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Abstract

A one-dimensional singularly perturbed problem with a boundary turning point is considered in this paper. Let V h be the linear
finite element space on a suitable grid Th. A variant of streamline diffusion finite element method is proved to be almost uniform
stable in the sense that the numerical approximation uh satisfies ‖u−uh‖∞ �C| ln �| infvh∈V h‖u− vh‖∞, where C is independent
with the small diffusion coefficient � and the mesh Th. Such stability result is applied to layer-adapted grids to obtain almost
�-uniform second order scheme for turning point problems.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider a streamline diffusion finite element method for a class of the following one-dimensional
singularly perturbed problem with a boundary turning point

− �u′′ − b(x)u′ = f (x), x ∈ (0, 1), (1)

u(0) = u(1) = 0, (2)

where the coefficient � satisfying 0 < �>1, and b(0) = 0, b(x) > 0, x ∈ (0, 1]. For the simplicity of presentation, we
mainly discuss the case b(x) = xp, p > 0. Our analysis can be adapted to more general case.

Although (1)–(2) is a typical elliptic partial differential equation (PDE), it is well known that the solution contains a
boundary layer near the boundary point x = 0. The standard finite element methods (FEMs) designed for elliptic PDEs
will have nonphysical oscillations [19] and the classical analysis of FEM for general elliptic equation fails because of
the weak coercivity. See Section 2 for detailed explanation.
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The main result of this paper is to establish a uniform stability and optimality results for a class of one-dimensional
singularly perturbed problems with a boundary turning point. We shall use a refined estimate of discrete Green functions
and consistency error to prove the following stability result on a general class of grids:

‖u − uh‖∞ �C| ln �| inf
v∈V h

‖u − vh‖∞. (3)

Since the logarithmical growth of � is slow, we can expect almost �-uniform second-order schemes if the grids is adapted
correctly. Using the regularity result on turning point problems [13,25] and the nonlinear approximation theory [8,7,6],
we can obtain almost second-order schemes for singularly perturbed problem with turning point which is not easy
using traditional finite difference methods; see [14,15] for an almost first-order �-uniform scheme.

2. Preliminaries

In this section, we shall review main ingredients in the finite element analysis and motivate our current work.
Let ‖ · ‖ denote the L2(�)-norm, ‖ · ‖2 denote the norm of the standard Sobolev space H 2(�), and ‖u‖a denote the

energy norm defined by the weak form of the elliptic PDE operator. Given a grid Th of (0, 1), let V h denote the linear
finite element space, uh the finite element approximation of u and uI the nodal interpolation of u. There are three main
ingredients for the error analysis of FEM.

2.1. Stability and optimality

The elliptic and coercivity of the weak form ensures the following stability result:

‖u − uh‖a �C1 inf
vh∈V h

‖u − vh‖a . (4)

In particular, ‖u − uh‖a �C1‖u − uI‖a .

2.2. Approximability

Interpolation error estimates for uI on quasi-uniform triangulations Th:

‖u − uI‖a �C2h‖u‖2 ∀u ∈ H 2(�). (5)

2.3. Regularity

Regularity result of elliptic operators on a smooth domain:

‖u‖2 �C3‖f ‖. (6)

Combining these three inequalities together, on quasi-uniform triangulations Th of a nice domain �, one can obtain
a first-order error estimate of the energy norm:

‖u − uh‖a �C1‖u − uI‖a �C1C2h‖u‖2 �C1C2C3h‖f ‖.

Furthermore, using duality arguments, one can obtain the second-order error estimate in L2 norm or L∞ norm with
more refined analysis.

The failure of the direct application of the above analysis to singularly perturbed problem is due to the non �-
uniformality. Although all constants in the inequalities (4) and (6) are independent with the mesh size, for singularly
perturbed problems, Ci = O(�−�), i = 1, 3 for some � > 0. And in (5) the norm ‖u‖2 is proportion by inversion to
�. Therefore when � is small, the constants in front of the convergent rate are large enough to leave a room for the
oscillation.

