
J. Numer. Math. 2023; 0(0):1–31

Long Chen* and Jingrong Wei1

Transformed primal–dual methods for2

nonlinear saddle point systems3

https://doi.org/10.1515/jnma-2022-00564
Received July 01, 2022; revised November 15, 2022; accepted December 26, 20225

Abstract: A transformed primal–dual (TPD) flow is developed for a class of nonlinear smooth saddle point sys-6
tem. The flow for the dual variable contains a Schur complementwhich is strongly convex. Exponential stability7
of the saddle point is obtained by showing the strong Lyapunov property. Several TPD iterations are derived by8
implicit Euler, explicit Euler, implicit–explicit, and Gauss–Seidelmethodswith accelerated overrelaxation of the9
TPDflow.Generalized to the symmetric TPD iterations, linear convergence rate is preserved for convex–concave10
saddle point systems under assumptions that the regularized functions are strongly convex. The effectiveness11
of augmented Lagrangian methods can be explained as a regularization of the non-strongly convexity and a12
preconditioning for the Schur complement. The algorithm and convergence analysis depends crucially on ap-13
propriate inner products of the spaces for the primal variable and dual variable. A clear convergence analysis14
with nonlinear inexact inner solvers is also developed.15
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ation17
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1 Introduction19

1.1 Problem setting20

Consider a class of nonlinear smooth saddle point systems:21

min
u∈Rm

max
p∈Rn

L(u, p) = f (u) − g(p) + (Bu, p) (1.1)

where B is an n × m matrix, n ⩽ m, with full row rank, f (u), g(p) are smooth convex functions with convexity22
constant μf , μg , and ∇f (u),∇g(p) are Lipschitz continuous with Lipschitz constants Lf , Lg , respectively. The23
point (u* , p*) solves the min-max problem (1.1) is said to be a saddle point of L(u, p), that is24

L(u* , p) ⩽ L(u* , p*) ⩽ L(u, p*) ∀ (u, p) ∈ Rm ×Rn .

Convex optimization problemswith affine equality constraints can be rewritten into a saddle point system (1.1):25

min
u∈Rm

f (u)

subject to Bu = b.
(1.2)

Then p is the Lagrange multiplier to impose the constraint Bu = b and L(u, p) = f (u) − (b, p) + (Bu, p). Note that26
μg = 0 since g(p) = (b, p) is linear and not strongly convex.27

The saddle point (u* , p*) satisfies the first order necessary condition for the critical point of L(u, p):28

∇f (u*) + BTp = 0
Bu* −∇g(p*) = 0.

(1.3)

If ∇f (u) = Au and ∇g(p) = Cp, where A, C are symmetric positive semidefinite matrices, one can recover the29
linear saddle point system:30 (︃

A BT

B −C

)︃(︃
u*

p*

)︃
=
(︃
f
g

)︃
(1.4)
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which arises in computational fluid dynamics [8], mixed finite element approximation of PDEs [17, 18, 34],31
optimal control problems [53], etc. (see [5] and references therein).32

For solving (1.3), the Arrow–Hurwicz andUzawamethods proposed in [1] is one of the earliest andmost fun-33
damental method. The pioneer work inspired influential algorithms such as the extragradient algorithm [36],34
the Popov’s modified method [44] (also known as optimistic gradient descent–ascent methods). For strongly35
convex-strongly concave systems, i.e., μf > 0 and μg > 0, linear convergence of the extragradient algorithmwas36
established in [36]. For general convex–concave systems only sub-linear rates are achieved in [26, 40, 50, 52].37

One may ask a question immediately: can we retain linear convergence rate only with partially strong38
convexity, i.e., μf > 0 but μg = 0, which covers the most important constrained optimization problem (1.2)? The39
answer is yes. When f is strongly convex, its convex conjugate exists, i.e., f *(ξ) = maxu∈Rm (ξ , u) − f (u) is well40
defined and convex. Then (1.1) is equivalent to the composite optimization problem without constraints:41

min
p∈Rn

f *(−BTp) + g(p). (1.5)

Notice f * is strongly convex since ∇f is Lipschitz continuous and B is full row rank, (1.5) is a strongly convex42
optimization problem with respect to the dual variable p. If f * and ∇f * is computationally available, convex43
optimization methods can be applied to solve (1.5) and obtain linear convergence with strong convexity of f *.44
Inexact Uzawamethods (IUM) for linear saddle point systems [2–4, 10, 22, 25, 43, 48] and nonlinear saddle point45
systems [18–21, 32] can be thought of as an inexact evaluation of ∇f * for solving (1.5) and achieving linear46
convergence rate. Usually a nonlinear inner iteration terminated with a certain accuracy for computing∇f * is47
required [2, 3, 20, 22, 31, 32, 43, 49].48

1.2 Flows49

We shall study the iterative methods from the ODE solvers point of view. Namely we treat (u(t), p(t)) as con-50
tinuous functions of t and design ODE systems so that the saddle point (u* , p*) is an equilibrium point of the51
corresponding dynamic system. Then we apply ODE solvers to obtain various iterative methods. By doing this52
way, we can borrow the analysis tools for dynamic systems to prove the stability and convergence theory of53
ODE solvers.54

Themain stream in this direction is the primal–dual gradient dynamics,which treat u as the primal variable55
and p as the dual variable and follows the primal–dual (PD) flow [1]:56 {︃

u′ = −∂uL(u, p) = −∇f (u) − BTp
p′ = ∂pL(u, p) = Bu −∇g(p)

(1.6)

where u′, p′ are taking the derivative of t. The exponential stability of the equilibrium point (u* , p*) is shown57
in [47] for problem (1.2) and asymptotic convergence for general convex–concave systems can be found in [23]58
and references therein. Then ODE solvers for (1.6) will lead to several iterative methods and the linear conver-59
gence may be obtained using the exponential stability in the continuous level.60

For linear saddle point problems, we have the following factorization:61 (︃
A BT

B −C

)︃
=
(︃

I 0
BA−1 I

)︃(︃
A 0
0 −S

)︃(︃
I A−1BT

0 I

)︃
(1.7)

where A ∈ Rm×m is symmetric positive definite (SPD), B ∈ Rn×m is surjective, C ∈ Rn×n is symmetric and semi-62
positive definite, and S = BA−1BT +C is the Schur complement of A. The triangular matrix in (1.7) can be viewed63
as a change of coordinate. By changing to the correct ‘coordinate’, the primal and dual variables are decoupled64
and the Schur complement S defines a strongly convex function of the dual variable; see (1.5).65

Generalized to nonlinear systems, we consider a change of variable v = u + I−1V BTp where IV is an SPD66
matrix. Based on this transformation, we propose the following transformed primal–dual (TPD) flow67 ⎧⎨⎩u′ = −I−1V ∂uL(u, p) = −I−1V (∇f (u) + BTp)

p′ = I−1Q
(︁
∂pL(u, p) − BI−1V ∂uL(u, p)

)︁
= −I−1Q

[︁
∇gB(p) − Bu + BI−1V ∇f (u)

]︁ (1.8)



L. Chen and J.Wei, Transformed primal–dual methods  3

(a) Trajectory of PD and TPD flows in the (u, p) coordinate. (b) Decay of Lyapunov function (1.10).

Fig. 1: Comparison of PD flow
(︃
u′
p′

)︃
=
(︃
−1 −1
1 0

)︃(︃
u
p

)︃
and TPD flow

(︃
u′
p′

)︃
=
(︃
−1 −1
0 −1

)︃(︃
u
p

)︃
for L(u, p) = 1

2 u2 − up. The ODE systems

are solved by ode45 in MATLAB.

where IQ is another SPD matrix and gB(p) := g(p) + 1
2p

TBI−1V BTp. Here following [11] and [56], the TPD flow is68
posed in appropriate inner products induced by SPD matrices IV and IQ on Rm and Rn , respectively. After the69
transformation, the gradient of the Schur complement BI−1V BTp is added to ∇g(p). Even μg = 0, the function70
gB is strongly convex and thus the exponential stability for the TPD flow can be established. More precisely, if71
(u(t), p(t)) solves the TPD flow (1.8), we shall prove the exponential decay72

E(u(t), p(t)) ⩽ e−μtE(u(0), p(0)), t > 0 (1.9)

where the Lyapunov function73

E(u, p) = 1
2‖u − u

*‖2IV + 12‖p − p
*‖2IQ (1.10)

and μ = min{μf ,IV , (2 − Lf ,IV )μgB ,IQ )} with assumption Lf ,IV < 2 which can be satisfied by rescaling.74
In Fig. 1, we present numerical results for the example L(u, p) = 1

2u
2 − up with u, p ∈ R. It is evident that75

the TPD flow is asymptotically stable and the Lyapunov function (1.10) converges without oscillations.76
On convergence analysis, for linear saddle point systems, it suffices to bound the spectrum of a matrix77

operator for the error; see [42, 55] and reference therein. For nonlinear problems, if the spectrum analysis is78
applied to the linearization problem, then it is limited to the local convergence, i.e., (uk , pk) should be sufficiently79
close to (u* , p*); see, e.g., [32].80

To overcome the limitation of the spectrum analysis, we shall follow the framework in [15] to verify the81
strong Lyapunov property in Theorem 3.1:82

−∇E(u, p) · G(u, p) ⩾ μ E(u, p)

where G(u, p) is the vector field defined on the right hand side of (1.8). Then the exponential decay (1.9) follows.83
Convergence analysis relies crucially on the assumption that the Lipschitz constant Lf ,IV < 2 which can be84
always satisfied by a rescaling.85

One can further ask the question: can we still have the linear convergence rate if not only μg = 0 but86
also μf = 0? Recall that, the strong convexity of the dual variable is recovered by the transformation on the87
dual variable flow. We can apply the transformation to the primal variable as well. If f is not strongly convex,88
but fB(u) = f (u) + 1

2 (B
TT−1P Bu, u) is strongly convex, we show the exponential stability can be obtained by the89

symmetric transformed primal–dual (STPD) flow:90 ⎧⎨⎩u′ = −I−1V (∂uL(u, p) + BTT−1P ∂pL(u, p))

p′ = I−1Q
(︁
∂pL(u, p) − BT−1U ∂uL(u, p)

)︁
.

(1.11)

Here we further introduce SPDmatrices TU , TP for the transformation and treat IV and IQ as preconditioners.91
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(a) Trajectories of PD, AL-PD, and STPD flows in (u1 , p) coordi-
nate.

(b) Decay of the Lyapunov function (1.10).

Fig. 2: Comparison of PD, AL-PD, and STPD flows for the example (1.13). In STPD, TU = IV = I and T−1P = I−1Q = βI with β = 10. The ODE
systems are solved by ode45 in MATLAB.

With appropriate scaling of TU and TP, we can assume Lipschitz constants Lf ,TU < 2 and Lg ,TP < 2. Then92
define the effective convexity constant μ = min{μV , μQ} with93

μV = min{1, 2 − Lf ,TU}μfB ,IV , μQ = min{1, 2 − Lg ,TP}μgB ,IQ

in Theorem 5.1, we show the exponential decay94

E(u(t), p(t)) ⩽ e−μtE(u(0), p(0)) ∀t > 0

for (u(t), p(t)) solves the STPD flow (1.11).95
Consider the convex optimization problems with affine equality constraints (1.2), the well-known aug-96

mented Lagrangian method (ALM) [30, 45] for solving97

min
u∈Rm

max
p∈Rn

Lβ(u, p) = f (u) +
β
2 ‖Bu − b‖

2 + (p, Bu − b) (1.12)

can be derived from STPD flow (1.11) by choosing T−1P = βI. From this point of view, the effectivness of ALM98
can be interpreted by the STPD flows in the continuous level. Notice we can also consider TPD flow for the99
augmented Lagrangian (1.12) which is more or less equivalent to STPD (1.11) for the original Lagrangian. We100
show careful analysis to explain the connection between TPD flows and ALM in Section 6.101

To illustrate different flows for constrained optimization problems (1.2), we present numerical results in102
Fig. 2 for the example103

min
(u1 ,u2)∈R2

f (u1 , u2) =
1
2u

2
1 − u2

subject to u1 − u2 = 0.
(1.13)

with u = (u1 , u2) ∈ R2 , p ∈ R. The convex function f is not strongly convex but restricted to ker B = {(u1 , u2) ∈104
R2 : u1 = u2} is or equivalently fB(u1 , u2) = 1

2u
2
1+ 1

2 (u1−u2)
2−u2 is strongly convex. Comparedwith applying the105

PD flow to Lagrangian (PD flow) or augmented Lagrangian (AL-PD flow), the STPD flow approached the saddle106
point with no oscillation and dramatic decay of the Lyapunov function (1.10).107

