , the face bubble bF has a factor λi. By the fact that (t1, t2,nj)
forms an orthonormal basis of R3,

ni · t2(t2 × nj · ∇λi) = ni · (nj × t1)(t1 · ∇λi) = −(t1 · ∇λi)(nj × ni · t1)
= −ni · t1(nj ×∇λi · t1),

which implies

ni · t1(nj ×∇λi · t1) + ni · t2(nj ×∇λi · t2) = 0.

As a result,

(nᵀ
i curl(bFψ

F
3 )nj)|e = ni · t1(nj ×∇bF · t1)|e + ni · t2(nj ×∇bF · t2)|e = 0.

Similarly (nᵀ
j curl(bFψ

F
3 )ni)|e = 0 holds. Hence (nᵀ

i sym curl(bFψ
F
3 )nj)|e = 0.

Therefore nᵀ
i σnj |e = 0. �

Next we show the two traces tr2(τ ) is in H(divF ) and tr1(τ ) in H(divF divF ).

Lemma 5.9. When σ = symcurl τ with τ ∈ H2(K;M), we can express the trace
in terms of the differential operators on surface F of K

nᵀσn = divF (n · τ × n),(63)

∇⊥
F · (n× σ · n) + nᵀ divσ = −rotF rotF (n× sym(τ × n)× n)(64)

= divF divF (ΠF sym(τ × n)ΠF ).

Proof. By

nᵀσn =
1

2
n · (∇× (τ ᵀ)− τ ×∇) · n =

1

2
∇⊥

F · (τ ᵀ) · n+
1

2
n · τ · ∇⊥

F

and the fact ∇⊥
F · (τ ᵀ) · n = n · τ · ∇⊥

F , we get

nᵀσn = n · τ · ∇⊥
F = rotF (n · τΠF ).

Then the identity (63) holds from (18).
Next we prove (64). Employing (17) with v = τ ᵀ · n,

∇⊥
F · (n× σ · n) = 1

2
∇⊥

F ·
(
n× (∇× (τᵀ)− τ ×∇) · n

)
=

1

2
∇⊥

F ·
(
n× (∇× (τᵀ · n))

)
+

1

2
∇⊥

F · (n× τ ) · ∇⊥
F

=
1

2
∇⊥

F ·
(
∇(n · τ ᵀ · n)− ∂n(τ

ᵀ · n)
)
+

1

2
∇⊥

F · (n× τ ) · ∇⊥
F

= −1

2
∇⊥

F ·
(
∂n(τ

ᵀ · n)
)
+

1

2
∇⊥

F · (n× τ ) · ∇⊥
F .
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On the other side, we have

n · divσ = n · σ · ∇ =
1

2
n · (∇× (τ ᵀ)) · ∇ =

1

2
∇⊥

F · (τ ᵀ) · ∇

=
1

2
∇⊥

F · (τᵀ) · (n∂n +∇F ) =
1

2
∇⊥

F ·
(
∂n(τ

ᵀ · n)
)
+

1

2
∇⊥

F · (τᵀ) · ∇F

=
1

2
∇⊥

F ·
(
∂n(τ

ᵀ · n)
)
− 1

2
∇⊥

F · (τ ᵀ × n) · ∇⊥
F .

The sum of the last two identities gives

∇⊥
F · (n× σ · n) + n · divσ = ∇⊥

F · sym(n× τΠF ) · ∇⊥
F .

Therefore (64) follows from sym(n× τΠF ) = −n× sym(τ × n)× n. �
Note that ∇⊥

F · (n×σ ·n) +nᵀ divσ is an equivalent formulation of the second
trace of σ. Lemma 5.9 implies the following trace complexes

RT

��

⊂ �� v

��

dev grad �� τ

��

sym curl �� σ

��

div div �� p

R
⊂ �� v · n− curlF �� n · τ × n

divF �� n · σ · n �� 0

,

and

RT

��

⊂ �� v

��

dev grad �� τ

��

sym curl �� σ

��

div div �� p

RT F
⊂ �� ΠFv

− sym curlF�� ΠF sym(τ × n)ΠF
divF divF�� tr2(σ) �� 0

.

Those trace complexes will guide the design of edge and face degrees of freedom to
ensure the required continuity.