Several efforts are made to get �-uniform counter parts of those three ingredients. For the stability issue, to improve
the degenerate coercivity of the bilinear form as � → 0, Bertoluzza et al. [2,3] considered the negative norm for the
stabilized convection–diffusion operator. Sangalli [21,22] use the interpolation theory of function spaces to introduce
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a weaker norm. In this approach, the improved coercivity is mainly for the continuous operator. Another approach is to
use mesh dependent norms. For example, Brezzi et al. [4,5] consider mesh dependent norm for residual free method.
Zhang [26,27] considers the superconvergence approximation in a discrete energy norm for standard finite element
method on Shishkin grid. Those L2-type norm is a little bit weak such that the oscillation is still possible. For L∞
norm, on quasi-uniform grid, Schatz and Wahlbin [23] obtain the error estimate for ordinary Galerkin finite element.

Recently, Chen and Xu [6,7] have developed a variant of streamline diffusion finite element method (SDFEM) and
proved that, when b(x)�b0 > 0, the numerical solution uh on arbitrary grid have the following �-uniform quasi-optimal
stability result:

‖u − uh‖∞ � C

b0
inf

vh∈Vh

‖u − vh‖∞, (7)

where C independent of the mesh size and �. Previous efforts for such uniform stability result can be found at [20,21].
The analysis is mainly based on the (L∞, W−1,∞) �-uniform stability for the continuous problem which is firstly given
by Kopteva in [12].

The separation of the stability, approximability and regularity will simplify the error analysis. Comparing to traditional
approach of finite difference methods, application of this uniform stability can obtain error estimate for a large class
of layer adapted grids with a priori or a posteriori information on the second derivatives [6,7]. It can be also applied
to other problems, for example, the analysis of the multigrid-like solver for convection-dominated problems in the
maximum norm [17,18].

The approximability of a function on arbitrary grids is well studied in the approximation theory since 1970s. In one
dimension, it is called free knots approximation problem [8,9,16,10]. It turns out that the right function spaces for such
problem is Besov space, in which a fractional Lp, 0 < p < 1 metric is used. For example, de Boor [8,9] shows that if
u′′ is monotone and the grid equidistributes |u′′|1/2, then

‖u − uI‖∞ �CN−2‖u′′‖1/2, (8)

where ‖u‖1/2 = (
∫ |u′′|1/2 dx)2. To see this is indeed �-uniform, we note that usually u′′ ≈ �−2 in an O(�) region and

u′′ ≈ 1 in the rest region. Thus ‖u‖1/2 is �-uniform bounded, while the standard Sobolev norm ‖u′′‖ 
 �−3/2 is not.
The regularity result for singularly perturbed problems is also well studied in the literature. Kellogg et al. [11] gives a

pointwise estimate the derivative of u for singularly perturbed problems when b�b0 > 0. A special case for the second
derivative is

|u′′(x)|�C(1 + �−2e−b0x/�). (9)

This estimate is used in [7,6] with (7) and (8) to prove the second-order convergence of SDFEM.
It is clear that (7) cannot be applied directly to the boundary turning point case since b0 = 0. We remark that the

approximability of finite element spaces depends on the choice the grid but not PDEs. Pointwise regularity result for
turning point problem similar to (9) is also available in the literature [13,25]. Therefore it is crucial to get an �-uniform
stability and optimality result for SDFEM.

3. Stability of SDFEM

In this section, we shall introduce streamline diffusion finite element methods and present our main result. To make
the presentation more clear, proofs for several technique lemmas are left to the last section.

3.1. Problem setting

Let � = (0, 1). We shall use the following Hilbert spaces

H 1
0 (�) := {v ∈ L2(�) : v′ ∈ L2(�) and v(0) = v(1) = 0}.

