
Comput. Methods Appl. Mech. Engrg. 200 (2011) 967–984
Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/locate /cma
Efficient mesh optimization schemes based on Optimal Delaunay Triangulations q

Long Chen a,⇑, Michael Holst b

a Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
b Department of Mathematics, University of California at San Diego, La Jolla, CA 92093, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 15 April 2010
Received in revised form 2 November 2010
Accepted 10 November 2010
Available online 16 November 2010

Keywords:
Mesh smoothing
Mesh optimization
Mesh generation
Delaunay triangulation
Optimal Delaunay Triangulation
0045-7825/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.cma.2010.11.007

q The first author is supported by NSF Grant DMS-
Grants P50GM76516 and R01GM75309. The second a
by NSF Awards 0715146 and 0915220, and DTRA Aw
⇑ Corresponding author. Tel.: +1 (949) 8246595; fa

E-mail addresses: chenlong@math.uci.edu (L. Chen
Holst).
In this paper, several mesh optimization schemes based on Optimal Delaunay Triangulations are devel-
oped. High-quality meshes are obtained by minimizing the interpolation error in the weighted L1 norm.
Our schemes are divided into classes of local and global schemes. For local schemes, several old and new
schemes, known as mesh smoothing, are derived from our approach. For global schemes, a graph Lapla-
cian is used in a modified Newton iteration to speed up the local approach. Our work provides a math-
ematical foundation for a number of mesh smoothing schemes often used in practice, and leads to a new
global mesh optimization scheme. Numerical experiments indicate that our methods can produce well-
shaped triangulations in a robust and efficient way.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

We shall develop fast and efficient mesh optimization schemes
based on Optimal Delaunay Triangulations (ODTs) [1–3]. Let q be a
given density function defined on a convex domain X � Rn, i.e.
q > 0;

R
X qdx <1. Let T be a simplicial triangulation of X, and

let u(x) = kxk2 and uI the piecewise linear nodal interpolation of u
based on T . We associate the following weighted L1 norm of the
interpolation error as an energy to the mesh T

EðT Þ ¼
Z

X
jðuI � uÞðxÞjqðxÞdx:

Let T N denote the set of all triangulations with at most N vertices.
Our mesh optimization schemes will be derived as iterative meth-
ods for solving the following optimization problem:

inf
T 2T N

EðT Þ: ð1:1Þ

Minimizers of (1.1) will be called Optimal Delaunay Triangulations.
Mesh optimization by minimizing some energy, also known as

the variational meshing method, has been studied by many
authors; see, e.g. [4–7] and references therein. There are many
energies proposed in the literature for this purpose, including the
ll rights reserved.

0811272, and in part by NIH
uthor was supported in part

ard HDTRA-09-1-0036.
x: +1 (949) 8247993.
), mholst@math.ucsd.edu (M.
widely used harmonic energy in moving mesh methods [8–10],
summation of weighted edge lengths [11,12], and the distortion
energy used in the approach of Centroid Voronoi Tessellation
(CVT) [13,14]. The advantages of our approach are:

1. Mathematical analysis is provided to show minimizers of (1.1)
will try to equidistribute the mesh size according to the density
function as well as preserve the shape regularity.

2. Optimization of the connectivity of vertices is naturally
included in our optimization problem.

3. Efficient algorithms, including local and global mesh optimiza-
tion schemes, are developed for the optimization problem (1.1).

To solve the optimization problem (1.1), we decompose it into
two sub-problems. Let us denote a triangulation T N by a pair
(p, t), where p 2XN represents the set of N vertices and t represents
the connectivity of vertices, i.e. how vertices are connected to form
simplexes, and rewrite the energy as E(p, t). We solve the following
two sub-problems iteratively:

1. Fix the location of vertices and solve mintE(p, t);
2. Fix the connectivity of vertices and solve minpE(p, t).

We stress from the outset that both problems mintE(p, t) and
minpE(p, t) do not need to be solved exactly. We are not interested
in the optimal mesh but rather meshes with good geometric quality
(including the density of vertices and shape regularity of simpli-
ces). We shall show that the mesh quality will be considerably im-
proved by performing just a few steps of the iteration methods
developed in this paper.

http://dx.doi.org/10.1016/j.cma.2010.11.007
mailto:chenlong@math.uci.edu
mailto:mholst@math.ucsd.edu
http://dx.doi.org/10.1016/j.cma.2010.11.007
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma

968 L. Chen, M. Holst / Comput. Methods Appl. Mech. Engrg. 200 (2011) 967–984
Let us first consider the optimization problem mintE(p, t). That
is, for a fixed vertex set p, find the optimal connectivity of the ver-
tices (in the sense of minimizing the weighted interpolation error
EðT Þ). In [2,3], we proved that when X is convex, the minimizer
is a Delaunay triangulation of the point set p. Thus, the problem
mintE(p, t) is simplified to:

Given a set of vertices p; construct a Delaunay triangulation of p:

ð1:2Þ

The problem (1.2) is well studied in the literature [15,16]. We can
classify methods proposed for (1.2) as one of

� Local method: edge or face flipping;
� Global method: lifting method (QHULL).