5.3. The bubble complex. Combining Lemmas 5.8 and 5.9 gives the following
result.

Lemma 5.10. It holds

(65) sym curlB�+1(sym curl,K;T) ⊆ (B�,k(div div,K; S) ∩ ker(div div)).

Proof. For τ ∈ B�+1(sym curl,K;T), by construction, n · τ × n = 0 and n ×
sym(τ ×n)×n = 0 on ∂K. Let σ = symcurl τ . Then by Lemma 5.9, DoFs (48)-
(49) vanish. By Lemma 5.8, (47) vanishes. As τ contains a face bubble, σ will
have an edge bubble function which means σ(δ) = 0 for all δ ∈ V(K). Therefore
sym curlB�+1(sym curl,K;T)⊆B�,k(div div,K; S). The property div div(sym curl τ )
= 0 is from the div div complex. �

Indeed the “⊆” in (65) can be changed to “=”. This will be clear after we
present a bubble complex. In the sequel, we denote by P

⊥
k−2,1(K) the L2-orthogonal

complement space of P1(K) in Pk−2(K) with respect to the inner product (·, ·)K .

Lemma 5.11. For each K ∈ Th, it holds
(66) div divB�,k(div div,K; S) = P

⊥
k−2,1(K).

Consequently

(67) dim(B�,k(div div,K; S) ∩ ker(div div)) =
1

6
�(�− 1)(5�+ 17).
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Proof. From the integration by parts, it is obviously true that

div divB�,k(div div,K; S) ⊆ P
⊥
k−2,1(K).

On the other side, for any v ∈ P⊥
k−2,1(K), due to the fact that div divH2

0(K; S) =

L2(K) ∩ P
⊥
1 (K) [10], where P

⊥
1 (K) is a subspace of L2(K) being orthogonal to

P1(K) with respect to the L2-inner product (·, ·)K , there exists τ̃ ∈ H2
0(K; S) such

that

div div τ̃ = v.

Then take τ ∈ B�,k(div div,K; S) with the rest DoFs

(τ − τ̃ , ς)K = 0 ∀ ς ∈ ∇2
Pk−2(K)⊕ sym(P�−2(K;T)× x),

((τ − τ̃ )n,n× xq)F1
= 0 ∀ q ∈ P�−2(F1).

Applying the Green’s identity (45), we get

(div div(τ − τ̃ ), q)K = 0 ∀ q ∈ Pk−2(K).

This implies div div τ = div div τ̃ = v. Namely (66) holds.
An immediate result of (66) is

dim(B�,k(div div,K; S) ∩ ker(div div)) = dimB�,k(div div,K; S)− dimPk−2(K) + 4

=
1

6
�(�− 1)(5�+ 14) +

1

2
�(�− 1)

=
1

6
�(�− 1)(5�+ 17).

�

Define

B�+2(grad,K;R3) := {v ∈ P�+2(K;R3) : v|∂K = 0} = bKP�−2(K;R3).

Now we are in the position to present the so-called bubble complex.

Theorem 5.12. The bubble function spaces for the div div complex

0 −→ B�+2(grad,K;R3)
dev grad−−−−−→ B�+1(sym curl,K;T)

sym curl−−−−−→ B�,k(div div,K; S)

div div−−−−→ P
⊥
k−2,1(K) −→ 0(68)

form an exact sequence.

Proof. Take any v ∈ B�+2(grad,K;R3) with v|∂K = 0. We have on each face
F ∈ F(K),

(69) n · (dev gradv)× n = n · (gradv)× n = −(n×∇)(v · n) = 0,

and

n× sym((dev gradv)× n)× n = n× sym((gradv)× n)× n

= −n× sym(v∇⊥
F )× n

= −n× sym((ΠFv)∇⊥
F )× n = 0.(70)

Hence dev gradB�+2(grad,K;R3) ⊆ B�+1(sym curl,K;T) ∩ ker(sym curl). Thanks
to Lemma 5.10 and (66), we conclude that (68) is a complex.
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We then verify the exactness from left to right.
(1) B�+1(sym curl,K;T) ∩ ker(sym curl) = dev gradB�+2(grad,K;R3), i.e. if
symcurl τ = 0 and τ ∈B�+1(symcurl,K;T), then there exists a v ∈B�+2(grad,K;R3),

s.t. τ = dev gradv.
Firstly, by the exactness of the polynomial div div complex (25), there exists

v ∈ P�+2(K;R3) such that τ = dev gradv. As RT = ker(dev grad), we can further
impose constraint

∫
F
v ·n = 0 for each F ∈ F(K). By (69), we get v ·n |F∈ P0(F ).