We say that u is a weak solution to (1)–(2), if u ∈ H 1
0 (�) satisfying

ã(u, v) = (f, v), ∀v ∈ H 1
0 (�),
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where the bilinear form

ã(u, v) = �(u′, v′) − (bu′, v),

and (·, ·) denotes the L2 inner produce. From the theory of elliptic partial differential equations, (1)–(2) admits a unique
weak solution u ∈ H 1

0 (�).
Let N be an integer and let TN = {xi : 0 = x0 < x1 < · · · < xN < xN+1 = 1} be a grid of [0, 1] with N interior nodes

(unknowns). To be consistent with the traditional FEM analysis, we set h = 1/N , and also denote TN by Th. Let
�i = [xi−1, xi] and hi = xi − xi−1. Denote by �i the continuous piecewise linear basis function at the vertex xi . The
finite element space V h is defined as V h := {vh : vh =∑N

i=1ai�i}. Obviously V h is a finite dimensional subspace of
H 1

0 (�). The standard finite element discretization is to find uh ∈ V h such that

ã(uh, vh) = (f, vh), ∀vh ∈ V h.

We now define a grid-dependent bilinear form by

a(u, v) = ã(u, v) −
N+1∑
i=1

∫ xi

xi−1

�i (−�u′′ − bu′)(bv′),

where �i is a stabilization function on �i defined as

�i =

⎧⎪⎪⎨
⎪⎪⎩

(
hi

�

)
�i�i−1hi if � >

∫ xi

xi−1
b�i ,( ∫ xi

xi−1
b�i∫ xi

xi−1
b2�i�i−1

)
�i�i−1hi if ��

∫ xi

xi−1
b�i .

(10)

Let

f (v) = (f, v) −
N+1∑
i=1

∫ xi

xi−1

�if bv′.

Then the SDFEM discretization is to find uh ∈ V h, such that

a(uh, vh) = f (vh), ∀vh ∈ V h. (11)

Given a gridTh, denote by uI the continuous piecewise linear interpolation of u. Set e(x)=(uI −uh)(x)=∑N
i=1ei�i ,

where ei = e(xi), i = 1, 2, . . . , N . Noting a(u − uh, vh) = 0 for any vh ∈ V h, we then have the error equation

a(e, �i ) = a(uI − u, �i ), i = 1, 2, . . . , N . (12)

We shall analyze the left- and right-hand side of the error equation (12) to obtain our stability result.

3.2. Main results and outline of proof

We shall obtain an almost �-uniform stability and optimality result based on refined analysis of discrete Green
functions and the consistency error. We first define the discrete Green function.

Definition 3.1. Gi ∈ V h (i = 1, . . . , N) is called the discrete Green function at the vertex xi , if

a(�j , G
i) = �i

j ∀�j , 1�j �N , (13)

where �i
j is Kronecker symbol satisfying �i

j = 1 when i = j and 0 otherwise.

We also define the residual

ri := a(uI − u, �i ).
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For any given grid Th of (0, 1), we now define a sub-grid of Th

{xik : 1�k�M + 1, and 1 = i1 < · · · < iM = N < iM+1 = N + 1},
and Ik, k = 1, . . . , M + 1 by the following algorithm.

Algorithm 1. i1 = 1, I1 = 1.

For k = 1, . . .

if ik = N , define M = k; break.
else if 2xik �xN , define M = k + 1, iM = N and IM = 0; break.
else if 2xik ∈ [xj , xj+1), define ik+1 = j .

if ik+1 = ik , define Ik+1 = 1, ik+1 = ik + 1.
else define Ik+1 = 0.
end if

end if
End for
iM+1 = N + 1, IM+1 = 1.

Then we get that if Ik = 0, xik /xik−1 �2; and if Ik = 1, ik − ik−1 = 1. It is also obvious that if k < M , xik /xik−2 �2,
then we have M �C| ln x1|.

In [6], the global lower bound b(x)�b0 is used in the estimate of the discrete Green function. We shall use this
sub-grid to control the variation of the coefficient b and give estimate on the discrete Green function in each interval
of this sub-grid. Roughly speaking when the interval is away from the turning point, we have a positive lower bound
of b and previous analysis in [6] works. When it is close, we shall show the variation of b is bounded. See Section 5
for details.