1.3 Schemes108

In the discrete level, we apply implicit Euler, explicit Euler, implicit–explicit (IMEX)methods, and aGauss–Seidel109
iteration with accelerated overrelaxation (AOR) [28] to the TPD flow (1.8) to obtain several iterative methods.110
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Implicit Eulermethodwith growing step size and efficient Newton type inner iteration [37] will yield super-111
linear convergence rate. On the explicit Euler method, an equivalent algorithm is:112

uk+1/2 = uk − I−1V (∇f (uk) + BTpk)
pk+1 = pk − αkI−1Q

(︀
∇g(pk) − Buk+1/2

)︀
uk+1 = (1 − αk)uk + αkuk+1/2

(1.14)

which can be viewed as a relaxation of the inexact Uzawa methods (IUM) and recovers IUM when αk = 1. The113
term uk+1/2 is introduced for computing BI−1V ∂uL(uk , pk) in (1.8). In other words, TPD flow can be viewed as a114
continuous version of IUM by dividing αk and letting αk → 0 in (1.14).115

When the step size αk is sufficiently small, in Theorem 4.2, we prove that116

E(uk+1 , pk+1) ⩽
(︂
1 − 1

4κ2

)︂
E(uk , pk)

with κ ⩾ max{κV ,κQ},κV := LV /μV ,κQ := LQ /μQ. We refer to Table 1 for the precise definition of these117
constants and comment on the rate briefly here.118

Roughly speaking, the rate of convergence is determined byκV(f ) :=Lf ,IV /μf ,IV andκQ(S)=κ(I−1Q BI−1V BT ) :=119
λmax

(︀
I−1Q BI−1V BT

)︀
/λmin

(︀
I−1Q BI−1V BT

)︀
. Both IV and IQ can be scalar, then (1.14) is an explicit first order method120

with linear convergence rate. However, in this case, when either κ(f ) or κ(BBT ) is large, the convergence will121
be very slow. When I−1V = 1/Lf I, we can choose I−1Q = Lf (BBT )−1 to improve κQ and the rate becomes 1 − c/κ2(f ).122

To further accelerate the linear rate 1 − c/κ2, we consider the IMEX scheme for TPD flow (1.8). Equivalently123
we replace the third step in (1.14) by124

uk+1 = arg minu∈Rm
f (u) + 1

2αk
‖u − uk + αkI−1V BTpk+1‖2IV . (1.15)

When IV = Lf I, (1.15) is one proximal iteration125

uk+1 = proxf ,αk /Lf

(︂
uk −

αk
Lf

BTpk+1
)︂

where recall that proxf ,λ(w) = argminu f (u) + 1
2λ ‖u − w‖2. Namely IMEX for (1.8) is equivalent to one inexact126

Uzawa iteration plus one proximal iteration. The linear convergence rate can be improved to (see Theorem 4.3),127

E(uk+1 , pk+1) ⩽
1

1 + c/κV
E(uk , pk) (1.16)

providedwe can choose IQ such thatκQ(S) ≪ κV.We can choose an inner product IV so thatκV(f ) small. But in128
the above schemes a prior information on the spectrum of the Schur complement BI−1V BT is required to design129
IQ in order to control κQ(S). Noted that when I−1V = A−1 is a dense matrix, even the Schur complement BI−1V BT130
is expensive to compute and store. When the proximal operator of f is available, we recommend IV = Lf I and131
I−1Q ≈ Lf (BBT )−1 so that (1.16) can be achieved. In particular, IV = rI and IQ = 1

r BB
T + δI is the scheme discussed132

in [29] and a sub-linear rate of 1/k is given for (non-smooth) constrained problems there.133
When the proximal operator of f is not available, we propose a newGauss–Seidel iterationwith accelerated134

overrelaxation (GS-AOR) for the TPD flow:135

uk+1 − uk
α = −I−1V (∇f (uk) + B⊺pk)

pk+1 − pk
α = −I−1Q

[︁
∇gB(pk) − B(2uk+1 − uk) + BI−1V ∇f (uk+1)

]︁
.

(1.17)

This is an explicit scheme due to the update of uk+1 before the update of pk+1. The term Bu in (1.8) is approxi-136
mated by B(2uk+1 − uk). With a modified Lyapunov function137

E(xk) =
1
2‖xk − x

*‖2MX−2αB − αDf (u* , uk) − αDgB (p* , pk)
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where x = (u, p),MX = diag{IV , IQ}, and R138

B =
(︃
0 BT

B 0

)︃
is a symmetric matrix, and the Bregman divergence of f and gB are139

Df (u, v) = f (u) − f (v) − ⟨∇f (v), u − v⟩
DgB (p, q) = gB(p) − gB(q) − ⟨∇gB(q), p − q⟩

we proved in Theorem 4.5 that140

E(xk+1) ⩽
1

1 + μα/2E(xk) ⩽
1

1 + cκE(xk)

where μ = min {μV , μQ} and a fixed step size αk = α < 1/ max{4LS , 2Lf ,IV , 2LgB ,IQ} with the constants defined141
in Table 1. In particular, for the constrained optimization problem (1.2), with a large enough IQ such that LS ⩽ 1,142
constant step size α = 1/8 is allowed.143

We can combine the transformed primal–dual iteration with the augmented Lagrangian methods. As we144
mentioned before, f may not be strongly convex but145

fβ(u) = f (u) +
β
2 ‖Bu − b‖

2

is μfβ -strongly convex. That is, f is strongly convex restricted on ker B = {u ∈ Rm : Bu = 0}. By choosing146
an appropriate SPD matrix A, the condition number of f can be modified to κA(f ) = Lf ,A /μf ,A . For IV = Aβ =147
A+βBBT , a simple I−1Q = βI is allowed as preconditioning of the Schur complement.We propose the ALM-GS-AOR148
scheme149 ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

uk+1 − uk
α = − I−1V (∇f (uk) + βBT (Buk − b) + BTpk)

pk+1 − pk
α = − β

[︁
BI−1V BTpk + b − B(2uk+1 − uk)

+BI−1V
(︁
∇f (uk+1) + βBT (Buk+1 − b)

)︁]︁
.

We show in Proposition 6.1 that150

κQ(S) = κ(I−1Q BI−1V BT ) ⩽ 1 + 1
βμS0

where μS0 = λmin(BA−1BT ). So for β large enough, e.g., β ⩾ 1/μS0 , κQ(S) is bounded by 2. Then with constant151
step size α = 1/8, we get the linear rate152

E(xk+1) ⩽
1

1 + 1
16μfβ ,Aβ

E(xk) ⩽
1

1 + cκAβ (fβ)
E(xk).

The choice I−1Q = βIn is simple but now I−1V ≈ (A + βBBT )−1 becomes harder to approximate. General precon-153
ditioners IV and IQ can be chosen and analyzed under the framework of transformed primal–dual methods,154
which extends the choice of augmented term parameter is usually a scalar in ALM literatures [7, 46]. An optimal155
choice of parameter β and inner product IV and IQ will be problem dependent. We summarize some typical156
choices of IV and IQ for explicit Euler, IMEX, and GS-AOR schemes with or without ALM in Table 2.157

1.4 Contribution158

To summarize, our main contribution of this work includes:159
– Wepropose anovel transformedprimal–dual flowandprove the saddle point (u* , p*) is exponentially stable160

by showing the exponential decay of a strong Lyapunov function. We show the symmetrized version can161
recover the well-known ALM.162
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– In the discrete level, we develop several transformed primal–dual iterations by applying implicit Euler,163
explicit Euler, implicit–explicit Euler, and GS-AOR methods of the TPD flow. All the schemes achieve the164
linear convergence rates with mild assumptions, even neither f nor g is strongly convex. In particular,165
GS-AOR is an explicit scheme achieving the state-of-the-art linear convergence rate.166

– Instead of solving a subproblem at each iteration accurately, we can relax to general linear inexact167
solvers I−1V and I−1Q . We also derive convergence analysis with nonlinear inexact inner solvers for sub-168
problem (1.15). Compared with existing works, our framework using the strong Lyapunov property pro-169
vides flexibility and much clear analysis to choose inexact inner solvers.170

The rest of paper is organized as follows. In Section 2 we describe problem settings and review Lyapunov anal-171
ysis used as tools for convergence analysis. Our motivation to use change of variable to recover strong convex-172
ity in dual variable is also highlighted in this section. In Section 3, the transformed primal–dual flow on the173
continuous level is developed and convergence analysis is given. Variants of discrete schemes as transformed174
primal–dual iterations are discussed in Section 4 and we further generalize our framework to inexact solvers.175
A symmetric transformed primal–dual flow for non-strongly convex f and g is proposed and analyzed in Sec-176
tion 5. In Section 6, we showed our algorithms can be adapted to augmented Lagrangian to solve constrained177
optimization problems.178

2 Preliminaries179

In this section, we provide background on convex functions and Lyapunov analysis. We also show the loss of180
exponential stability for the primal–dual flow and recover it by a change of variable.181

2.1 Convex functions182

Let V be a finite-dimensional Hilbert space with inner product (· , ·) and norm ‖ · ‖. V′ is the linear space of all183
linear and continuous mappings T : V → R, which is called the dual space of V, and ⟨· , ·⟩ denotes the duality184
pair between V and V′. For any proper closed convex function f : V → R, we say f ∈ Sμ with μ ⩾ 0 if f is185
differentiable and186

f (v) − f (u) − ⟨∇f (u), v − u⟩ ⩾ μ
2 ‖u − v‖2 ∀u, v ∈ V.

In addition, denote f ∈ Sμ,L if f ∈ Sμ and there exists L > 0 such that187

f (v) − f (u) − ⟨∇f (u) , v − u⟩ ⩽ L
2 ‖u − v‖2 ∀u, v ∈ V.

The Bregman divergence of f is defined as188

Df (v, u) := f (v) − f (u) − ⟨∇f (u), v − u⟩.

For fixed u ∈ V, Df (· , u) is convex as f is convex. If f ∈ Sμ,L , we have189

μ
2 ‖u − v‖

2 ⩽ Df (v, u) ⩽
L
2 ‖u − v‖

2 .

Especially for f (u) = 1
2‖u‖

2, Bregman divergence reduces to the half of the squared distance Df (v, u) = Df (u, v) =190
1
2‖u − v‖2. In general Df (v, u) is non-symmetric in terms of u and v. A symmetrized Bregman divergence is191
defined as192

⟨∇f (u) −∇f (v), u − v⟩ = Df (v, u) + Df (u, v).

By direct calculation, we have the following three-terms identity.193

Lemma 2.1 (Bregman divergence identity [13]). If f : V → R is differentiable, then for any u, v,w ∈ V, it holds that194

⟨∇f (u) −∇f (v), v − w⟩ = Df (w, u) − Df (w, v) − Df (v, u). (2.1)
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When f (u) = 1
2‖u‖

2, identity (2.1) becomes195

(u − v, v − w) = 1
2‖w − u‖2 − 1

2‖w − v‖2 − 1
2‖v − u‖

2 .

2.2 Lyapunov analysis196

In order to study the stability of an equilibrium x* of a dynamical system defined by an autonomous system197

x′ = G(x(t)) (2.2)

Lyapunov introduced the so-called Lyapunov function E(x) [27, 35], which is nonnegative and the equilibrium198
point x* satisfies E

(︀
x*
)︀
= 0 and the Lyapunov condition: −∇E(x) · G(x) is locally positive near the equilibrium199

point x*. That is the flow G(x) may not be in the perfect −∇E(x) direction but contains positive component in200
that direction. Then the (local) decay property of E(x) along the trajectory x(t) of the autonomous system (2.2)201
can be derived immediately202

d
dtE(x(t)) = ∇E(x) · x′(t) = ∇E(x) · G(x) < 0.