Hence v ·n|F = 0, which indicates v(δ) = 0 for each vertex δ ∈ V(K). By (70), we
obtain sym((ΠFv)∇⊥

F ) = 0, i.e. ΠFv ∈ P0(F ;R2) + (ΠFx)P0(F ). This combined
with v(δ) = 0 for each vertex δ ∈ V(F ) means ΠFv = 0, and then v|F = 0 for each
F ∈ F(K). Thus v ∈ B�+2(grad,K;R3).
(2) sym curlB�+1(sym curl,K;T) = B�,k(div div,K; S) ∩ ker(div div).

By step (1), we acquire

dim symcurlB�+1(symcurl,K;T)

= dimB�+1(symcurl,K;T)− dimB�+2(grad,K;R3)

= dimB�+1(symcurl,K;T)− dimP�−2(K;R3)

=
1

6
�(�− 1)(5�+ 17),(71)

which together with (67) indicates

dim sym curlB�+1(sym curl,K;T) = dim(B�,k(div div,K; S) ∩ ker(div div)).

Together with (65) implies sym curlB�+1(symcurl,K;T) = B�,k(div div,K; S) ∩
ker(div div).
(3) div divB�,k(div div,K; S) = P⊥

k−2,1(K). This is (66) proved in Lemma 5.11.

Therefore complex (68) is exact. �

As a result of complex (68), we can replace the degrees of freedom (51)-(52) by

(τ , ς)K ∀ ς ∈ sym curlB�+1(sym curl,K;T).(72)

The dimension of (72) is counted in (71), which also matches the sum of (51)-(52).
Below we summarize the unisolvence for space Σ�,k(K) with different DoFs.

Corollary 5.13. The degrees of freedom (46)-(50) and (72) are unisolvent for
Σ�,k(K).

Notice that although B�+1(sym curl,K;T) is in a symmetric form, cf. (62), the
degree of freedom (72) is indeed not simpler than (51)-(52) in computation as
sym curlB�+1(sym curl,K;T) is much more complicated than polynomials on a face.

5.4. Two-dimensional div div conforming finite elements. Recently we have
constructed div div conforming finite elements in two dimensions in [6]. Here we
briefly review the results and compare to the three-dimensional case.

Let F be a triangle. Take the space of shape functions

(73) Σ�,k(F ) := C�(F ; S)⊕ C
⊕
k (F ; S)

with k ≥ 3 and � ≥ max{k − 1, 3} and

C�(F ; S) = symcurlF P�+1(F ;R2), C
⊕
k (F ; S) = xxᵀ

Pk−2(F ).

Here the polynomial space for H(symcurl, F ;R2) is the vector space not a tensor
space, which simplifies the construction significantly.
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The degrees of freedom are given by

τ (δ) ∀ δ ∈ V(F ),(74)

(nᵀ
eτne, q)e ∀ q ∈ P�−2(e), e ∈ E(F ),(75)

(∂t(t
ᵀτne) + nᵀ

e divF τ , q)e ∀ q ∈ P�−1(e), e ∈ E(F ),(76)

(τ , ς)F ∀ ς ∈ ∇2
FPk−2(F ),(77)

(τ , ς)F ∀ ς ∈ sym(x⊥
P�−2(F ;R2)).(78)

Here to avoid confusion with the three-dimensional version, we use ne to emphasize
it is a normal vector of edge vector e.

The unisolvence is again better understood with the help of Fig. 1. By the
vanishing degrees of freedom (74)-(76), the trace vanishes. Then together with the
vanishing DoF (77), div div τ = 0. The DoF (78) is to identify the intersection of
the bubble space and the kernel of div div. Define

B�,k(divF divF , F ) := {τ ∈ Σ�,k(F ) : all degrees of freedom (74)-(76) vanish}.
It turns out the space B�,k(divF divF , F ) ∩ ker(divF divF ) is much simpler in two
dimensions.

The key is the following formula on the trace tr2.