Theorem 3.2. The numerical approximation uh of SDFEM with �i defined by (10) is almost �-uniform optimal in the
sense that

‖u − uh‖∞ �CM inf
v∈V h

‖u − vh‖∞.

Furthermore, if x1 > �� for some � > 1, we then have

‖u − uh‖∞ �C| ln �| inf
v∈V h

‖u − vh‖∞.

Proof. We shall outline the proof here and prove several estimates in the last section. Let Gi =∑N
j=1G

i
j�j . By the

definition of the discrete Green functions and the residual,

e(xi) = a(e, Gi) = a

⎛
⎝e,

N∑
j=1

Gi
j�j

⎞
⎠=

N∑
j=1

Gi
j rj =

M∑
k=2

ik−1∑
j=ik−1

Gi
j rj .

We shall use the estimate of Gi
j and rj in the last section (Theorem 5.5) to show that∣∣∣∣∣∣

ik−1∑
j=ik−1

Gi
j rj

∣∣∣∣∣∣ �C‖u − uI‖∞. (14)

Therefore

|(uI − uh)(xi)| = |e(xi)|�
M+1∑
k=2

∣∣∣∣∣∣
ik−1∑

j=ik−1

Gi
j rj

∣∣∣∣∣∣
�C

M+1∑
k=2

‖u − uI‖∞ �CM‖u − uI‖∞.
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By the triangle inequality

‖u − uh‖∞ �‖u − uI‖∞ + ‖uI − uh‖∞ �CM‖u − uI‖∞.

The result then follows by noting that the interpolation operator is stable in L∞ norm. �

Remark 3.3. For some special cases, we can get better estimate on M. For example, M �C ln N for piecewise uniform
grids (Shishikin grids).

4. Convergence analysis

In this section, we shall prove the convergence of the SDFEM on two types of layer adapted grids, Shishkin-type
grid [24] and Bakhvalov-type grid [1]. Let us consider the following particular singularly perturbed problem with a
boundary turning point:

− �u′′ − xpu′ = xpg(x), (15)

u(0) = u(1) = 0, (16)

where g(x) ∈ C1([0, 1]). We have the following estimate of the second derivatives of u [14],

|u′′(x)|�C

(
1 + �−2/(p+1) exp

(
− xp+1

�(p + 1)

))
. (17)

Let us consider layer-adapted grids to obtain almost second-order schemes. First we construct a Shishkin-type grid
[24]. Let N + 1 be an even integer and the transition point

� = min{ 1
2 , (2�(p + 1) ln N)1/(p+1)}.

In practice, � is so small that �= (2�(p+1) ln N)1/(p+1). Then [0, �] and [�, 1] are divided into (N +1)/2 subintervals.
Let

hi =

⎧⎪⎨
⎪⎩

2�

N + 1
, 1� i�(N + 1)/2,

2(1 − �)

N + 1
, (N + 1)/2 < i�N + 1.

(18)

Lemma 4.1. Let u be the solution to (15)–(16). For Shishkin grid,

‖u − uI‖L∞(Ii ) �
{

CN−2(ln N)2/(p+1), 1� i�(N + 1)/2,

CN−2, (N + 1)/2 + 1 < i�N + 1.

Proof. Since 1 + �−2/(p+1) exp(−xp+1/�(p + 1)) is monotone in �i , we get that [10,7],

‖u − uI‖L∞(Ii ) �C

(∫ xi

xi−1

(
1 + �−2/(p+1) exp

(
− xp+1

�(p + 1)

))1/2)2

.