To further establish the convergence rate of E(x(t)), Chen and Luo [15] introduced the strong Lyapunov condi-203
tion: E(x) is a Lyapunov function and there exist constant q ⩾ 1, strictly positive function c(x) and function p(x)204
such that205

−∇E(x) · G(x) ⩾ c(x)Eq(x) + p2(x) (2.3)

holds true near x*. From this, one can derive the exponential decay E(x(t)) = O
(︀
e−ct
)︀
for q = 1 and the algebraic206

decay E(x(t)) = O
(︀
t−1/(q−1)

)︀
for q > 1. Furthermore if ‖x − x*‖2 ⩽ CE(x), then we can derive the exponential207

stability of x* from the exponential decay of Lyapunov function E(x).208
Note that for an optimizationproblem,wehave freedom todesign the vector fieldG(x) and choose Lyapunov209

function E(x). Throughout this paper, zeros denote zero numbers or zero vectors that is clear from the context.210
For example, G(x*) = 0 means a vector zero and E(x*) = 0 means a scalar zero for an equilibrium point x* .211

2.3 Primal–dual flow212

One of the simplest Lyapunov function for the saddle point system (1.1) is:213

E(u, p) =12‖u − u
*‖2 + 12‖p − p

*‖2 . (2.4)

The asymptotic convergence properties of the PD flow is discussed in [23]. We state in the following Lemma that214
E is a Lyapunov function but may not satisfy the strong Lyapunov property when g is not strongly convex.215

Lemma 2.2. Assume f (u) ∈ Sμf ,Lf and g(p) ∈ Sμg ,Lg with μf > 0, μg ⩾ 0. Then it holds that216

−∇E(u, p) ·
(︃
−∂uL(u, p)
∂pL(u, p)

)︃
⩾ μf ‖u − u*‖2 + μg‖p − p*‖2 ⩾ 0

for E(u, p) defined in (2.4).217

Proof. As∇L(u* , p*) = 0, we can insert∇L(u* , p*) and obtain218

−∇E(u, p) ·
(︃
−∂uL(u, p)
∂pL(u, p)

)︃
= ⟨∂uE(u, p), ∂uL(u, p) − ∂uL(u* , p*)⟩

+ ⟨∂pE(u, p), −∂pL(u, p) + ∂pL(u* , p*)⟩
= ⟨u − u* ,∇f (u) −∇f (u*)⟩ + ⟨p − p* ,∇g(p) −∇g(p*)⟩

⩾ μf ‖u − u*‖2 + μg‖p − p*‖2 .

This completes the proof.219
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By sign change of ∂uL(u, p) and ∂pL(u, p), the cross terms
⟨
u − u* , BT (p − p*)

⟩
and

⟨︀
p − p* , −B(u − u*)

⟩︀
are220

canceled. The symmetrized Bregman divergence of f can be bounded below by ‖u−u*‖2 by the strong convexity221
of f (u). However, that of g cannot be controlled by ‖p−p*‖2 if μg = 0, which is the loss of the strong convexity on222
the dual variable. One cannot achieve the exponential decay for Lyapunov function (2.4) by using the primal–223
dual flow, and this is the essential reason for the sub-linear convergence rate for many numerical schemes; see224
the literature review in the introduction.225

In the continuous level, a compensation is to introduce a rescaled primal–dual flow and design a tailored226
Lyapunov function such that the exponential decay can be verified under certain metric [15, 47]. In the discrete227
level, however, corresponding explicit schemes can only converge sub-linearly [39]. The linear rate can be re-228
tained if the scheme is implicit in p [38, 39] for which a linear saddle point system should be solved in each step.229
Recovery the strong Lyapunov property through the time rescaling in the dual variable is thus expensive.230

2.4 Recovery of strong convexity through transformation231

In view of (1.5), when f * is known, the flow for the dual variable can be the gradient flow of the strong convex232
function of the dual variable [33, 51]. In general, we consider a change of variable233

v = u + I−1V BTp. (2.5)

After transformation, the optimization problem can be formulated in terms of (v, p), i.e.,L(v, p) := L(u(v, p), p).234
Such idea has been successfully applied to the linear saddle point systems in [6, 16]. The primal–dual flow for235
(v, p) is236 {︃

v′ = −∂vL(v, p) = −∂uL(u, p)
p′ = ∂pL(v, p) = ∂pL(u, p) − BI−1V ∂uL(u, p)

(2.6)

which can be rewritten as the iteration of (u, p, v) variable237 {︃
v′ = −v + e(u)
p′ = −∇gB(p) + Be(u)

where e(u) = u−I−1V ∇f (u) and gB(p) = g(p)+ 1
2 (BI

−1
V BTp, p). If f (u) = 1

2‖u‖
2
A is quadratic and IV = A, the term e(u)238

vanishes, then v′ = −v and p′ = −∇gB(p) is decoupled for which the exponential decay can be easily obtained.239
In general, we can show if e(u) is a contraction, the strong Lyapunov property can be established for the240

primal-dual flow (2.6) for variable (v, p). In Section 3, we shall present a simplified flow for the original variable241
(u, p).242

2.5 Inner products243

When V = Rm ,Q = Rn , the standard l2 dot product of Euclidean space is usually chosen as the inner product244
and the norm induced is the Euclidean norm. We now introduce inner product (· , ·)IV induced by a given SPD245
operator IV : V → V defined as follows246

(u, v)IV := (IVu, v) = (u, IVv) ∀u, v ∈ V

and associated norm ‖ · ‖IV , given by247
‖u‖IV = (u, u)1/2IV

.

The dual norm w.r.t the IV-norm is defined as: for ℓ ∈ V′248

‖ℓ‖V′ = sup
0 /=u∈V

⟨ℓ, u⟩
‖u‖IV

.
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It is straightforward to verify that249

‖ℓ‖V′ = ‖ℓ‖I−1
V
:= (ℓ, ℓ)1/2I−1

V

:=
(︁
I−1V ℓ, ℓ

)︁1/2
.

We shall generalize the convexity and Lipschitz continuity with respect to IV-norm: we say f ∈ Sμf ,IV with250
μf ,IV ⩾ 0 if f is differentiable and251

f (v) − f (u) − ⟨∇f (u), v − u⟩ ⩾
μf ,IV
2 ‖u − v‖2IV ∀u, v ∈ V.

In addition, denote f ∈ Sμf ,IV ,Lf ,IV if f ∈ Sμf ,IV and there exists Lf ,IV > 0 such that252

f (v) − f (u) − ⟨∇f (u), v − u⟩ ⩽
Lf ,IV
2 ‖u − v‖2IV ∀u, v ∈ V.

Under this definition, the default norm is a special case with IV = I for which the subscript will be skipped, i.e.,253
μf , Lf for ‖ · ‖.254

Similarly we introduce inner product (· , ·)IQ induced by a given self-adjoint and positive definite operator255
IQ and the notation follows on Q. The convexity and Lipschitz constant of g w.r.t to ‖ · ‖IQ will be denoted by256
μg ,IQ and Lg ,IQ .257

2.6 Gradient descent step for the primary variable258

For f ∈ Sμf ,IV Lf ,IV , function259

e(u) = u − I−1V ∇f (u) (2.7)

can be thought of as one gradient descent step at u in the metric IV. By the triangle inequality, e(u) is always260
Lipschitz continuous with respect to IV-norm. Denote by Le,IV the Lipschitz constant of e(u), i.e., Le,IV > 0 such261
that262

‖e(u1) − e(u2)‖IV ⩽ Le,IV‖u1 − u2‖IV ∀u1 , u2 ∈ V.

When Le,IV < 1, e(u) is a contractive map. We derive a sufficient and necessary condition for e(u) being con-263
tractive in the following lemma.264

Lemma 2.3. Suppose f ∈ Sμf ,IV Lf ,IV . Then Le,IV < 1 if and only if 0 < Lf ,IV < 2.265

Proof. Consider u1 , u2 ∈ V,266

‖e(u1) − e(u2)‖2IV = ‖u1 − u2 − I−1V (∇f (u1) −∇f (u2))‖2IV
= ‖u1 − u2‖2IV + ‖∇f (u1) −∇f (u2)‖2I−1

V

− 2⟨u1 − u2 ,∇f (u1) −∇f (u2)⟩.

(2.8)

If Le,IV < 1, we have ‖e(u1) − e(u2)‖2IV < ‖u1 − u2‖2IV , and by (2.8)267

‖∇f (u1) −∇f (u2)‖2I−1
V
< 2⟨u1 − u2 ,∇f (u1) −∇f (u2)⟩

⩽ 2‖∇f (u1) −∇f (u2)‖I−1
V
‖u1 − u2‖IV

which implies Lf ,IV < 2. If Lf ,IV = 0, then ‖e(u1) − e(u2)‖2IV = ‖u1 − u2‖2IV contradicts with Le,IV < 1.268
We now show sufficiency. If 0 < Lf ,IV < 2, then for u1 , u2 ∈ V, we have the inequality [41, Ch. 2]269

‖∇f (u1) −∇f (u2)‖2I−1
V
< 2⟨u1 − u2 ,∇f (u1) −∇f (u2)⟩

and, by (2.8),270
‖e(u1) − e(u2)‖2IV < ‖u1 − u2‖2

which implies Le,IV < 1.271
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μ L

μS = λmin
(︀
I−1QBI−1VBT

)︀
L2S = λmax

(︀
I−1QBI−1VBT

)︀
μV = μf ,IV

L2V = 2
(︀
L2e,IV

(1 + L2S)
)︀

μQ =
(︀
2 − Lf ,IV

)︀
μgB ,IQ

L2Q = 2L2gB ,IQ

Tab. 1: Derived convexity constants and Lipschitz constants for f ∈ Sμf ,IV ,Lf ,IV ,
gB ∈ SμgB ,IQ ,LgB ,IQ , with gB(p) = g(p) + 1

2 (BI−1VBTp, p), and e(u) = u − I−1V∇f (u) is
Lipschitz continuous with constant Le,IV

< 1.

The condition Lf ,IV > 0 is to eliminate the degenerate case f (u) is affine. The condition Lf ,IV < 2 can be achieved272
by either a rescaling of f or the inner product IV. For example, for f ∈ Sμf ,Lf , we can choose I

−1
V = 1

Lf Im < 2
Lf Im ,273

then274
‖∇f (u1) −∇f (u2)‖2I−1

V
= 1
Lf

‖∇f (u1) −∇f (u2)‖2 ⩽ Lf ‖u1 − u2‖2 = ‖u1 − u2‖2IV

for all u1 , u2 ∈ V which implies Lf ,IV ⩽ 1. For this example, the function e(u) is simply a gradient descent step275
at u for function f with step size 1/Lf .276

3 Transformed primal–dual flow277

In this section, we propose a transformed primal–dual flow and verify the strong Lyapunov property for a278
quadratic and convexLyapunov function. Furthermore,we show theLipschitz continuity of theflow.Weassume279
f is strongly convex but gmaynot. In viewof the dual problem (1.5), the saddle point (u* , p*) exists and is unique.280

3.1 Transformed primal–dual flow281

Given an SPD matrix IV for V and IQ for Q, we consider a transformed primal–dual flow:282 {︃
u′ = Gu(u, p)
p′ = Gp(u, p)

(3.1)

with283

Gu(u, p) = −I−1V ∂uL(u, p) = −I−1V (∇f (u) + BTp) = e(u) − v (3.2)

Gp(u, p) = I−1Q
(︁
∂pL(u, p) − BI−1V ∂uL(u, p)

)︁
= −I−1Q

(︀
∇gB(p) − Be(u)

)︀
(3.3)

where recall that e(u) = u − I−1V ∇f (u), v = u + I−1V BTp, and gB(p) = g(p) + 1
2 (BI

−1
V BTp, p). Namely for the primary284

variable u, we use a preconditioned gradient flow and for the dual variable p, we use a preconditioned gradient285
flow associated to gB but perturbed by Be(u). Since B is surjective, BI−1V BT is always SPD. The non-strongly286
convex function g(p) is enhanced to a strongly convex function gB(p) ∈ SμgB ,IQ ,LgB ,IQ .287

Wedenote G(u, p) = (Gu(u, p), Gp(u, p))T . The equilibrium point (u* , p*) of the flow gives G(u* , p*) = 0, which288
satisfies the first order condition∇L(u* , p*) = 0.289

3.2 Strong Lyapunov property290

Define Lyapunov function291

E(u, p) = 1
2‖u − u

*‖2IV + 12‖p − p
*‖2IQ . (3.4)

The transformed primal–dual flow (3.1) satisfies the error equation292 (︃
u − u*

p − p*

)︃′
=
(︃
Gu(u, p) − Gu(u* , p*)
Gp(u, p) − Gp(u* , p*)

)︃
.
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We aim to verify the strong Lyapunov property to obtain the exponential decay. The key is the following lower293
bound of the cross term.294

Lemma 3.1. Suppose f ∈ Sμf ,IV ,Lf ,IV . For any u1 , u2 ∈ V and p1 , p2 ∈ Q, we have295

⟨∇f (u1) −∇f (u2), I−1V BT (p1 − p2)⟩

⩾
μf ,IV
2 ‖v1 − v2‖2IV −

Lf ,IV
2 ‖BT (p1 − p2)‖2I−1

V
− 1
2 ⟨∇f (u1) −∇f (u2), u1 − u2⟩

where recall that v = u + I−1V BTp is the transformed variable.296

Proof. To use the strong convexity of f , we switch between variables using relation v = u + I−1V BTp. Writes297

I−1V BT (p1 − p2) = v1 − v2 − (u1 − u2) = u2 − (u1 − v1 + v2).

Using the Bregman divergence identity (2.1) and bounds on the Bregman divergence298

⟨∇f (u1) −∇f (u2), u2 − (u1 − v1 + v2)⟩ = Df (u1 − v1 + v2 , u1) − Df (u1 − v1 + v2 , u2) − Df (u2 , u1)

⩾
μf ,IV
2 ‖v1 − v2‖2IV −

Lf ,IV
2 ‖u1 − u2 − (v1 − v2)‖2IV − Df (u2 , u1)

=
μf ,IV
2 ‖v1 − v2‖2IV −

Lf ,IV
2 ‖BT (p1 − p2)‖2I−1

V
− Df (u2 , u1).