Lemma 5.14. When τ = symcurlF v, we have

∂t(t
ᵀτne) + nᵀ

e divF τ = ∂t(t
ᵀ∂tv).(79)

Proof. Since divF curlF v = 0, we have

nᵀ
e divF τ =

1

2
nᵀ

e divF (curlF v)ᵀ =
1

2
nᵀ

e curlF divF v =
1

2
∂t divF v.

As divF v = trace(∇Fv) is invariant to the rotation, we can write it as

divF v = tᵀ∇Fvt+ nᵀ
e∇Fvne = tᵀ∂tv + nᵀ

e∂nv.

Then

∂t(t
ᵀτne) + nᵀ

e divF τ =
1

2
∂t[t

ᵀ∂tv − nᵀ
e∂nv + divF v] = ∂t(t

ᵀ∂tv),

i.e. (79) holds. �

Lemma 5.15. The following bubble complex

0
⊂−→ bFP�−2(F ;R2)

sym curlF−−−−−−→ B�,k(divF divF , F )
divF divF−−−−−−→ P

⊥
k−2,1(F ) −→ 0

is exact.

Proof. The fact that divF divF : B�,k(divF divF , F ) → P⊥
k−2,1(F ) is surjective can

be proved similarly to Lemma 5.11.
For τ ∈ B�,k(divF divF , F )∩ ker(divF divF ), from the complex (43), we can find

v ∈ P�+1(F ) s.t. sym curlF v = τ . We will prove v|∂F = 0.
Since RT = ker(sym curlF ), we can further impose constraint

∫
e
v · ne = 0 for

each e ∈ E(F ). The fact (nᵀ
eτne)|∂F = 0 implies

∂t(n
ᵀ
ev)|∂F = (nᵀ

eτne)|∂F = 0.

Hence nᵀ
ev|∂F = 0. This also means v(δ) = 0 for each δ ∈ V(F ).

By Lemma 5.14, since

∂t(t
ᵀτne) + nᵀ

e divF τ = ∂t(t
ᵀ∂tv)
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and (∂t(t
ᵀτne) + nᵀ

e divF τ )|∂F = 0, we acquire

∂tt(t
ᵀv)|∂F = 0.

That is tᵀv|e ∈ P1(e) on each edge e ∈ E(F ). Noting that v(δ) = 0 for each
δ ∈ V(F ), we get tᵀv|∂F = 0 and consequently v|∂F = 0, i.e.,

v = bFψ�−2, for some ψ�−2 ∈ P�−2(F ;R2).

�
We now prove the unisolvence as follows.

Theorem 5.16. The degrees of freedom (74)-(78) are unisolvent for Σ�,k(F ) (73).

Proof. We first count the number of DoFs (74)-(78) and the dimension of the space,
i.e., dimΣ�,k(K). Both of them are

�2 + 5�+ 3 +
1

2
k(k − 1).

Then suppose all the degrees of freedom (74)-(78) applied to τ vanish. We are
going to prove the function τ = 0.

By the vanishing degrees of freedom (74)-(76), the two traces are vanished. To-
gether with (77), the Green’s identity implies divF divF τ = 0. Then

τ = symcurlF (bFψ�−2), for some ψ�−2 ∈ P�−2(F ;R2).

We then use the fact rotF : sym(x⊥P�−2(F ;R2)) → P�−2(F ;R2) is bijection, cf.
the complex (44), to find φ�−2 s.t. rotF (sym(x⊥φ�−2)) = ψ�−2. Finally we finish
the unisolvence proof by choosing ς = sym(x⊥φ�−2) in (78). The fact

(τ , ς)F = (symcurlF (bFψ�−2), sym(x⊥φ�−2))F = (bFψ�−2, ψ�−2)F = 0

will imply ψ�−2 = 0 and consequently τ = 0. �
As finite element spaces for H1 are relatively mature and the bubble function

space of P�+1(F ;R2)∩H1
0(F ;R2) = bFP�−2(F ;R2), the design of div div conforming

finite elements in two dimensions is relatively easy. By rotation, we can construct
finite elements for the strain space H(rotF rotF , F ; S); see [6, Section 3.4].

6. Finite elements for sym curl-conforming trace-free tensors

In this section we construct conforming finite element spaces forH(symcurl,Ω;T).