The focus of this paper is on the optimization problem min-
pE(p, t), namely optimizing the placement of vertices when the con-
nectivity is fixed. We shall also discuss two types of methods:

� Local mesh smoothing;
� Global mesh optimization.

Local relaxation methods are commonly used methods for mesh
improvement. For example, Gauss–Seidel-type relaxation methods
consider a local optimization problem by moving only one vertex
at a time. The vertex is moved inside the domain bounded by its
surrounding simplexes while keeping the same connectivity to im-
prove geometric mesh quality such as angles or aspect ratios. This
is known as mesh smoothing in the meshing community [1,17–
23,13]. With several formulas for the interpolation error, we shall
derive a suitable set of local mesh smoothing schemes among
which the most popular scheme, Laplacian smoothing, will be de-
rived as a special case.

Local methods, however, can only capture the high frequency in
the associated energy, and thus results in slow convergence when
the number of grid points becomes larger; see [12,24] for related
discussions and numerical examples. To overcome slow conver-
gence of local mesh smoothing schemes, some sophisticated mul-
tigrid-like methods, notably full approximation scheme (FAS), have
been recently proposed [25–29]. To use multigrid-type methods,
one has to generate and maintain a nested mesh hierarchy which
leads to complex implementations with large memory require-
ments. The interpolation of point locations from the coarse grid
to the fine grid can fold triangulations, and addressing this care-
fully leads to additional implementation complexity. See [27,25]
for related discussions.

We shall derive a global mesh optimization method by using
another technique of multilevel methods: multilevel precondition-
ers. One iteration step of our method reads as

pkþ1 ¼ pk � A�1rEðpk; tÞ; ð1:3Þ
where A is a graph Laplacian matrix with nice properties: it is sym-
metric and positive definite (SPD) and also a diagonally dominant
M-matrix. Note that if we replace A by r2E(pn) in (1.3), it becomes
Newton’s method. Our choice of A can be thought as a precondition-
er of the Hessian matrix. Comparing with Newton’s method, our
choice of A has several advantages

� A is easy to compute, while r2E is relatively complicated;
� A�1 can be computed efficiently using algebraic multigrid meth-

ods (AMG) since A is an SPD and M-matrix, while r2E may not
be;
� A is a good approximation of r2E.

We should clarify that our methods are designed for mesh opti-
mization, not mesh generation. Therefore, we only move interior
nodes and assume all boundary nodes are well placed to capture
the geometry of the domain. We note that many mesh generators
become slow when the number of vertices becomes large. There-
fore, we call mesh generators only to generate a very coarse mesh,
and then apply our mesh optimization methods to the subse-
quently refined meshes. By doing so, we can generate high-quality
meshes with large numbers of elements in an efficient way.

The concept of Optimal Delaunay Triangulation (ODT) was
introduced in [2] and some local mesh smoothing schemes were
reported in a conference paper [1] and summarized in the first
author’s Ph. D thesis [3]. Application of ODT to other problems
can be found in [30–32]. In this paper, we include some results
from [1,3] for the completeness and more importantly, present
several new improvements listed below:

� several improved smoothing schemes for non-uniform density
functions;
� a neat remedy for possible degeneration of elements near the

boundary;
� a global mesh optimization scheme;
� some 3D numerical examples.

The rest of this paper is organized as follows. In Section 2, we
review the theory on Delaunay and Optimal Delaunay Triangula-
tions. In Section 3, we go over algorithms for the construction of
Delaunay triangulation. In Section 4, we give several formulae on
the energy and its derivatives. Based on these formulae, we present
several optimization schemes including local mesh smoothing and
a global modified Newton method. In Section 5, we provide numer-
ical examples to show the efficiency of our methods. In the last sec-
tion, we conclude and discuss future work.
2. Delaunay and Optimal Delaunay Triangulations

Delaunay triangulation (DT) is the most commonly used unstruc-
tured triangulation in many applications. It is often defined as the
dual of the Voronoi diagram [33]. In this section we use an equiva-
lent definition [34,35] which involves only the triangulation itself.