(3.5)

Similarly, we exchange u1 and u2 to obtain299

⟨∇f (u2) −∇f (u1), u1 − (u2 + v1 − v2)⟩ = Df (u2 + v1 − v2 , u2) − Df (u2 + v1 − v2 , u1) − Df (u1 , u2)

⩾
μf ,IV
2 ‖v1 − v2‖2IV −

Lf ,IV
2 ‖BT (p1 − p2)‖2I−1

V
− Df (u1 , u2).

(3.6)

Summing (3.5) and (3.6), we obtain the desired bound.300

We next verify the strong Lyapunov property.301

Theorem 3.1. Assume f (u) ∈ Sμf ,IV ,Lf ,IV with 0 < μf ,IV ⩽ Lf ,IV < 2. Then for the Lyapunov function (3.4) and302
the TPD field G (3.2)–(3.3), the following strong Lyapunov property holds303

−∇E(u, p) · G(u, p) ⩾ μ E(u, p) +
μf ,IV
2 ‖v − v*‖2IV (3.7)

where 0 < μ = min {μV , μQ} with μV , μQ defined in Table 1. Consequently if (u(t), p(t)) solves the TPD flow (3.1),304
we have the exponential decay305

E(u(t), p(t)) ⩽ e−μtE(u(0), p(0)), t > 0.

Proof. To verify the strong Lyapunov property for E(u, p), we split it as306

−∇E(u, p) · G(u, p) = −∇E(u, p) · (G(u, p) − G(u* , p*))
= ⟨u − u* , ∂uL(u, p) − ∂uL(u* , p*)⟩
+ ⟨p − p* , BI−1V (∂uL(u, p) − ∂uL(u* , p*))⟩
− ⟨p − p* , ∂pL(u, p) − ∂pL(u* , p*)⟩

:= I1 + I2 − I3 .

By Lemma 2.2 for the primal–dual flow307

I1 − I3 = ⟨∇f (u) −∇f (u*), u − u*⟩ + ⟨∇g(p) −∇g(p*), p − p*⟩

which are non-negative terms.308
As IV and B are linear operators,309

I2 = ⟨I−1V BT (p − p*), ∂uL(u, p) − ∂uL(u* , p*)⟩

= ⟨∇f (u) −∇f (u*), I−1V BT (p − p*)⟩ + ‖BT (p − p*)‖2I−1
V
.
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We apply Lemma 3.1 to the cross term ⟨∇f (u) −∇f (u*), I−1V BT (p − p*)⟩ to get310

−∇E(u, p) · G(u, p) −
μf ,IV
2 ‖v − v*‖2IV ⩾

1
2 ⟨∇f (u) −∇f (u*), u − u*⟩ + ⟨∇g(p) −∇g(p*), p − p*⟩

+
(︂
1 −

Lf ,IV
2

)︂
‖BT (p − p*)‖2I−1

V

⩾
μV
2 ‖u − u*‖2IV + μQ2 ‖p − p*‖2IQ .

We then complete the proof by rearranging the terms.311

Remark 3.1. For the linear saddle point system, A ∈ Rm×m is SPD, C ∈ Rn×n is positive semidefinite, f (u) =312
1
2 (Au, u) + (a, u) and g(p) =

1
2 (Cp, p) + (c, p). An ideal choice is I

−1
V = A−1 and I−1Q = S−1 = (BA−1BT + C)−1. Then we313

have Le,IV = 0, μf ,IV = Lf ,IV = μgB ,IQ = LgB ,IQ = 1 and thus314

−∇E(u, p) · G(u, p) ⩾ E(u, p)

which yields the exponential decay315
E(u(t), p(t)) ⩽ e−tE(u(0), p(0)).

However, A−1 and S−1 are not computable in general. The inner product I−1V and I−1Q can be thought of as inexact316
solvers approximating A−1 and S−1, respectively.□317

To guarantee the exponential decay, we require 0 < Lf ,IV < 2 which is equivalent to e(u) is a contraction by318
Lemma 2.3. The requirement can be always satisfied by a rescaling. Indeed in later analysis, we will choose IV319
so that Lf ,IV ⩽ 1. Then μ = min{μf ,IV , μgB ,IQ}. Whenmin{μf ,IV , μgB ,IQ} ≪ max{μf ,IV , μgB ,IQ}, further scaling320
in IV or IQ can be introduced to balance the decay rate for the primal and dual variables. For discrete schemes,321
the rate will be determined by the condition number which is the ratio of Lipschitz constants and the convexity322
constants.323

So next we show that the vector fieldG(u, p) is Lipschitz continuous and give bounds on Lipschitz constants.324

Lemma 3.2. Assume∇f and∇gB are Lipschitz continuous with Lipschitz constant Lf ,IV and LgB ,IQ , respectively.325
Let Le,IV be the Lipschitz constant of e(u), then we have326

‖Gu(u1 , p1) − Gu(u2 , p2)‖IV ⩽ Le,IV‖u1 − u2‖IV + ‖v1 − v2‖IV (3.8)
‖Gp(u1 , p1) − Gp(u2 , p2)‖IQ ⩽ Le,IVLS‖u1 − u2‖IV + LgB ,IQ‖p1 − p2‖IQ (3.9)

for all u1 , u2 ∈ V and p1 , p2 ∈ Q.327

Proof. By the formulation (3.2) we have328
Gu(u, p) = e(u) − v.

Consequently329
‖Gu(u1 , p1) − Gu(u2 , p2)‖IV ⩽ Le,IV‖u1 − u2‖IV + ‖v1 − v2‖IV .

By the formulation (3.3),330

‖Gp(u1 , p1) − Gp(u2 , p2)‖IQ ⩽ ‖∇gB(p1) −∇gB(p2)‖I−1
Q
+ ‖B(e(u1) − e(u2))‖I−1

Q

⩽ LgB ,IQ‖p1 − p2‖IQ + Le,IVLS‖u1 − u2‖IV

where we have used331
λmax

(︁
I−1V BTI−1Q B

)︁
= λmax

(︁
I−1Q BI−1V BT

)︁
= L2S

to bound332
‖B(e(u1) − e(u2))‖2I−1

Q
⩽ L2S‖e(u1) − e(u2)‖2IV ⩽ L2SL2e,IV‖u1 − u2‖

2
IV .

Notice that on the right-hand side of (3.8), ‖v1 − v2‖IV appears which can be further bound by ‖u1 − u2‖IV and333
‖p1 − p2‖IQ using the triangle inequality. Here we keep ‖v1 − v2‖IV with a neat Lipschitz constant 1 and match334
the extra quadratic term in the strong Lyapunov property (3.7).335
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4 Transformed primal–dual iterations336

In this section,we derive several transformedprimal–dual iterations,which are the discrete schemes for solving337
the TPD flow and obtain linear convergence rate based on the strong Lyapunov property.338

4.1 Implicit Euler methods339

Given the initial guess (u0 , p0), for k = 0, 1, . . . , consider the implicit Euler method for the TPD flow (3.1):340 {︃
uk+1 = uk + αkGu(uk+1 , pk+1)
pk+1 = pk + αkGp(uk+1 , pk+1).

(4.1)

We show by the next theorem that the implicit scheme (4.1) inherits the linear convergence rate from the341
strong Lyapunov property in the continuous level.342

Theorem 4.1. Suppose f (u) ∈ Sμf ,IV ,Lf ,IV with 0 < μf ,IV ⩽ Lf ,IV < 2. Let (uk , pk) follows the implicit scheme (4.1)343
for the TPD flow with initial value (u0 , p0), it holds that, for any αk > 0,344

E(uk+1 , pk+1) ⩽
1

1 + αkμ
E(uk , pk), k ⩾ 0

for the Lyapunov function defined by (3.4) and μ = min {μV , μQ}.345

Proof. Since E(u, p) is convex, we have346

E(uk+1 , pk+1) − E(uk , pk) ⩽ ⟨∇E(uk+1 , pk+1), αkG(uk+1 , pk+1)⟩
⩽ − αkμE(uk+1 , pk+1).

The last inequality holds by the strong Lyapunov property (3.7) in the continuous level. Then the linear conver-347
gence follows.348

For the implicit schemes, the larger the step size, the better the convergence rate. By increasing αk , the outer349
iteration may even achieve super-linear convergence. However, the iteration (4.1) is a nonlinear system with u350
and p coupled together. Consider the example when IV = Lf Im is a scaled identity and the proximal operator of351
f is available, then we can solve uk+1 = proxf ,αk /Lf (uk −

αk
Lf B

Tpk+1) from the first equation of (4.1) and substitute352
into the second to get a nonlinear equation of pk+1353

pk+1 = pk − I−1Q
[︂
αk∇g(pk+1) + Buk − (1 + αk)B proxf ,αk /Lf

(︂
uk −

αk
Lf

BTpk+1
)︂]︂

.

If furthermore ∇proxf ,αk /Lf is known, Newton’s methods can be applied to solve this nonlinear equation. This354
is in the same spirit of the semi-smooth Newton method developed in [37] for a non-smooth convex function f355
(LASSO problem).356

In general, solving (4.1) may be as difficult as solving∇L(u, p) = 0 and thus may not be practical. We shall357
explore more explicit schemes.358

4.2 Explicit Euler methods359

An explicit discretization for (3.1) is as follows:360 {︃
uk+1 = uk + αkGu(uk , pk)
pk+1 = pk + αkGp(uk , pk).

(4.2)

We present an equivalent but computationally favorable form of Gp(u, p)361

Gp(u, p) = −I−1Q
[︁
∇g(p) − B(u − I−1V (∇f (u) + BTp))

]︁
. (4.3)
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Then (4.2) is equivalent to362 ⎧⎪⎪⎨⎪⎪⎩
uk+1/2 = uk − I−1V (∇f (uk) + BTpk)
pk+1 = pk − αkI−1Q

(︀
∇g(pk) − Buk+1/2

)︀
uk+1 = (1 − αk)uk + αkuk+1/2 .

(4.4)

The update of (uk+1/2 , pk+1) is a variant of inexact Uzawa methods and uk+1 is obtained by a weighted average363
of uk and uk+1/2. The convergence is clear in the formulation (4.2).364

Theorem 4.2. Suppose f (u) ∈ Sμf ,IV ,Lf ,IV with 0 < μf ,IV ⩽ Lf ,IV < 2. Let (uk , pk) follows the explicit scheme365
(4.2) for the TPD flow with initial value (u0 , p0). For the Lyapunov function defined by (3.4), it holds that366

E(uk+1 , pk+1) ⩽ (1 − δk)E(uk , pk)

for 0 < αk < min {μV /L2V , μQ /L2Q , μf ,IV /2} and367

0 < δk = min
{︁
αk(μV − L2Vαk), αk

(︁
μQ − L2Qαk

)︁}︁
< 1.

In particular, for αk = 1
2 min{μV , μQ}/ max{L

2
V , L2Q , 2}, we have the linear rate368

E(uk+1 , pk+1) ⩽ (1 − 1
4κ2 )E(uk , pk)

with κ ⩾ max{κV ,κQ},κV := max{LV , 2}/μV ,κQ := LQ /μQ.369

Proof. Since E(u, p) is quadratic and convex, we have370

E(uk+1 , pk+1) − E(uk , pk) = ⟨∂uE(uk , pk), uk+1 − uk⟩ +
1
2‖uk+1 − uk‖

2
IV

+ ⟨∂pE(uk , pk), pk+1 − pk⟩ +
1
2‖pk+1 − pk‖

2
IQ .

(4.5)

By formulation (4.2) and the strong Lyapunov property established in Theorem 3.1,371

⟨∂vE(uk , pk), uk+1 − uk⟩ + ⟨∂pE(uk , pk), pk+1 − pk⟩
= ⟨∇E(uk , pk), αkG(uk , pk)⟩

⩽ − αkμV
2 ‖uk − u*‖2IV − αkμQ

2 ‖pk − p*‖2IQ −
αkμf ,IV

2 ‖vk − v*‖2IV .

(4.6)

By the Lipschitz continuity of the flow, cf. Lemma 3.2,372

1
2‖uk+1 − uk‖

2
IV + 12‖pk+1 − pk‖

2
IQ

= α2k
2

(︁
‖Gu(uk , pk) − Gu(u* , p*)‖2IV + ‖Gp(uk , pk) − Gp(u* , p*)‖2IQ

)︁
⩽

α2kL
2
V

2 ‖uk − u*‖2IV + α
2
kL

2
Q

2 ‖pk − p*‖2IQ + α2k‖vk − v*‖
2 .