6.1. A finite element space. Let K be a tetrahedron. For each edge e, we set
a direction vector t and then choose two orthonormal vectors n1 and n2 being
orthogonal to e such that n2 = t × n1 and n1 = n2 × t. Take the space of shape
functions as P�+1(K;T). The degrees of freedom N�+1(K) are given by

τ (δ) ∀ δ ∈ V(K),(80)

(symcurl τ )(δ) ∀ δ ∈ V(K),(81)

(nᵀ
i (symcurl τ )nj , q)e ∀ q ∈ P�−2(e), e ∈ E(K), i, j = 1, 2,(82)

(nᵀ
i τt, q)e ∀ q ∈ P�−1(e), e ∈ E(K), i = 1, 2,(83)

(nᵀ
2(curl τ )n1 + ∂t(t

ᵀτt), q)e ∀ q ∈ P�(e), e ∈ E(K),(84)

(n× sym(τ × n)× n, ς)F ∀ ς ∈ (∇⊥
F )

2
P�−1(F )⊕ sym(x⊗ P�−1(F ;R2)),(85)

(n · τ × n, q)F ∀ q ∈ ∇FP�−3(F )⊕ x⊥
P�−1(F ), F ∈ F(K),(86)

(τ , q)K ∀ q ∈ B�+1(symcurl, K;T).(87)
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The degrees of freedom (81), (82), and (87) are motivated by (46), (47), and (72),
respectively, as sym curl τ ∈ H(div div,K; S). Recall that tr2(τ ) ∈ H(divF ) and
tr1(τ ) ∈ H(divF divF ), cf. Lemma 5.9. Let nF,e = t × n be the norm vector of e
sitting on the face F . For divF elements on face F , the normal trace becomes

(n · τ × n) · nF,e = nᵀτt,

which motivates (83). Together with (86), n · τ × n can be determined. For the
divF divF element, the normal-normal trace becomes

(88) nᵀ
F,e(ΠF sym(τ × n)ΠF )nF,e = nᵀ

F,e sym(τ × n)nF,e = nᵀ
F,eτt,

which can be also determined by (83). Notice that for each edge e, there are two
nF,e inside one tetrahedron. In (83), the two normal vectors n1,n2 are chosen
independent of elements and (83) can determine the projection of vector τt to the
plane orthogonal to edge e including nᵀ

F,eτt.

The other trace of a divF divF element will be determined by (82) and (84),
which is less obvious. Lemma 6.1 is borrowed from [16, Lemma 9 and Remark 8].

Lemma 6.1. Let F ∈ F(K) with a normal vector nF . For an edge e ∈ E(F ), we
fix a direction vector t for e and choose two orthonormal vectors n1 and n2 being
orthogonal to e such that n2 = t × n1 and n1 = n2 × t. Let nF,e = t × nF . For
any sufficiently smooth tensor τ , we have

nᵀ
F,e(curl τ )nF = (nF · n1)(nF · n2) [n

ᵀ
2(sym curl τ )n2 − nᵀ

1(sym curl τ )n1]

− 2(nF · n2)
2nᵀ

1(sym curl τ )n2 + nᵀ
2(curl τ )n1.(89)

For tr1(τ ) = ΠF sym(τ × nF )ΠF , we have

(90) ∂t(t
ᵀ tr1(τ )nF,e) + nᵀ

F,e divF (tr1(τ )) = nᵀ
F,e(curl τ )nF + ∂t(t

ᵀτt).

Consequently it can be determined by DoFs (82) and (84).

Proof. On the plane orthogonal to e, the vectors n1 and n2 form an orthonormal
basis. We expand nF = c1n1 + c2n2 in this coordinate, with ci = nF · ni for
i = 1, 2. Then nF,e = t× nF = c1n2 − c2n1. Then in this coordinate

nᵀ
F,e(curl τ )nF = (c1n2 − c2n1)

ᵀ(curl τ )(c1n1 + c2n2)

= c1c2(n
ᵀ
2(curl τ )n2 − nᵀ

1(curl τ )n1)

+ c21n
ᵀ
2(curl τ )n1 − c22n

ᵀ
1(curl τ )n2.