Let V be a finite set of points in Rn. The convex hull of V, denoted
by CH(V), is the smallest convex set which contains these points.

Definition 2.1. A Delaunay triangulation of V is a triangulation of
CH(V) so that it satisfies empty sphere condition: there are no
points of V inside the circumsphere of any simplex in the
triangulation.

There are many characterizations of Delaunay triangulations. In
two dimensions. Sibson [36] observed that Delaunay triangulations
maximize the minimum angle of any triangle. Lambert [37] showed
that Delaunay triangulations maximize the arithmetic mean of the
radius of inscribed circles of the triangles. Rippa [38] showed that
Delaunay triangulations minimize the Dirichlet energy, i.e. the inte-
gral of the squared gradients. D’Azevedo and Simpson [39] showed
that in two dimensions, Delaunay triangulations minimizes the
maximum containing radius (the radius of the smallest sphere con-
taining the simplex). Rajan [40] generalized this characterization to
higher dimensions. Chen and Xu [2] characterize Delaunay triangu-
lations from a function approximation point of view. We shall
briefly survey the approach by Chen and Xu [2] in the following.

Definition 2.2. Let X � Rn be a bounded domain, T a triangulation
of X, and uI;T be the piecewise linear and globally continuous nodal
interpolation of a given function u 2 Cð�XÞ based on the triangula-
tion T . Let 1 6 q 61. We define an error-based mesh quality
QðT ;u; qÞ as

L. Chen, M. Holst / Comput. Methods Appl. Mech. Engrg. 200 (2011) 967–984 969
QðT ;u; qÞ ¼ ku� uI;T kLpðXÞ ¼
Z

X
juðxÞ � uI;T ðxÞjqdx

� �1=q

:

By choosing a special function u(x) = kxk2, we can characterize
the Delaunay triangulation as an optimal triangulation which
achieves the best error-based mesh quality. The proof of the fol-
lowing result can be found in [2].

Theorem 2.3. For a finite point set V, we let X = CH(V) and denote T V

all possible triangulations of X by using the points in V. Then

QðDT; kxk2
; qÞ ¼ min

T 2T V

QðT ; kxk2
; qÞ; 81 6 q 61:

This type of result was first proved in R2 by D’Azevedo and Simpson
[39] for q =1 and Rippa [41] for 1 6 q <1. Rajan proved the case
q =1 in multiple dimensions [40]. Theorem 2.3 is a generalization
of their work to general Lq norms in multiple dimensions. A similar
result on the optimality of Delaunay triangulation in higher dimen-
sions was also obtained by Melissaratos in a technical report [42].

Remark 2.4. Indeed we proved in [2] that uI;DTðxÞ 6 uI;T ðxÞ for all
x 2X. Since u is convex (downwards), we have point-wise
optimality

juI;DTðxÞ � uðxÞj 6 juI;T ðxÞ � uðxÞj:

Therefore Theorem 2.3 is trivially generalized to the general density
q since qdx defines a measure.

We have shown that Delaunay triangulations optimize the con-
nectivity when the vertices of triangulations are fixed. Now we free
the locations of vertices to further optimize the triangulation.

Definition 2.5. Let T N denote the set of all triangulations of X with
at most N vertices. Given a continuous function u on X and
1 6 q 61, a triangulation ODT 2 T N is optimal if

QðODT;u; qÞ ¼ inf
T 2T N

QðT ;u; qÞ:

We call it an Optimal Delaunay Triangulation (ODT) with respect to
u and q.

The following theorem concerns the existence of optimal Dela-
unay triangulations and can be found in [2,3]. In general, ODTs are
not unique.

Theorem 2.6. Given 1 6 q 61, an integer N, and a convex function
u, there exists an Optimal Delaunay Triangulation ODT 2 T N with
respect to u and q.

Graded and anisotropic meshes are important to keep the
geometry features and achieve better approximation in numerical
solutions of partial differential equations. In [2], we generalize the
concept of DT and ODT to general convex functions u. The density
and the shape of the mesh will be controlled by the metric defined
by the Hessian of u. In this paper, we keep the simplest quadratic
form u(x) = kxk2 and use the density function q to control the gra-
dient of the mesh density.

In the following, we give an error analysis for the interpolation
error u � uI to show that ODT will aim to produce shape regular
and uniform meshes. For simplicity, we only present the case
q = 1, i.e. the L1 norm of the interpolation error. Similar results hold
for general q 2 [1,1]; see [3,31].