(4.7)

Summing (4.6) and (4.7),373

E(uk+1 , pk+1) − E(uk , pk) ⩽ − αk
(︁
μV − αkL2V

)︁ 1
2‖uk − u

*‖2IV

− αk
(︁
μQ − αkL2Q

)︁ 1
2‖pk − p

*‖2IQ

− αk(μf ,IV /2 − αk)‖vk − v
*‖2 .

Then the results follows by rearrangement of the inequality and bound of the quadratic polynomial of αk .374

We can always rescale the function f or IV so that Lf ,IV ⩽ 1 and consequently Le,IV < 1. We can also rescale IQ375

so that λmax
(︁
I−1Q BI−1V BT

)︁
⩽ 1. Consequently L2V ⩽ 4 and L2Q = O(L2g ,IQ +1). Theorem 4.2 shows the convergence376
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rate is determined by the condition number κV = O(κf ,IV ) and κQ = O(κ(I−1Q BI−1V BT )) which in turn depends377
crucially on choices of IV and IQ.378

Both IV and IQ can be scalars, then (4.3) is an explicit first order method with linear convergence rate.379
However, in this case, when either κ(f ) or κ(BBT ) is large, the convergence will be very slow since the rate is380
degenerate like 1 − c/κ2.381

We can choose an SPD matrix IV to make f better conditioned. As g is convex only, i.e., μg might be zero,382

the convexity μQ ⩾ λmin
(︁
I−1Q BI−1V BT

)︁
. In the ideal case, we choose I−1Q = (BI−1V BT )−1 and then μQ = 1 + μg383

but in practice (BI−1V BT )−1 may not be able to be computed efficiently. When I−1V = A−1 is dense, even the Schur384
complement BI−1V BT may not be formed explicitly. Without a priori information on the Schur complement, it is385
hard to choose IQ to make κQ small. A scalar IQ will lead to κQ = κ(BI−1V BT ) which competes with κf ,IV .386

After choosing IV and IQ, the optimal step size is the αk that reaching the upper bound of quadratic func-387
tions to determine δk . If the convexity constants μ’s and the Lipschitz constants of gradients L’s are given (or388
can be estimated), then Theorem 4.2 gives analytical guidance for choosing the step size. In practice, one can389
start from αk = 1 and decrease the step size with a fixed ratio, e.g., 1/2, until the residual is reduced.390

4.3 Implicit–explicit methods391

For the explicit scheme, the step size should be small enough and the convergence rate is 1 − c/κ2 which is very392
slow if either κV or κQ is large. Can we enlarge the step size and accelerate this linear rate?393

One way is to apply the Implicit–Explicit (IMEX) scheme for solving the TPD flow (3.1). Given an initial394
(u0 , p0), for k = 0, 1, . . . , update (uk+1 , pk+1) as follows:395 {︃

pk+1 = pk + αkGp(uk , pk)
uk+1 = uk + αkGu(uk+1 , pk+1).

(4.8)

That is, we update p by the explicit Euler method and solve u by the implicit Euler method. Again we can396
view (4.8) as a correction to the inexact Uzawa method397 ⎧⎪⎪⎪⎨⎪⎪⎪⎩

uk+1/2 = uk − I−1V (∇f (uk) + BTpk)
pk+1 = pk − αkI−1Q

(︀
∇g(pk) − Buk+1/2

)︀
uk+1 = argminu∈V

f (u) + 1
2αk

‖u − uk + αkI−1V BTpk+1‖2IV .
(4.9)

After one inexact Uzawa iteration, uk+1 is obtained by solving a strongly convex optimization problem of u.398
When IV = Lf Im , the last step is one proximal iteration399

uk+1 = proxf ,αk /Lf

(︂
uk −

αk
Lf

BTpk+1
)︂
.

We can also use IMEX schemes with updating u first with proximal iteration and p later using uk+1 − uk .400
Specific IQ = 1

r BB
T + δI is discussed in [29] where IV = rI with arbitrary r > 0 and step size αk = 1 is allowed.401

Our analysis is unified for general IV and IQ using the Lyapunov function. Compared with the explicit scheme,402
the IMEX scheme enjoys accelerated linear convergence rates.403

Theorem 4.3. Suppose f (u) ∈ Sμf ,IV ,Lf ,IV with 0 < μf ,IV ⩽ Lf ,IV < 2. Let (uk , pk) follows the IMEX scheme (4.9)404
for the TPD flow with initial value (u0 , p0). For the Lyapunov function defined by (3.4), it holds that405

E(uk+1 , pk+1) ⩽
1

1 + αkμk
E(uk , pk)

for 0 < αk < μQ /L2S,Q and μk = min {μV , μQ − αkL2S,Q}. In particular, for αk = 1
2μQ /L

2
S,Q, we have406

E(uk+1 , pk+1) ⩽
1

1 + 1
2μQmin{μV , μQ /2}/L2S,Q

E(uk , pk).
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Proof. Since E(u, p) is quadratic and convex, we have407

E(uk+1 , pk+1) − E(uk , pk) = ⟨∂uE(uk+1 , pk+1), uk+1 − uk⟩ −
1
2‖uk+1 − uk‖

2
IV

+ ⟨∂pE(uk+1 , pk+1), pk+1 − pk⟩ −
1
2‖pk+1 − pk‖

2
IQ .

(4.10)

We will use the strong Lyapunov property at (uk+1 , pk+1) but the component Gp(uk , pk) is evaluated at408
(uk , pk). Compared with the implicit scheme, there are some mismatch terms from the explicit step for p:409

⟨∂uE(uk+1 , pk+1), uk+1 − uk⟩ + ⟨∂pE(uk+1 , pk+1), pk+1 − pk⟩
= ⟨∇E(uk+1 , pk+1), αkG(uk+1 , pk+1)⟩
+ αk⟨pk+1 − p* ,∇gB(pk+1) −∇gB(pk) + B

(︀
e(uk) − e(uk+1

)︀
⟩

⩽ − αkμV
2 ‖uk+1 − u*‖2IV − αkμQ

2 ‖pk+1 − p*‖2IQ
+ αk⟨pk+1 − p* ,∇gB(pk+1) −∇gB(pk) + B

(︀
e(uk) − e(uk+1

)︀
⟩.

(4.11)

We use Cauchy–Schwarz inequality to bound the mismatch terms in (4.11):410

αk⟨pk+1 − p* ,∇gB(pk+1) −∇gB(pk) + B
(︀
e(uk) − e(uk+1)

)︀
⟩

⩽
α2k
2

(︁
L2e,IVL

2
S + L2gB ,IQ

)︁
‖pk+1 − p*‖2IQ + 1

2L2gB ,IQ
‖∇gB(pk+1) −∇gB(pk)‖2I−1

Q

+ 1
2L2e,IVL

2
S
‖B
(︀
e(uk+1) − e(uk)

)︀
‖2I−1

Q

⩽
α2k
2 L2S,Q‖pk+1 − p*‖2IQ + 12‖pk+1 − pk‖

2
IQ + 12‖uk+1 − uk‖

2
IV .

Use the negative terms in (4.10), we obtain411

E(uk+1 , pk+1) − E(uk , pk) ⩽ − αkμV
2 ‖uk+1 − u*‖2IV − 1

2αk
(︁
μQ − αkL2S,Q

)︁
‖pk+1 − p*‖2IQ .

Then the results follows by rearrangement of the inequality and bound of the quadratic polynomial of αk .412

Let us discuss the rate with assumption λmax
(︀
I−1Q BI−1V BT

)︀
⩽ 1 and μV ⩽ μQ /2. Theorem 4.3 shows the conver-413

gence rate of the IMEX scheme is (1 + cμQμV)−1. When both μQ and μV are small, the linear rate is still in the414
quadratic dependence of condition numbers. The improvement is that if we can choose IQ such that μQ ≫ μV,415
then we achieve the accelerated rate (1+ c/κV)−1. While for the explicit scheme, evenκQ is small, the rate is still416
worse than 1 − c/ max2{κV ,κQ} = 1 − c/κ2

V.417
Augmented Lagrangian can be viewed as a preconditioning of the Schur complement so that a simple I−1Q =418

βIn will lead to a well conditioned κQ (see Section 6 for details).419
The largest step size αk is still in the order of μQ. As u is treat implicitly, there is no restriction of the step size420

from μV. In Section 4.5we shall propose an explicitmethodwith enlarged step size and accelerated convergence421
rate.422

4.4 Inexact inner solvers423

For those TPD iterations, the most time consuming part is the inner solver for sub-problems. For the explicit424
scheme (4.2), that is the linear operators I−1V and I−1Q . For example, when IV = Lf I, if we treat Lf (BBT )−1 as the425
ideal exact inner solve, then κQ = 1. A general I−1Q can be treated as an inexact inner solver and the inexactness426
enters the estimate by λmin

(︀
I−1Q BI−1V BT

)︀
.427

For the IMEX scheme, the sub-problem in the third step of (4.9) is a strongly convex optimization problem.428
In this part, we derive the perturbation analysis for inexact inner solvers for this sub-problem.429
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Define the modified objective function for this sub-problem430

̃︀f (u; uk , pk+1) = f (u) + 1
2αk

‖u − uk + αkI−1V BTpk+1‖2IV (4.12)

the inexactness of the inner solve is measured by ‖∇̃︀f (u)‖2.431

Theorem 4.4. Suppose f (u) ∈ Sμf ,IV ,Lf ,IV with 0 < μf ,IV ⩽ Lf ,IV < 2. Suppose (uk , pk) follows the inexact IMEX432

iteration (4.9) with initial value (u0 , p0) and the inexact inner solver returns uk+1 satisfying ‖∇̃︀f (uk+1)‖2I−1
V

⩽ εk433
for k = 1, 2, · · · . Then for the Lyapunov function defined by (3.4), it holds that434

E(uk+1 , pk+1) ⩽
1

1 + αkμk
E(uk , pk) +

αk
(1 + αkμk)μV

εk

for 0 < αk < μQ /L2S,Q and μk = min
{︁
μV /2, μQ − αkL2S,Q

}︁
. In particular, for αk = μQ /2L2S,Q, the accumulative435

perturbation error for the inexact solve is436

E(un+1 , pn+1) ⩽ ρn+1E(u0 , p0) +
μQ

2μVL2S,Q

n∑︁
k=0

ρn−k+1εk

where μ = min{μV , μQ} and ρ = 1/(1 + μQμ/4L2S,Q) ∈ (0, 1).437

Proof. By definition (4.12),438

∇̃︀f (uk+1) = ∇f (uk+1) +
1
αk

(︁
IVuk+1 − IVuk + αkBTpk+1

)︁
we can write439

uk+1 − uk = αkI−1V
(︁
∇̃︀f (uk+1) −∇f (uk+1) − BTpk+1

)︁
= αk

(︁
I−1V ∇̃︀f (uk+1) + Gu(uk+1 , pk+1))︁ .

We use the strong Lyapunov property at (uk+1 , pk+1) but compared with (4.11), we have an additional gra-440
dient term due to the inexact inner solve:441

E(uk+1 , pk+1) − E(uk , pk)

= ⟨∂uE(uk+1 , pk+1), uk+1 − uk⟩ −
1
2‖uk+1 − uk‖

2
IV

+ ⟨∂pE(uk+1 , pk+1), pk+1 − pk⟩ −
1
2‖pk+1 − pk‖

2
IQ

⩽ ⟨∂uE(uk+1 , pk+1), αkGu(uk+1 , pk+1)⟩ + ⟨∂pE(uk+1 , pk+1), αkGp(uk , pk)⟩

− 1
2‖uk+1 − uk‖

2
IV − 1

2‖pk+1 − pk‖
2
IQ + ⟨∂uE(uk+1 , pk+1), αkI−1V ∇̃︀f (uk+1)⟩

⩽ − αkμV
4 ‖uk+1 − u*‖2IV − 1

2αk
(︁
μQ − αkL2S,Q

)︁
‖pk+1 − p*‖2IV + αk

μV
‖∇̃︀f (uk+1)‖2I−1

V

where the last inequality holds from Theorem 4.3 and by Cauchy-Schwarz inequality442

⟨∂uE(uk+1 , pk+1), αkI−1V ∇̃︀f (uk+1)⟩ = ⟨IV
(︁
uk+1 − u*

)︁
, αkI−1V ∇̃︀f (uk+1)⟩

⩽
αkμV
4 ‖uk+1 − u*‖2IV + αk

μV
‖∇̃︀f (uk+1)‖2I−1

V
.

Since the inexact solver terminates until ‖∇̃︀f (uk+1)‖2I−1
V

< εk , we have443

E(uk+1 , pk+1) − E(uk , pk) ⩽ −αkμkE(uk+1 , pk+1) +
αkεk
μV

with μk = min {μV /2, μQ − αkL2S,Q} and the accumulated error is straight forward.444
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For α = αk = μQ /2L2S,Q and εk ⩽ μμVε for some ε > 0, the accumulated perturbation error445

μQ
2μVL2S,Q

n∑︁
k=0

ρn−k+1εk ⩽ αμε
n∑︁
k=0

(︂
1

1 + αμ

)︂k+1
⩽ ε.