Thus we acquire (89) from the fact c21 + c22 = 1.
On the other hand, by the fact ∇F = t∂t + nF,e∂nF,e

, we obtain

∂t(t
ᵀ tr1(τ )nF,e) + nᵀ

F,e divF (tr1(τ ))

=2∂t(t
ᵀ tr1(τ )nF,e) + ∂nF,e

(nᵀ
F,e tr1(τ )nF,e)

=2∂t(t
ᵀ sym(τ × nF )nF,e) + ∂nF,e

(nᵀ
F,e sym(τ × nF )nF,e)

=∂t(t
ᵀτt− nᵀ

F,eτnF,e) + ∂nF,e
(nᵀ

F,eτt),

and

nᵀ
F,e(curl τ )nF = (nF ×∇) · (nᵀ

F,eτ ) = (nF ×∇) · (nᵀ
F,eτtt+ nᵀ

F,eτnF,enF,e)

= ∂nF,e
(nᵀ

F,eτt)− ∂t(n
ᵀ
F,eτnF,e).

Therefore (90) is true. �
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The trace ∂t(t
ᵀ tr1(τ )nF,e) + nᵀ

F,e divF (tr1(τ )) depends on F . For one edge e
in a tetrahedron K, there are two such traces. Lemma 6.1 shows that these two
traces are linearly dependent and only one DoF (84) is needed.

Lemma 6.2. Let F ∈ F(K) and τ ∈ P�+1(K;T). If all the degrees of freedom (80)-
(86) vanish, then n · τ × n = 0 and n× sym(τ × n)× n = 0 on face F .

Proof. It follows from (63), (83) and the first part of (86) that

(nᵀ(symcurl τ )n, q)F = (divF (n · τ × n), q)F = 0 ∀ q ∈ P�−3(F ).

This combined with (81)-(82) yields nᵀ(sym curl τ )n|F = 0, i.e. divF (n·τ×n|F ) =
0. Thanks to the unisolvence of BDM element, we achieve n ·τ×n|F = 0 from (83)
and the second part of (86).

Let σ = ΠF sym(τ × nF )ΠF for simplicity. Thanks to (88), we get from (83)
that nᵀ

F,eσnF,e = 0 on each edge e ∈ E(F ). By (89)-(90), it follows from (81)-(82)

and (84) that (∂t(t
ᵀσnF,e) +nᵀ

F,e divF σ)|e = 0, which together with (85) and the
unisolvence of div div element in two dimensions, i.e. Theorem 5.16, implies that
σ|F = 0. �

We are in the position to prove the unisolvence.

Theorem 6.3. The degrees of freedom (80)-(87) are unisolvent for P�+1(K;T).

Proof. It is easy to see that

#N�+1(K) = 56 + 6(6�− 2) + 4

(
2�(�+ 1) +

1

2
(�− 1)(�− 2)− 4

)
+

1

3
(4�3 + 6�2 − 10�) =

4

3
(�+ 4)(�+ 3)(�+ 2)

= dimP�+1(K;T).

Take any τ ∈ P�+1(K;T) and suppose all the degrees of freedom (80)-(87) vanish.
Then by Lemma 6.2, τ ∈ B�+1(sym curl,K;T). Then taking q = τ in (87), we
conclude τ = 0. �

6.2. Lagrange-type degrees of freedom. The DoF N�+1 is designed to form
a finite element div div complex. If the exactness of the sequence is not the con-
cern, we can construct simpler degrees of freedom. Below is the Lagrange-type
H(sym curl)-conforming finite elements for trace-free tensors. Take the space of
shape functions as P�+1(K;T). The degrees of freedom are given by

τ (δ) ∀ δ ∈ V(K),(91)

(τ , q)e ∀ q ∈ P�−1(e;T), e ∈ E(K),(92)

(n× sym(τ × n)× n, q)F ∀ q ∈ P�−2(F ; S), F ∈ F(K),(93)

(n · τ × n, q)F ∀ q ∈ P�−2(F ;R2), F ∈ F(K),(94)

(τ , q)K ∀ q ∈ B�+1(sym curl,K;T).(95)

It is straightforward to verify the unisolvence of (91)-(95) due to the characteriza-
tion of trace operators and bubble functions.
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We can also take another set of degrees of freedom