When i�(N + 1)/2,

‖u − uI‖L∞(Ii ) �Ch2
i �

−2/(p+1) �CN−2(ln N)2/(p+1).
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When i > (N + 1)/2,

‖u − uI‖L∞(Ii ) �CN−2 + C

(∫ �+h(N+3)/2

�

(
�−2/(p+1) exp

(
− xp+1

�(p + 1)

))1/2)2

�CN−2 + C

(
�−1/(p+1)

∫ h(N+3)/2

0
exp

(
−�p+1 + (p + 1)�px

2�(p + 1)

))2

�CN−2 + C

(
�−1/(p+1)N−1

∫ h(N+3)/2

0
exp

(
−�px

2�

))2

�CN−2
(

1 + �−1/(p+1) 2�

�p

)2

�CN−2.

Then we complete the proof. �

Lemma 4.2. Let u be the solution to (15)–(16), uh is the SDFEM approximation on Shishkin grid (18) with �i defined
by (10). Then

‖u − uh‖∞ �CN−2(ln N)(p+3)/(p+1).

Proof. Since Shishkin grids are piecewise uniform, we get that M �C ln N . Then the conclusion follows directly by
Lemma 4.1 and Theorem 3.2. �

Now we present the numerical experiment to support our theoretic result. Let us consider the following boundary
value problem,

− �u′′ − xu′ = −2�x − x3, x ∈ (0, 1), (19)

u(0) = u(1) = 0. (20)

The true solution to (19)–(20) is

u(x) = 1

3

[
x3 −

∫ x

0 exp(−t2/2�) dt∫ 1
0 exp(−t2/2�) dt

]
,

which has a boundary layer near the boundary turning point x = 0. Now we consider the SDFEM approximation on
the Shishkin grid defined by (18).

Table 1 is on the maximum error of the true solution and SDFEM solution on Shishkin grid to the problem (19)–(20),
where the values of rate denote the error on N-node grid divided by the error on 2N + 1-node grid. The numerical
experiment supports our theoretic result, and indeed indicates a better convergence speed than the error estimate in
Lemma 4.2.

Table 1
The maximum error on Shishkin grid with different grid and �

N � = 1E − 6 Rate � = 1E − 8 Rate � = 1E − 10 Rate (2N+1)2ln2 N

N2ln2(2N+1)

31 5.0671E − 4 3.06 4.9955E − 4 3.05 4.9871E − 4 3.05 2.84
63 1.5512E − 4 3.55 1.5250E − 4 3.56 1.5214E − 4 3.57 2.97

127 4.3734E − 5 3.69 4.2793E − 5 3.70 4.2626E − 5 3.71 3.08
255 1.1845E − 5 3.79 1.1558E − 5 3.77 1.1479E − 5 3.79 3.17
511 3.1284E − 6 3.86 3.0633E − 6 3.81 3.0288E − 6 3.83 3.25

1023 8.1124E − 7 3.92 8.0434E − 7 3.83 7.9064E − 7 3.85 3.31
2047 2.0707E − 7 3.99 2.0995E − 7 3.85 2.0527E − 7 3.86 3.36
4095 5.1909E − 8 5.4494E − 8 5.3155E − 8
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Let us take Bakhvalov-type [1] grid as another example. Define the transition point � = (2�| ln �|)1/(p+1). In [0, �],
we put (N + 1)/2 elements such that

∫ xi

xi−1

�−1/(p+1) exp

(
− xp+1

2�(p + 1)

)
� 2C0

N + 1

∫ �

0
�−1/(p+1) exp

(
− xp+1

2�(p + 1)

)
, (21)

where C0 �1 is a given positive constant. In [�, 1], we put (N + 1)/2 uniform grid.

Lemma 4.3. Let u be the solution to (15)–(16). For Bakhvalov grid,

‖u − uI‖∞ �CN−2.

Proof. Similar as the proof of Lemma 4.1, we have

‖u − uI‖L∞(Ii ) �C

(∫ xi

xi−1

(
1 + �−2/(p+1) exp

(
− xp+1

�(p + 1)

))1/2)2

.

Note that �−2/(p+1) exp(−xp+1/�(p + 1))�1 on [0, �], and
∫ +∞

0 �−1/(p+1) exp(−x(p+1)/2�(p + 1))�C, we get by
(21),

‖u − uI‖L∞(Ii ) �CN−2, 1� i�(N + 1)/2.