Furthermore, in the product ρn−k+1εk , the weight ρn−k+1 is geometrically increasing, we can choose relative446
large εk in the beginning and gradually decrease εk . On the other hand, when the outer iteration converges, the447
initial guess uk for the sub-problem448

∇̃︀f (uk) = ∇f (uk) + BTpk+1 = ∂uL(uk , pk) + BT (pk+1 − pk) → 0

is already small. A smaller εk can be achieved for constant inner iteration steps. Therefore the inexact IMEX449
scheme retains the accelerated linear convergence rates.450

4.5 A Gauss–Seidel iteration with accelerated overrelaxation451

In this subsection,wepropose an explicit scheme for the transformedprimal–dual flow: aGauss–Seidel iteration452
with accelerated overrelaxation (AOR) [28]:453 ⎧⎪⎨⎪⎩

uk+1 − uk
α = −I−1V (∇f (uk) + BTpk)

pk+1 − pk
α = −I−1Q

[︁
BI−1V ∇f (uk+1) +∇gB(pk) − B(2uk+1 − uk)

]︁
.

(4.13)

The formulation (4.13) is in Gauss–Seidel type as when updating pk+1, the updated uk+1 is used. AOR is applied454
to the term Bu ≈ B(2uk+1 − uk) with an overrelaxation parameter 2. Such change is motivated by accelerated455
overrelaxtion methods [28] and the linear convergence rate is indeed accelerated to (1 + c/κ)−1.456

For a symmetric matrix M, we define457

‖x‖2M := (x, x)M := xTMx.

When M is SPD, it defines an inner product and the induced norm. For a general symmetric matrix, ‖ · ‖M may458
not be a norm. However the following identity for squares still holds459

2(a, b)M = ‖a‖2M + ‖b‖2M − ‖a − b‖2M . (4.14)

LetMX = diag{IV , IQ} and x = (u, p). Then we have460

1
2‖x − x

*‖2MX
= 1
2‖u − u

*‖2IV + 12‖p − p
*‖2IQ .

Now we are ready to prove the convergence rate. Consider the Lyapunov function461

E(x) = 1
2‖x − x

*‖2MX−αB − αDf (u* , u) − αDgB (p* , p). (4.15)

where recall that B =
(︂
0 BT
B 0

)︂
is a symmetric matrix and Df and DgB are Bregman divergence of f and gB ,462

respectively.463

Lemma 4.1. For α < 1/ max{2LS , 2Lf ,IV , 2LgB ,IQ}, for the Lyapunov function E defined by (4.15), we have E(x) ⩾464
0 and E(x) = 0 if and only if x = x*.465

Proof. Notice466

MX − 2αB =
(︃

IV −2αBT

−2αB IQ

)︃
=
(︃

I 0
−2αBI−1V I

)︃(︃
IV 0
0 IQ − 4α2BI−1V BT

)︃(︃
I −2αI−1V BT

0 I

)︃
. (4.16)
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We have467
1
2‖x − x

*‖21
2MX−αB = 1

4‖x − x
*‖2MX−2αB = 1

4‖y − y
*‖2MY

⩾ 0 (4.17)

where the change of variable is468

y =
(︃
I −2αI−1V BT

0 I

)︃
x

and469

MY =
(︃
IV 0
0 IQ − 4α2BI−1V BT

)︃
is positive definite if α < 1/(2LS). In particular, the equality is obtained if and only if y = y*, which is equivalent470
to x = x* since the change of coordinate is invertible.471

For α < 1/ max{2Lf ,IV , 2LgB ,IQ}, we have472

1
2‖x − x

*‖21/2MX
= 1
4‖u − u

*‖2IV + 14‖p − p
*‖2IQ

⩾
1

2Lf ,IV
Df (u* , u) +

1
2LgB ,IQ

DgB (p* , p)

⩾ αDf (u* , u) + αDgB (p* , p).

(4.18)

The last inequality becomes equality if and only ifDf (u* , u) = DgB (p* , p) = 0,which is equivalent to u = u* , p = p*.473
Sum (4.17) and (4.18) we get the desired inequality474

E(x) = 1
2‖x − x

*‖2MX−αB − αDf (u* , u) − αDgB (p* , p) ⩾ 0

for α < 1/ max{2LS , 2Lf ,IV , 2LgB ,IQ} and the equality holds is and only if x = x
*.475

Then we show the accelerated linear convergence rate.476

Theorem 4.5. Suppose f (u) ∈ Sμf ,IV ,Lf ,IV with 0 < μf ,IV ⩽ Lf ,IV < 2. Let xk = (uk , pk) be generated by GS-477
AOR iteration (4.13) with initial value x0 = (u0 , p0) and α < 1/ max{2LS , 2Lf ,IV , 2LgB ,IQ}. Then for the discrete478
Lyapunov function (4.15), we have479

E(xk+1) ⩽
1

1 + μα/2E(xk). (4.19)

where μ = min {μV , μQ}.480

Proof. We use the identity for squares (4.14):481

1
2‖xk+1 − x

*‖2MX
− 1
2‖xk − x

*‖2MX
= ⟨xk+1 − x* , xk+1 − xk⟩MX

− 1
2‖xk+1 − xk‖

2
MX

. (4.20)

We write the scheme (4.13) as a correction of the implicit Euler scheme482

uk+1 − uk = α(Gu(xk+1) − Gu(x*)) + αI−1V BT (pk+1 − pk) + αI−1V (∇f (uk+1) −∇f (uk))
pk+1 − pk = α(Gp(xk+1) − Gp(x*)) + αI−1Q B(uk+1 − uk) + αI−1Q (∇gB(pk+1) −∇gB(pk)).

Recall that, for the TPD flow, we have proved in Theorem 3.1 that483

⟨MX(xk+1 − x*), G(xk+1) − G(x*)⟩ ⩽ − μ
2 ‖xk+1 − x

*‖2MX
.

We merge the first cross terms and use the identity (4.14) to expand as484

(uk+1 − u* , BT (pk+1 − pk)) + (pk+1 − p* , B(uk+1 − uk)) = (xk+1 − x* , xk+1 − xk)B

= 1
2 (‖xk+1 − x

*‖2B + ‖xk+1 − xk‖2B − ‖xk − x*‖2B).
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The other cross terms with the Bregman divergence is expanded using the identity (2.1)485

⟨uk+1 − u* ,∇f (uk+1) −∇f (uk)⟩ = Df (u* , uk+1) + Df (uk+1 , uk) − Df (u* , uk)
⟨pk+1 − p* ,∇gB(pk+1) −∇gB(pk)⟩ = DgB (p* , pk+1) + DgB (pk+1 , pk) − DgB (p* , pk).

Substituting back to (4.20) we obtain the inequality486

1
2‖xk+1 − x

*‖2MX
− 1
2‖xk − x

*‖2MX
⩽ − μα

2 ‖xk+1 − x*‖2MX
− 1
2‖xk+1 − xk‖

2
MX

+ α2 ‖xk+1 − x
*‖2B + α2 ‖xk+1 − xk‖

2
B − α

2 ‖xk − x
*‖2B

+ αDf (u* , uk+1) + αDf (uk+1 , uk) − αDf (u* , uk)
+ αDgB (p* , pk+1) + αDgB (pk+1 , pk) − αDgB (p* , pk).

Rewrite the inequality with E by rearranging the terms, we obtain487

E(xk+1) − E(xk) ⩽ − μα
2 ‖xk+1 − x*‖2MX

−
[︂
1
2‖xk+1 − xk‖

2
MX−αB − αDf (uk+1; uk) − αDgB (pk+1; pk)

]︂
⩽ − μα

2 ‖xk+1 − x*‖2MX

⩽ − μα
2 E(xk+1)

where in the second inequality, by the proof of Lemma 4.1, the extra term is negative, and in the third equality,488
we useMX ⩾ 1

2 (MX − αB) by a factorization similar to (4.16).489

Theorem 4.5 showed the step size is inversely proportional to the Lipschitz constants. Compared with the step490
size of the explicit schemes and IMEX schemes, which is also proportional to the convexity constants, the Lips-491
chitz constants are usually easier to estimate.492

Remark 4.1. If we further choose a large enough IQ (or scale appropriately) such that LS ⩽ 2, then the upper493
bound of the step size can be enlarged to α < 1/ max{4, 2LgB ,IQ}. For α = 1/ max

{︀
8, 4LgB ,IQ

}︀
, the convergence494

rate495
1

1 + μα/2 =
(︂
1 + min {μV , μQ}

8max{LgB,IQ , 2}

)︂−1
.

In particular, when g(p) = (b, p) is affine, LgB ,IQ = L2S ⩽ 1, we can choose constant step size α = 1/8 and get the496
linear rate497

1
1 + μα/2 = 1

1 + 1
16 min {μV , μQ}

.

5 Symmetric transformed primal–dual iterations498

In this section, we present symmetric transformed primal–dual iterations which retain linear convergence499
when f is strongly convex in the subspace ker(B) and may not be in the whole space.500

5.1 Symmetric transformed primal–dual flow501

To distinguish the role of transformation and preconditioners, we introduce SPDmatrices TU , TP for the trans-502
formation and treat IV and IQ as preconditioners. The change of variable associated with TU , TP is given as503

v = u + T−1U BTp, q = p − T−1P Bu.
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Recall that the strong convexity of the dual variable p comes from the strong convexity of gB(p) = g(p) +504
1
2
(︀
BT−1U BTp, p

)︀
. Symmetrically, define505

fB(u) = f (u) +
1
2 (B

TT−1P Bu, u). (5.1)

With the spirit of transformation, if fB(u) is strongly convex while μf = 0, linear convergence rates can be still506
obtained by applying transformation to both the primal and dual variables. There are applications under this507
consideration, for example, see [17] for solving Maxwell equations with divergence-free constraints.508

We present the symmetric transformed primal–dual (STPD) flow with IV , IQ as preconditioners:509 {︃
u′ = Gu(u, p)
p′ = Gp(u, p)

(5.2)

with510
Gu(u, p) = −I−1V (∂uL(u, p) + BTT−1P ∂pL(u, p))

= −I−1V
(︁
∇fB(u) + BT (p − T−1P ∇g(p))

)︁
Gp(u, p) = I−1Q

(︁
∂pL(u, p) − BT−1U ∂uL(u, p)

)︁
= −I−1Q

(︁
∇gB(p) − B(u − T−1U ∇f (u))

)︁
.

(5.3)

The following lower bound of the cross terms can be proved like Lemma 3.1. Here we state results with511
operators TU , TP.512

Lemma 5.1. Suppose f ∈ Sμf ,TU ,Lf ,TU . For any u1 , u2 ∈ V and p1 , p2 ∈ Q, we have513

⟨∇f (u1) −∇f (u2), T−1U BT (p1 − p2)⟩ ⩾
μf ,TU
2 ‖v1 − v2‖2TU −

Lf ,TU
2 ‖BT (p1 − p2)‖2T−1

U
− 1
2 ⟨∇f (u1) −∇f (u2), u1 − u2⟩

where recall v = u + T−1U BTp.514

Lemma 5.2. Suppose g ∈ Sμg ,TP ,Lg ,TP . For any u1 , u2 ∈ V and p1 , p2 ∈ Q, we have515

⟨∇g(p1) −∇g(p2), −T−1P B(u1 − u2)⟩ ⩾
μg ,TP
2 ‖q1 − q2‖2TP −

Lg ,TP
2 ‖B(u1 − u2)‖2T−1

P
− 1
2 ⟨∇g(p1) −∇g(p2), p1 − p2⟩

where recall q = p − T−1P Bu. In particular, when g(p) = (b, p) is affine, the equality holds with all terms are 0.516

The strong Lyapunov property and the Lipschitz continuity can be verified following the lines of proof in Sec-517
tion 3. For completeness, we present the results and skipped the proofs for brevity.518

Theorem 5.1. Choose TP such that g(p) ∈ Sμg ,TP ,Lg ,TP with Lg ,TP ⩽ 1. Choose TU such that f (u) ∈ Sμf ,TU ,Lf ,TU519
with Lf ,TU ⩽ 1 and assume fB is strongly convex, i.e, μfB ,IV > 0. Then for the Lyapunov function (3.4) and the520
STPD field G (5.3), the following strong Lyapunov property holds521

−∇E(u, p) · G(u, p) ⩾ μ E(u, p) +
μf ,TU
2 ‖v − v*‖2TU +

μg ,TP
2 ‖q − q*‖2TP (5.4)

where 0 < μ = min
{︀
μfB ,IV , μgB ,IQ

}︀
. Consequently if (u(t), p(t)) solves the STPD flow (5.2), we have the exponential522

decay523
E(u(t), p(t)) ⩽ e−μtE(u(0), p(0)) ∀t > 0.