τ (δ) ∀ δ ∈ V(K),

(nᵀ
i τt, q)e ∀ q ∈ P�−1(e), e ∈ E(K), i = 1, 2,

(n× sym(τ × n)× n, q)F ∀ q ∈ P̊�(F ; S), F ∈ F(K),(96)

(n · τ × n, q)F ∀ q ∈ ∇FP�(F )⊕ x⊥
P�−1(F ), F ∈ F(K),

(τ , q)K ∀ q ∈ B�+1(sym curl,K;T),

where
P̊�(F ; S) := {q ∈ P�(F ; S) : (tᵀ1qt2)(δ) = 0 for each δ ∈ V(K)}

with t1 and t2 being the unit tangential vectors of two edges of F sharing δ. The
degree of freedom (96) is motivated by the Hellan-Herrmann-Johnson mixed method
for the Kirchhoff plate bending problems [13, 14, 18] in two dimensions.

7. A finite element div div complex in three dimensions

In this section, we collect finite element spaces defined before to form a finite
element div div complex. We assume Th is a triangulation of a topological trivial
domain Ω.

7.1. A finite element divdiv complex. We start from the vectorial Hermite
element space in three dimensions [9]

V h := {vh ∈ H1(Ω;R3) :vh|K ∈ P�+2(K;R3) for each K ∈ Th,
∇vh(δ) is single-valued at each vertex δ ∈ Vh}.

The local degrees of freedom for V h(K) := V h|K are

v(δ),∇v(δ) ∀ δ ∈ V(K),

(v, q)e ∀ q ∈ P�−2(e;R
3), e ∈ E(K),

(v, q)F ∀ q ∈ P�−1(F ;R3), F ∈ F(K),

(v, q)K ∀ q ∈ P�−2(K;R3).

The unisolvence for V h(K) is trivial. And

dimV h = 12#Vh + 3(�− 1)#Eh +
3

2
(�+ 1)�#Fh +

1

2
(�3 − �)#Th.

Let

ΣT

h := {τh ∈ L2(Ω;T) :τh|K ∈ P�+1(K;T) for each K ∈ Th, all the

degrees of freedom (80)-(86) are single-valued},
then

dimΣT

h = 14#Vh + (6�− 2)#Eh +

(
2�(�+ 1) +

1

2
(�− 1)(�− 2)− 4

)
#Fh

+
1

3
(4�3 + 6�2 − 10�)#Th.

Clearly Lemma 6.2 ensures ΣT

h ⊂ H(sym curl,Ω;T). Let

ΣS

h := {τh ∈ L2(Ω; S) :τh|K ∈ Σ�,k(K) for each K ∈ Th, all the

degrees of freedom (46)-(49) are single-valued},
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then

dimΣS

h = 6#Vh + 3(�− 1)#Eh + (�2 − �+ 1)#Fh

+

(
1

2
�(�− 1) +

1

6
(�− 1)�(5�+ 14) +

1

6
(k3 − k)− 4

)
#Th.

The proof of Lemma 5.2 ensures ΣS

h ⊂ H(div div,Ω; S). Let

Qh := Pk−2(Th) = {qh ∈ L2(Ω) : qh|K ∈ Pk−2(K) for each K ∈ Th}
be the discontinuous polynomial space. Obviously

dimQh =
1

6
(k3 − k)#Th.

Lemma 7.1. It holds
div divΣS

h = Qh.

Proof. Apparently div divΣS

h ⊆ Qh. Then we focus on Qh ⊆ div divΣS

h.
Take any vh ∈ Qh. By the fact div divH2(Ω; S) = L2(Ω) [10], there exists

τ ∈ H2(Ω; S) such that
div div τ = vh.

Let Ihτ ∈ ΣS

h be determined by

N(Ihτ ) = N(τ )

for all DoFs N from (46) to (52). Note that for functions in H2(K), the integrals on
edge and pointwise value are well-defined. Since � ≥ 3, it follows from the Green’s
identity (45) that

(div div(τ − Ihτ ), q)K = 0 ∀ q ∈ P1(K), K ∈ Th.
Hence (vh−div div Ihτ )|K = div div(τ−Ihτ )|K ∈ P⊥

k−2,1(K). Applying (66), there

exists τ b ∈ ΣS

h such that τ b|K ∈ B�,k(div div,K; S) for each K ∈ Th, and
vh − div div Ihτ = div div τ b.