Since �−2/(p+1) exp(−xp+1/�(p + 1))�1 on [�, 1], we get that

‖u − uI‖L∞(Ii ) �CN−2, (N + 1)/2 < i�N + 1. �

Lemma 4.4. Let u be the solution to (15)–(16), uh be the SDFEM approximation on Bakbvalov grid with �i defined
by (10). We have

‖u − uh‖L∞ �C(| ln �| + ln N)N−2.

Proof. By (21), we get that x1 �C�1/(p+1)�/N . The number of sub-grid nodes in [0, �] (denoted by M1) satisfies

2M1 �C
�

x1
�C(| ln �| + ln N).

Noting that the uniform grid in [�, 1] with (N + 1)/2 nodes, we have M �C(ln � + ln N). �

Table 2 is on the maximum error of the true solution and SDFEM solution on Bakhvalov grid to the problem
(19)–(20), where the values of rate denote the error on N-node grid divided by the error on 2N + 1-node grid. The
numerical experiment supports our theoretic result.

Table 2
The maximum error on Bakhvalov grid with different grid and �

N � = 1E − 8 Rate � = 1E − 10 Rate � = 1E − 12 Rate (2N+1)2 ln N

N2 ln(2N+1)

31 9.2668E − 4 3.67 1.0321E − 3 3.65 1.1216E − 3 3.64 3.42
63 2.5280E − 4 3.69 2.8245E − 4 3.68 3.0797E − 4 3.67 3.48

127 6.8523E − 5 3.73 7.6792E − 5 3.71 8.3853E − 5 3.71 3.52
255 1.8384E − 5 3.78 2.0687E − 5 3.74 2.2601E − 5 3.75 3.57
511 4.8601E − 6 3.85 5.5246E − 6 3.78 6.0330E − 6 3.78 3.61

1023 1.2602E − 6 3.94 1.4630E − 6 3.81 1.5972E − 6 3.80 3.64
2047 3.2018E − 7 3.99 3.8387E − 7 3.86 4.2007E − 7 3.82 3.67
4095 8.0220E − 8 9.9566E − 8 1.0987E − 7
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5. Estimate of discrete Green functions and the residual

Let us denote ui = uh(xi), then uh(x) =∑N
i=1ui�i (x). Let vh = �i , i = 1, 2, . . . , N in (11), we get the system of

equations

Auh = fh,

where A = (aij ) is a tri-diagonal matrix with aij = a(�j , �i ), uh = (u1, u2, . . . , uN)T and fh = (f (�1), f (�1), . . . ,

f (�N))T. Here with a slightly abuse of the notation, we identify a function in the finite element space with a vector in
RN .

Direct calculation gives us that

ai,i−1 = − �

hi

+
∫ xi

xi−1
b�i

hi

−
∫ xi

xi−1
�ib

2

h2
i

,

ai,i = �

hi

+ �

hi+1
−
∫ xi

xi−1
b�i

hi

+
∫ xi+1
xi

b�i

hi+1
+
∫ xi

xi−1
�ib

2

h2
i

+
∫ xi+1
xi

�i+1b
2

h2
i+1

,

ai,i+1 = − �

hi+1
−
∫ xi+1
xi

b�i

hi+1
−
∫ xi+1
xi

�i+1b
2

h2
i+1

,

with standard modifications for i = 1 and N . It is easy to see that if �i is determined by (10), A is an M-matrix.
The following lemma shows the basic properties of the discrete Green function for the SDFEM.

Lemma 5.1. Let Gi =∑N
j=1G

i
j�j . Then Gi

j satisfy

(1) 0�Gi
1 < · · · < Gi

i > Gi
i+1 > · · · > Gi

N �0, and

(2) Gi
j � 1

b̄j+1
�Cx

−p

j+1, where b̄j+1 =
∫ xj+1
xj

b(x)

hj+1
.

Proof. Since A is M-matrix, we immediately know Gi
j �0.