Remark 5.1. The assumptions on Lipschitz constants can be relaxed to Lf ,TU < 2 and Lg ,TP < 2, then the effec-524
tive μ = min{μV , μQ} is defined as525

μV = min{1, 2 − Lf ,TU}μfB ,IV , μQ = min{1, 2 − Lg ,TP}μgB ,IQ .

Therefore the algorithm is robust with perturbation on Lipschitz constants around 1.526
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To guarantee the exponential decay of the STPD flow, we require both gB and fB are strongly convex. In the527
linear saddle point system, this reduced to the necessary and sufficient conditions in [56] for the well-posedness528
of a saddle point problem. Especially for g(p) = (b, p), it corresponds to the inf-sup condition for saddle point529
systems [12].530

Define531
eU = u − T−1U ∇f (u), eP = p − T−1P ∇g(p) (5.5)

They are Lipschitz continuous as discussed in Section 2.6 and the constantswill be denoted by LeU ,TU and LeP ,TP .532

Lemma 5.3. Assume ∇fB and ∇gB are Lipschitz continuous with Lipschitz constant LfB ,IV and LgB ,IQ , respec-533
tively. Let LeU ,IV , LeP ,IQ be the Lipschitz constant of eU , eP, respectively, then we have534

‖Gu(u1 , p1) − Gu(u2 , p2)‖IV ⩽ LfB ,IV‖u1 − u2‖IV + LeP ,IQLS‖p1 − p2‖IQ
‖Gp(u1 , p1) − Gp(u2 , p2)‖IQ ⩽ LgB ,IQ‖p1 − p2‖IQ + LeU ,IVLS‖u1 − u2‖IV

for all u1 , u2 ∈ V and p1 , p2 ∈ Q.535

5.2 Explicit Euler method536

An explicit discretization for (5.2) is as follows:537 {︃
uk+1 = uk + αkGu(uk , pk)
pk+1 = pk + αkGp(uk , pk).

(5.6)

To compute the transformation, we introduce intermediate variables uk+1/2, pk+1/2 and present an equivalent538
but computationally favorable form of (5.6):539 ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

uk+1/2 = uk − T−1U (∇f (uk) + BTpk)
pk+1/2 = pk − T−1P (∇g(pk) − Buk)

uk+1 = uk − αkI−1V
(︁
∇f (uk) + BTpk+1/2

)︁
pk+1 = pk − αkI−1Q

(︀
∇g(pk) − Buk+1/2

)︀
.

(5.7)

All four SPD operators can be scaled identities and scheme (5.7) can be interpreted as two steps of primal–dual540
iterations with the same gradient ∇f (uk) and ∇g(pk). The convergence analysis is more clear in the formula-541
tion (5.6). Follow the same proof of Theorem 4.2, we obtain the linear convergence of the scheme (5.7).542

Theorem 5.2. Choose TP such that g(p) ∈ Sμg ,TP ,Lg ,TP with Lg ,TP ⩽ 1 and choose TU such that f (u) ∈ Sμf ,TU ,Lf ,TU543
with Lf ,TU ⩽ 1. Assume fB is strongly convex, i.e, μfB ,IV > 0 and gB is strongly convex with μgB ,IQ > 0. Let (uk , pk)544
follows the explicit scheme (5.6) for the STPD flow with initial value (u0 , p0). For the Lyapunov function defined545
by (3.4), it holds that546

E(uk+1 , pk+1) ⩽ (1 − δk)E(uk , pk)

for 0 < αk < min
{︁
μfB ,IV /L

2
V , μgB ,IQ /L

2
Q

}︁
and547

0 < δk = min
{︁
αk(μfB ,IV − L2Vαk), αk

(︁
μgB ,IQ − L2Qαk

)︁}︁
< 1

with548
L2V = 2

(︁
L2fB ,IV + L2eU ,IVL

2
S

)︁
, L2Q = 2

(︁
L2gB ,IQ + L2eP ,IQL

2
S

)︁
.

Define549
κV = LV /μfB ,IV , κQ = LQ /μgB ,IQ .

Theorem 5.2 shows the convergence rate is determined byκV andκQ. For f , g ∈ C2, a guideline to choose IV , IQ550
would be551

IV ≈ ∇2f + BTT−1P B, IQ ≈ ∇2g + BT−1U BT .
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For affine g(p) = (b, p), it is straightforward to show Lg ,TP = 0 and LeP ,IQ = 1 for any TP , IQ. Let TP = IQ = I, we552
can choose TU = IV and Lf ,TU ⩽ 1 is satisfied by proper scaling. Then we have κQ = O(κ(BI−1V BT )). In this case,553
the convergence rate will be determined by κ(BI−1V BT ) and κV. The computational cost is basically the effort to554
compute I−1V .555

5.3 Implicit–explicit methods556

To get accelerated convergence rate, we can apply the IMEX scheme:557 {︃
pk+1 = pk + αkGp(uk , pk)
uk+1 = uk + αkGu(uk+1 , pk+1).

(5.8)

That is we update p by the explicit Euler method and solve u by the implicit Euler method. Again we can558
view (5.8) as a correction to the inexact Uzawa method559 ⎧⎪⎪⎨⎪⎪⎩

uk+1/2 = uk − T−1U (∇f (uk) + BTpk)
pk+1 = pk − αkI−1Q

(︀
∇g(pk) − Buk+1/2

)︀
uk+1 = argminu∈V

̃︀fB(u; uk , pk+1) (5.9)

where560 ̃︀fB(u; uk , pk+1) = fB(u) + 1
2αk

‖u − uk + αkI−1V BT
(︁
pk+1 − T−1P ∇g(pk+1)

)︁
‖2IV .

Compare with (4.9), one more gradient descent step pk+1 − T−1P ∇g(pk+1) is added. When I−1V = Im /Lf , the last step561
is one proximal iteration562

uk+1 = proxfB ,αk /Lf

(︂
uk −

αk
Lf

BT
(︁
pk+1 − T−1P ∇g(pk+1)

)︁)︂
.

The IMEX scheme enjoys accelerated linear convergence rates. We skipped the proof as it follows in line as563
Theorem 4.3.564

Theorem 5.3. Choose TP such that g(p) ∈ Sμg ,TP ,Lg ,TP with Lg ,TP ⩽ 1 and choose TU such that f (u) ∈ Sμf ,TU ,Lf ,TU565
with Lf ,TU ⩽ 1. Assume fB is strongly convex, i.e, μfB ,IV > 0 and gB is strongly convex with μgB ,IQ > 0. Let (uk , pk)566
follows the IMEX scheme (5.9) for the STPD flow with initial value (u0 , p0). For the Lyapunov function defined567
by (3.4), it holds that568

E(uk+1 , pk+1) ⩽
1

1 + αkμk
E(uk , pk)

for 0 < αk < μgB ,IQ /L
2
S,Q and μk = min {μfB ,IV , μgB ,IQ − αkL2S,Q}, where L2S,Q = L2gB ,IQ + L2eU ,IVL

2
S . In particular,569

for αk = 1
2μgB ,IQ /L

2
S,Q, we have570

E(uk+1 , pk+1) ⩽
1

1 + 1
2μgB ,IQ min{μfB ,IV , μgB ,IQ /2}/L2S,Q

E(uk , pk).

The inner solve in (5.9) can be relaxed to an inexact solver. We state the result as a corollary of Theorem 4.4.571

Corollary 5.1. Choose TP such that g(p) ∈ Sμg ,TP ,Lg ,TP with Lg ,TP ⩽ 1 and choose TU such that f (u) ∈ Sμf ,TU ,Lf ,TU572
with Lf ,TU ⩽ 1. Assume fB is strongly convex, i.e, μfB ,IV > 0 and gB is strongly convex with μgB ,IQ > 0. Suppose573
(uk , pk) follows the inexact IMEX iteration (5.9) with initial value (u0 , p0) and the inexact inner solver returns574
uk+1 satisfying ‖∇̃︀fB(uk+1)‖2I−1

V

⩽ εk for k = 1, 2, · · · . Then for the Lyapunov function defined by (3.4), it holds575
that576

E(uk+1 , pk+1) ⩽
1

1 + αkμk
E(uk , pk) +

αk
(1 + αkμk)μV

εk
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for 0 < αk < μgB ,IQ /L
2
S,Q and μk = min {μfB ,IV /2, μgB ,IQ − αkL2S,Q}, where L2S,Q = L2gB ,IQ + L2eU ,IVL

2
S . In particular,577

for αk = μgB ,IQ /2L
2
S,Q, the accumulative perturbation error for the inexact solve is578

E(un+1 , pn+1) ⩽ ρn+1E(u0 , p0) +
μgB ,IQ

2μfB ,IVL2S,Q

n∑︁
k=0

ρn−k+1εk

where μ = min{μfB ,IV , μgB ,IQ} and ρ = 1/(1 + μgB ,IQμ/4L
2
S,Q) ∈ (0, 1).579

Due to the nonlinear coupling BT (p−T−1P ∇g(p)), we cannot apply GS-AOR scheme to STPD in general. Only when580
g is affine, i.e., the constrained optimization problems,∇g is constant, the Gauss–Seidel splitting can be adapted581
to STPD and achieve the accelerated linear convergence. For this case, it can be also retrieved by considering582
augmented Lagrangian and apply TPD. We shall discuss this important case in the following section.583

6 Augmented Lagrangian methods584

In this section,we consider the augmented Lagrangianmethods [30, 45] for solving the constrained optimization585
problem (1.2). Consider the augmented Lagrangian586

min
u∈Rm

max
p∈Rn

Lβ(u, p) = f (u) +
β
2 ‖Bu − b‖

2 + (p, Bu − b) (6.1)

where β ⩾ 0. It is clear that the critical points ofLβ(u, p) are equivalent for all β, as the constraint Bu = b holds587
for critical points, andwhen β = 0, (6.1) returns to the Lagrangian of the constrained optimization problem (1.2).588

Notice (6.1) is still a nonlinear saddle point system with g(p) = (b, p) and fβ(u) = f (u) + β
2 ‖Bu − b‖

2, the TPD589
flow and the corresponding transformed primal–dual iterations can be adapted. In this section, we will show590
that simple choices of IQ = βIn in the TPD flow is a good preconditioner for solving augmented Lagrangian591
when β is sufficiently large. Particular discrete schemes will recover a class of augmented Lagrangianmethods.592

ALM can be also derived from STPD flow for the original Lagrangian by using TP = βI and thus enhance593
the stability by the strong convexity of fB . We first show the strong convexity equivalence between a simplified594
fB and fβ , where595

fB(u) = f (u) +
1
2 (B

TBu, u), fβ(u) = f (u) +
β
2 ‖Bu − b‖

2 .

Lemma 6.1. For any β > 0, fB is strongly convex if and only if fβ is strongly convex. In particular, μfβ ⩾ μfB for596
β ⩾ 1.597

Proof. Suppose fB is μfB -strongly convex with μfB > 0, for all u1 , u2 ∈ V,598

⟨∇fβ(u1) −∇fβ(u2), u1 − u2⟩ ⩾ min{β, 1}⟨∇fB(u1) −∇fB(u2), u1 − u2⟩

⩾min{β, 1}μfB‖u1 − u2‖
2 .

.

Hence fβ is μfβ -strongly convex with μfβ ⩾ min{β, 1}μfB > 0. For β ⩾ 1, μfβ ⩾ μfB .599
Suppose fβ is μfβ -strongly convex with μfβ > 0, for all u1 , u2 ∈ V,600

⟨∇fB(u1) −∇fB(u2), u1 − u2⟩ ⩾ min{β−1 , 1}⟨∇fβ(u1) −∇fβ(u2), u1 − u2⟩

⩾min{β−1 , 1}μfB‖u1 − u2‖
2 .

.

Hence fB is μfB -strongly convex with μfB = min{β
−1 , 1}μfβ > 0.601

Therefore ALM can achieve linear convergence rate even f is not strongly convex but fB is. Besides the enhanced602
stability, next we shall interpret the augmented Lagrangian as a preconditioner of the Schur complement: for603
sufficiently large β, a simple choice I−1Q = βI will lead to a well conditioned κQ. The condition number κV will604
be controlled by using another SPD matrix A.605
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Proposition 6.1. Let A be an SPDmatrix and define Aβ = A+βBTB for β > 0. Assume fB(u) ∈ SμfB ,A1 ,LfB ,A1 . Choose606

I−1V = A−1β =
(︁
A + βBTB

)︁−1
, I−1Q = βIn .