Therefore vh = div div(Ihτ + τ b), where Ihτ + τ b ∈ ΣS

h, as required. �
Theorem 7.2. Assume Ω is a bounded and topologically trivial Lipschitz domain
in R

3. The finite element div div complex

(97) RT
⊂−→ V h

dev grad−−−−−→ ΣT

h
sym curl−−−−−→ ΣS

h
div div−−−−→ Qh −→ 0

is exact.

Proof. For any sufficient vector function v and e ∈ E(K), we have from t = n1×n2

that
nᵀ

2(curl(dev gradv)))n1 + ∂t(t
ᵀ(dev gradv)t)

= −1

3
n1 · curl(n2 div v) + ∂tt(v · t)− 1

3
∂t(div v)

=
1

3
(n1 × n2) · ∇(div v) + ∂tt(v · t)− 1

3
∂t(div v) = ∂tt(v · t).

Hence by (69)-(70) it is easy to see that dev gradV h ⊂ ΣT

h. It holds from Lemma 6.2
and the degrees of freedom (81)-(82) that

(98) sym curlΣT

h ⊂ ΣS

h.

Thus we get from Lemma 7.1 that (97) is a complex.
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We then verify the exactness.
(1) V h ∩ ker(dev grad) = RT . By the exactness of the complex (20),

RT ⊆ V h ∩ ker(dev grad) ⊆ H1(Ω;R3) ∩ ker(dev grad) = RT .

(2) ΣT

h ∩ ker(sym curl) = dev gradV h, i.e. if sym curl τ = 0 and τ ∈ ΣT

h, then
there exists a v ∈ V h, s.t. τ = dev gradv.

Since sym curl τ = 0, by the div div complex (20) and the polynomial div div
complex (25), there exists v ∈ H1(Ω;R3) such that τ = dev gradv and v|K ∈
P�+2(K;R3) for each K ∈ Th. To show v ∈ V h, it suffices to prove div v is
single-valued at each vertex in Vh, since v ∈ H1(Ω;R3) and dev gradv = τ is
single-valued at each vertex in Vh. To this end, take a tetrahedron K ∈ Th, a
vertex δ ∈ V(K) and an edge e ∈ E(K) such that δ is an endpoint of e. By the fact
gradv = dev gradv + 1

3 (div v)I, we get

(div v|K)(δ) = 3
(
∂t(v · t)

)
(δ)− 3tᵀτ (δ)t,

where t is the unit tangential vector of e. This implies div v is single-valued at each
vertex in Vh. And then ΣT

h ∩ ker(sym curl) ⊆ dev gradV h.

(3) div divΣS

h = Qh. This is Lemma 7.1.

(4) ΣS

h ∩ ker(div div) = symcurlΣT

h.
We verify this identity by dimension count. By Lemma 7.1,

dim(ΣS

h ∩ ker(div div)) = dimΣS

h − dimQh

= 6#Vh + 3(�− 1)#Eh + (�2 − �+ 1)#Fh

+

(
1

6
(�− 1)�(5�+ 17)− 4

)
#Th.(99)

As a result of step (2),

dim symcurlΣT

h = dimΣT

h − dimdev gradV h = dimΣT

h − dimV h + 4

= 2#Vh + (3�+ 1)#Eh + (�2 − �− 3)#Fh

+
1

6
(�− 1)�(5�+ 17)#Th + 4.

Applying the Euler’s formula #Vh −#Eh +#Fh −#Th = 1, we get from (99) that

dim symcurlΣT

h = dim(ΣS

h ∩ ker(div div)). Then the result follows from (98).
Therefore the finite element div div complex (97) is exact. �

For the completeness, we present a two-dimensional finite element div div com-
plex but restricted to one element. A global version of (100) as well as a commuta-
tive diagram involving quasi-interpolation operators from Sobolev spaces to finite
element spaces can be found in [6].

Let V �+1(F ) := P�+1(F ;R2) with � ≥ 2 be the vectorial Hermite element [3, 9].

Lemma 7.3. For any triangle F , the polynomial complex

(100) RT
⊂−→ V �+1(F )

sym curlF−−−−−−→ Σ�,k(F )
divF divF−−−−−−→ Pk−2(F ) −→ 0

is exact.
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