We first prove Gi
j−1 < Gi

j for j < i by induction. First because a1,1G
i
1 + a2,1G

i
2 = 0, we get Gi

1 < Gi
2. Suppose

Gi
k−1 < Gi

k holds. Noting that ak−1,k + ak,k + ak+1,k = ∫ xk+1
xk

b/hk+1 − ∫ xk

xk−1
b/hk �0, we have

0 = ak−1,kG
i
k−1 + ak,kG

i
k + ak+1,kG

i
k+1

> ak−1,kG
i
k + ak,kG

i
k + ak+1,kG

i
k+1

�ak+1,k(G
i
k+1 − Gi

k).

Since ak+1,k < 0, we conclude Gi
k < Gi

k+1. Similarly, we can prove that Gi
j < Gi

j−1 when j > i.
It is left to prove (2). By the definition

a(vh, G
i) = vh(xi), ∀vh ∈ V h. (22)

We shall choose a special vh ∈ V h to prove (2). When j � i, setting vh =∑j

k=1�k in (22), we get

N∑
l=1

j∑
k=1

al,kG
i
l = 1.

By the formula aj,j−1 + aj,j + aj,j+1 = 0, we get

(a1,1 + a1,2)G
i
1 + aj+1,j (G

i
j+1 − Gi

j ) + (aj,j−1 + aj,j + aj+1,j )G
i
j = 1. (23)
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The first two terms of (23) are positive. Note that

aj,j−1 + aj,j + aj+1,j = 1

hi+1

∫ xi+1

xi

b(x) = b̄j+1.

Then we can conclude that Gi
j � b̄−1

j+1 when j � i. (2) is also valid for j < i by (1) and Gi
i �1/b̄i+1. �

We obtain the following formula for the residual ri = a(uI − u, �i ) by direct computation.

Lemma 5.2.

ri = ti − ti+1, i = 1, . . . , N .

where

ti = 1

hi

∫ xi

xi−1

b(uI − u) + �

hi

∫ xi

xi−1

b�i (uI − u)′′ + 1

hi

∫ xi

xi−1

b2�i (uI − u)′ +
∫ xi

0
b′(uI − u)

i∑
k=1

�i . (24)

The following technique lemma estimates the residual. It is the counterpart of the consistency error in the finite
difference analysis.

Lemma 5.3.

|ti |�Cx
p
i ‖u − uI‖∞.

Proof. Let us estimate the terms of ti in (24) on by one. The estimate on the first and last term is given by the following
two inequalities.∣∣∣∣ 1

hi

∫ xi

xi−1

b(uI − u)

∣∣∣∣ �x
p
i ‖u − uI‖∞,

∣∣∣∣∣
∫ xi

0
b′(u − uI )

i∑
k=1

�i

∣∣∣∣∣ �‖u − uI‖∞
∫ xi

0
b′ �x

p
i ‖u − uI‖∞.

Let us consider the second term of ti in (24).∣∣∣∣ �

hi

∫ xi

xi−1

b�i (uI − u)′′
∣∣∣∣ � �

hi

‖u − uI‖∞
∣∣∣∣
∫ xi

xi−1

(b�i )
′′
∣∣∣∣ . (25)

Assume that �i = 	i�i�i−1hi , where

	i =

⎧⎪⎪⎨
⎪⎪⎩

hi

�
if � >

∫ xi

xi−1
b�i ,∫ xi

xi−1
b�i∫ xi

xi−1
b2�i�i−1

if ��
∫ xi

xi−1
b�i ,

(26)

when � >
∫ xi

xi−1
b�i , �	i = hi ; when ��

∫ xi

xi−1
b�i ,

�	i �
(
∫ xi

xi−1
b�i )

2∫ xi

xi−1
b2�i�i−1

� (hib(xi))
2

Chib2(xi)
�Chi .

Then we get that �	i �Chi for all 1� i�(N + 1).