Then for β ⩾ 1607
min{μfB ,A1 , 1} ⩽ μfβ ,IV ⩽ Lfβ ,IV ⩽ max{LfB ,A1 , 1} (6.2)

and608
μS0

1 + βμS0
⩽ λmin

(︁
BA−1β BT

)︁
⩽ λmax

(︁
BA−1β BT

)︁
⩽

1
β (6.3)

where μS0 = λmin(BA
−1BT ). Consequently609

κIV (fβ) ⩽ κA1 (fB), κ(I−1Q BI−1V BT ) ⩽ 1 + 1
βμS0

.

Proof. Bound (6.2) is straight forward. Define Sβ = B
(︀
A + βBTB

)︀−1BT . By Woodbury matrix identity,610

BA−1β BT = B
(︁
A + βBTB

)︁−1
BT

= B
(︁
A−1 − A−1BT

(︀
β−1In + BA−1BT

)︀−1BA−1)︁BT
= S0 − S0

(︁
β−1In + S0

)︁−1
S0 .

Hence611

σ
(︁
BA−1β BT

)︁
= σ(Sβ) =

{︂
λ

1 + βλ , λ ∈ σ(S0)
}︂
.

Then (6.3) follows.612

As an example, if we choose β ⩾ 1/μS0 , then the condition number of the Schur complement is bounded by 2.613
While the condition number of fβ keeps unchanged and preconditioning of f can be achieved by appropriate614
choice of A. The condition number for the primary variable is bounded by κA1 (fB).615

In practice,
(︀
A+βBTB

)︀−1 can be further relaxed to an inexact solver I−1V which introduce a factor λmin(I−1V Aβ)616
in the convergence rate. In the sequel, we shall fix the simple choice I−1Q = βIn and β ≫ 1. We can either apply617
discretization of the TPD flow to the augmented Lagrangian (6.1) or the STPD flow to the original Lagrangian618
L(u, p) = f (u) − (b, p) + (Bu, p). The resulting schemes are slightly different but share similar convergence rate.619
Here is an example.620

The explicit scheme of the TPD flow for the augmented Lagrangian (ALM-Explicit) is:621 ⎧⎪⎪⎪⎨⎪⎪⎪⎩
uk+1/2 = uk − I−1V

(︁
∇f (uk) + βBT (Buk − b) + BTpk

)︁
pk+1 = pk − αkβ

(︀
b − Buk+1/2

)︀
uk+1 = uk − αkI−1V

(︁
∇f (uk) + βBT (Buk − b) + BTpk

)︁
.

(6.4)

Computationally the third step can be written as uk+1 = (1 − αk)uk + αkuk+1/2. The explicit scheme of the STPD622
flow for the Lagrangian with T−1P = I−1Q = βI:623 ⎧⎪⎪⎨⎪⎪⎩

uk+1/2 = uk − T−1U (∇f (uk) + BTpk)
pk+1 = pk − αkβ

(︀
b − Buk+1/2

)︀
uk+1 = uk − αkI−1V

(︁
∇f (uk) + βBT (Buk − b) + BTpk

)︁
.

(6.5)

So (6.4) and (6.5) are only different in the first step of updating uk+1/2: (6.5) is the gradient flow of u using ∂uL,624
and (6.4) is ∂uLβ . Discretization of the TPD or STPD flow gives generalized variants of augmented Lagrangian-625
like methods and provide flexibility of choosing transformation operators and preconditioners. Within our626
framework, one can easily derive convergence analysis by verification of assumptions.627

Next we present the convergence analysis. To save space, we only present the version of TPD flow for Lβ .628
The STPD flow for L is similar.629
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Theorem 6.1. Let A be an SPD matrix and define Aβ = A + βBTB for β > 0. Assume fB(u) ∈ SμfB ,A1 ,LfB ,A1 with630

0 < μfB ,A1 ⩽ LfB ,A1 ⩽ 1. Choose I−1V such that λmax(I−1V Aβ) ⩽ 1. Let (uk , pk) follows iteration (6.4)with initial value631
(u0 , p0), it holds that632

E(uk+1 , pk+1) ⩽ (1 − δk)E(uk , pk)

for 0 < αk < μ/4 with μ := min {μV , μQ} and633

δk = min {αk(μV − 4αk), αk (μQ − 4αk)}

where634

μV = μfB ,A1λmin(I
−1
V Aβ), μQ = βμS0

1 + βμS0
λmin(I−1V Aβ)

with μS0 = λmin(BA
−1BT ).635

In particular for αk = μ/8, we have636

E(uk+1 , pk+1) ⩽
(︂
1 − μ2

16

)︂
E(uk , pk).

Proof. By (6.2) and assumption LfB ,A1 ⩽ 1, we have Lfβ ,IV ⩽ 1. Consequently we can apply Theorem 4.2.637
To estimate the constants, we introduce a partial ordering for symmetric matrices. For two symmetric ma-638

trices X , Y , we say X ⪯ Y if Y − X is positive semidefinite. Then639

λmin(I−1V Aβ)IV ⪯ Aβ ⪯ λmax(I−1V Aβ)IV (6.6)
640

λmin(I−1V Aβ)BA−1β BT ⪯ BI−1V BT ⪯ λmax(I−1V Aβ)BA−1β BT . (6.7)

By Proposition 6.1 and (6.7), since λmax(I−1V Aβ) ⩽ 1,641

LgB ,IQ = L2S = λmax(I−1Q BI−1V BT ) = βλmax(BI−1V BT )

⩽ βλmax(I−1V Aβ)λmax
(︁
BA−1β BT

)︁
⩽ 1.

Therefore,642
L2V = 2

(︁
L2eβ ,IV (1 + L

2
S)
)︁
⩽ 4

L2Q = 2
(︁
L2gB ,IQ + L2S

)︁
⩽ 4

where eβ(u) = u − I−1V ∇fβ(u).643
Similarly,644

μgB ,IQ = λmin(I−1Q BI−1V BT ) = βλmin(BI−1V BT )

⩾ βλmin(I−1V Aβ)λmin
(︁
BA−1β BT

)︁
⩾ λmin(I−1V Aβ)

βμS0
1 + βμS0

.

Thus we have645

μV = μfB ,A1λmin(I
−1
V Aβ), μQ = βμS0

1 + βμS0
λmin(I−1V Aβ)

and desired estimate then follows.646

The assumption Lf ,A ⩽ 1 and λmax(I−1V Aβ) ⩽ 1 can be easily satisfied by scaling. For example, if Lf ,A > 1, we can647
assign Lf ,AA as a new A. Once Aβ is available, symmetric Gauss–Seidel or V-cycle multigrid iteration will define648
an I−1V with λmax(I−1V Aβ) ⩽ 1. As the upper bound requirement is Lfβ ,IV < 2, the analysis and algorithm is robust649
to small perturbation near Lfβ ,IV = 1.650

In the following we present the GS-AOR for the augmented Lagrangian (6.1) (ALM-GS-AOR):651 ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

uk+1 − uk
α = − I−1V (∇f (uk) + βBT (Buk − b) + BTpk)

pk+1 − pk
α = − β

[︁
BI−1V BTpk + b − B(2uk+1 − uk)

+BI−1V
(︁
∇f (uk+1) + βBT (Buk+1 − b)

)︁]︁
.

(6.8)



28  L.Chen and J.Wei, Transformed primal–dual methods

Tab. 2: Examples of I−1V and I−1Q for f ∈ Sμf ,Lf or f ∈ Sμf ,A ,Lf ,A and g(p) = (b, p). A is an SPD matrix induced inner product in V with Lf ,A ⩽ 1.

Linear inner solvers Rate

I−1V I−1Q β ≫ 1

Explicit 1 1
Lf Im Lf (BBT )−1 1 − 1/κ2(f )

Explicit 2 A−1 (BA−1BT )−1 1 − 1/κ2
A(f )

IMEX 1 1
Lf Im Lf (BBT )−1

(︀
1 + 1/κ(f )

)︀−1
nonlinear solver proxf ,αk /Lf (uk −

αk
Lf B

Tpk+1)
IMEX 2 A−1 (BA−1BT )−1

(︀
1 + 1/κA(f )

)︀−1
nonlinear solver minu∈V f (u) + 1

2αk ‖u − uk + αkI
−1
VBTpk+1‖2A

GS-AOR 1 1
Lf Im Lf (BBT )−1

(︀
1 + 1/κ(f )

)︀−1
GS-AOR 2 A−1 (BA−1BT )−1

(︀
1 + 1/κA(f )

)︀−1
ALM-Explicit 1 (Lf Im + βBTB)−1 βIn 1 − 1/κ2(f )
ALM-Explicit 2 (A + βBTB)−1 βIn 1 − 1/κ2

A(f )
ALM-GS-AOR 1 (Lf Im + βBTB)−1 βIn

(︀
1 + 1/κ(fB)

)︀−1
ALM-GS-AOR 2 (A + βBTB)−1 βIn

(︀
1 + 1/κA(fB)

)︀−1

Theorem 6.2. Let A be an SPD matrix and define Aβ = A + βBTB for β > 0. Assume fB(u) ∈ SμfB ,A1 ,LfB ,A1 with652

0 < μfB ,A1 ⩽ LfB ,A1 ⩽ 1. Choose I−1V such that λmax(I−1V Aβ) ⩽ 1. Let (uk , pk) follows iteration (6.8)with initial value653
(u0 , p0), it holds that654

E(uk+1 , pk+1) ⩽
1

1 + μα/2E(uk , pk)

for 0 < α < 1/4 with μ := min {μV , μQ} where655

μV = μfB ,A1λmin(I
−1
V Aβ), μQ = λmin(I−1V Aβ)

βμS0
1 + βμS0

with μS0 = λmin(BA
−1BT ). In particular for α = 1/8, we have656

E(uk+1 , pk+1) ⩽
1

1 + μ/16E(uk , pk).

Proof. By (6.2) and assumption LfB ,A1 ⩽ 1, we have Lfβ ,IV ⩽ 1. Consequently we can apply Theorem 4.5. The657
desired result follows from the constant bounds given in Theorem 6.1.658

In Table 2, we list out typical choices of I−1V and compare TPD and ALM schemes for convex optimization prob-659
lemswith affine equality constraints (1.2). Explicit schemes only require linear SPD solvers, but the convergence660
rate is O(1 − 1/κ2(f )) or O(1 − 1/κ2

A(f )). If the proximal operator of f is available and (BBT )−1 can be efficiently661
computed, we can apply the IMEX 1 to accelerate converge rate to O(1 − 1/κ(f )). If some preconditioner A−1 of662
f is given, then the convergence rate can be accelerated to O(1 − 1/κA(f )) using TPD-IMEX 2 scheme. However,663
an inner solver to a nonlinear strongly convex optimization problem is required. Overall we recommend the664
GS-AOR methods, which enjoy a convergence rate of (1 + c/κ)−1 and only require linear SPD solvers. When f is665
not strongly convex, we recommend to use ALM-GS-AOR which can enhance the convexity to fB .666

Our analysis on ALM shows that the condition number of f and Schur complement can be simultaneously667
improvedwith amodified linear solver (A+βBTB)−1 or amodified inner problem for fβ . Comparedwith schemes668
without ALM, update of the dual variable in ALM is simpler andmore importantly the stability is enhanced from669
the symmetrized transformed primal–dual flow point of view.670
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7 Conclusion and future work671

By revealing ‘Schur complement’ in the transformed primal–dual flow, we proposed first-order algorithms, the672
Transformed Primal-Dual (TPD) iterations, and achieve linear convergence rates without the strong convexity673
of function f or g. From a perspective of change of variables, the convergence rate in our analysis is essentially674
determined by choices of inner products on the primal and dual spaces. The augmented Lagrangian methods675
can enhance the stability and preconditioning the Schur complement so that the scaled identity defines a suit-676
able inner product in the dual space. We also derive an approach to analyze the inexact inner solvers with677
perturbation on the gradient norm of a modified objective function for the sub-problem. More importantly, we678
propose a Gauss–Seidel iterationwith accelerated overrelaxation (GS-AOR) to the TPDflow to obtain accelerated679
linear rate (1 + c/κ)−1.680

For the strongly convex-strongly concave nonlinear saddle point system, the optimal lower bound rate (1 +681
c/
√
κ)−1 for first-order methods is recently proved in [54]. We shall develop accelerated primal–dual methods682

to reach this rate and extend to convex–concave saddle point problems by combing the TPD flow.683
Multigrid methods have been developed for linear saddle point systems [2, 17] and convex optimization684

problems [14], showing convergence independent of problem sizes. One of our future work will be deriving685
multigrid-like methods for nonlinear saddle point systems. The TPD iterations can be used as good smoothers.686
Furthermore, we will extend this framework to tackle more general nonlinear saddle point systems, such as687
non-smooth objective function f , variables (u, p) restricted in convex sets. For multi-block problems, the TPD688
flowwill connect to the alternating direction method of multipliers (ADMM) [9, 24] and there relation deserves689
further investigation.690
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