�

hi

∣∣∣∣
∫ xi

xi−1

(b�i )
′′
∣∣∣∣= �	ihi

hi

∣∣∣∣
∫ xi

xi−1

(b�i�i−1)
′′
∣∣∣∣

�Chi

∫ xi

xi−1

b′′�i�i−1 − b(�i�i−1)
′′ + 2b′|(�i�i−1)

′|.
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Note that (�i�i−1)
′′ = −2/h2

i , hib
′′
i
i−1 �xb′′ �Cb′ on �i and hib

′|(�i�i−1)
′|�b′, we get that

�

hi

∣∣∣∣
∫ xi

xi−1

(b�i )
′′
∣∣∣∣ �C

(
1

hi

∫ xi

xi−1

b +
∫ xi

xi−1

b′
)

�Cx
p
i .

By the above inequality and (25), we finish the estimate of the second term of ti in (24).
At last, we consider the third term of ti in (24).∣∣∣∣ 1

hi

∫ xi

xi−1

b2�i (uI − u)′
∣∣∣∣ � ‖u − uI‖∞

hi

∣∣∣∣
∫ xi

xi−1

(b2�i )
′
∣∣∣∣ .

From (26), we get that 	i �Cx
−p
i for all 1� i�N + 1. Then

1

hi

∣∣∣∣
∫ xi

xi−1

(b2�i )
′
∣∣∣∣ �	i

(∫ xi

xi−1

2bb′�i�i−1 +
∫ xi

xi−1

b2|(�i�i−1)
′|
)

� C

x
p
i hi

∫ xi

xi−1

b2

�Cx
p
i . �

The following summation by part formula is a discrete version of the integration by part. The proof is straightforward
and thus skipped.

Lemma 5.4. Let {cj , j = 1, . . . , k + 1} and {dj , j = 1, . . . , k + 1} be two sequences. Then we have

k∑
j=1

cj (dj − dj+1) = c1d1 − ckdk+1 +
k−1∑
j=1

(cj+1 − cj )dj+1.

Now we are in the position to present our main estimate.

Theorem 5.5.∣∣∣∣∣∣
ik−1∑

j=ik−1

Gi
j (tj − tj+1)

∣∣∣∣∣∣ �C‖u − uI‖∞.

Proof. If Ik = 1, ik − 1 = ik−1; we get the conclusion directly by Lemmas 5.3 and 5.1.
If Ik = 0, then we apply the summation by part to obtain

ik−1∑
j=ik−1

Gi
j (tj − tj+1) = Gi

ik−1
tik−1 − Gi

ik−1tik +
ik−2∑

j=ik−1

(Gi
j+1 − Gi

j )tj+1. (27)

By the estimate of Green function and residual, we have

Gi
ik−1

tik−1 �C

(
xik−1

xik−1

)p

‖u − uI‖∞ �C‖u − uI‖∞.

Similarly we can prove

Gi
ik−1tik �C

(
xik

xik−1

)p

‖u − uI‖∞ �C

(
xik

xik−1

)p

‖u − uI‖∞ �C‖u − uI‖∞,
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where in the last step, we have used that if Ik = 0, xik /xik−1 �2. For the last term in the right-hand side of (27), let us
first deal with the case i� ik . We use the monoticity of the Green function to obtain

ik−2∑
j=ik−1

(Gi
j+1 − Gi

j )tj+1 �
ik−2∑

j=ik−1

|Gi
j+1 − Gi

j | max
ik−1+1� j � ik

tj

= (Gi
ik−1 − Gi

ik−1
) max

ik−1+1� j � ik
tj

�CGi
ik
x

p
ik
‖u − uI‖∞

�C‖u − uI‖∞.

When i� ik−1, using similar argument, we will end with

ik−2∑
j=ik−1

(Gi
j+1 − Gi

j )tj+1 �CGi
ik−1

x
p
ik
‖u − uI‖∞

�C

(
xik

xik−1

)p

‖u − uI‖∞

�C‖u − uI‖∞,

where in the last step we have used that if Ik = 0, xik /xik−1 �2. The case ik−1 < i < ik can be done in a similar
way. �
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