Suppose s is a d-simplex with vertices xi, i = 1, . . . , d + 1. Let si(x)
denote the simplex formed by vertices xi, i = 1, . . . , d + 1 with xi

being replaced by x. We define ki(x) = jsi(x)j/jsj as the barycentric
coordinates of x with respect to xi for i = 1, . . . , d + 1. By the defini-
tion of barycentric coordinates, it is easy to verify that

uIðxÞ ¼
Xdþ1

i¼1

kiðxÞuðxiÞ; x ¼
Xdþ1

i¼1

kiðxÞxi; and
Xdþ1

i¼1

kiðxÞ ¼ 1: ð2:1Þ
Lemma 2.7. For a simplex s with vertices (x1,x2, . . . , xd+1), let
tij = kxi � xjk2 be the squared edge length. For u(x) = kxk2, we haveZ

s
ðuI � uÞðxÞdx ¼ jsj

ðdþ 1Þðdþ 2Þ
Xdþ1

i;j¼1;j>i

tij: ð2:2Þ
Proof. By Taylor expansion,

uðxiÞ ¼ uðxÞ þ ruðxÞðxi � xÞ þ ðx� xiÞtðx� xiÞ: ð2:3Þ

Here we use the fact thatr2u = 2I. Multiplying both sides of (2.3) by
ki and summing together, we obtainXdþ1

i¼1

kiuðxiÞ ¼ uðxÞ
Xdþ1

i¼1

ki þruðxÞ
Xdþ1

i¼1

kiðxi � xÞ þ
Xdþ1

i¼1

kiðx� xiÞtðx� xiÞ:

Using the property (2.1), we simplify it as

uIðxÞ � uðxÞ ¼
Xdþ1

i;j¼1

kikjðxj � xiÞtðx� xiÞ: ð2:4Þ

We switch the indices i, j to get

uIðxÞ � uðxÞ ¼
Xdþ1

i;j¼1

kikjðxi � xjÞtðx� xjÞ: ð2:5Þ

Summing (2.4) and (2.5), we obtain

uIðxÞ � uðxÞ ¼ 1
2

Xdþ1

i;j¼1

kiðxÞkjðxÞt2
ij ¼

Xdþ1

i;j¼1;j>i

kiðxÞkjðxÞt2
ij:

Using the integral formulaZ
s

kiðxÞkjðxÞdx ¼ 1
ðdþ 1Þðdþ 2Þ jsj;

we get the desired result. h
Theorem 2.8. For u(x) = kxk2, there exists a constant Cd depending
only on the dimension of space such that

QðT N;u;1ÞP Cd

X
s2T
jsj1þ2=d P CdN�2=djXj

dþ2
d : ð2:6Þ

Furthermore

1. the first inequality becomes equality if and only if each simplex is
equilateral;

2. the second inequality becomes equality if and only if all simplexes
are equal volumes.

Therefore, minimizing QðT ;u;1Þwill attempt to equidistribute volumes
and edge lengths of all simplices in the triangulation.
Proof. First, by the error formula (2.2), we have, for u(x) = kxk2,

QðT ;u;1Þ ¼
X
s2T

Qðs;u;1Þ ¼ 1
ðdþ 1Þðdþ 2Þ

X
s2T
jsj

Xdþ1

i;j¼1;j>i

tij

P Cd

X
s2T
jsj1þ2=d

:

Here we use a geometric inequality [43]Xdþ1

i;j¼1;j>i

tij P Cdjsj2=d
: ð2:7Þ

Equality holds if and only if s is an equilateral simplex.

Fig. 1. Different triangulations using different diagonals and the graph of corre-
sponding linear interpolations. The triangulation T 2 is obtained via the flipping
algorithm from T 1, and the interpolation error is decreased after the flipping.

970 L. Chen, M. Holst / Comput. Methods Appl. Mech. Engrg. 200 (2011) 967–984
We then use the Hölder inequality

jXj ¼
X
s2T
jsj 6

X
s2T
jsj1þ2=d

 ! d
dþ2 X

s2T
1

 ! 2
dþ2

¼
X
s2T
jsj1þ2=d

 ! d
dþ2

N
2

dþ2;

to obtainX
s2T
jsj1þ2=d P N�2=djXj

dþ2
d :

The equality holds if and only if s = constant = N�1jXj. h

For non-uniform density, we give a simple (not rigorous) anal-
ysis by assuming q is approximated by a piecewise constant func-
tion. We refer readers to [32] and [3] for the proof of general cases.
For a given function q 2 Lr(X), r > 0, we define the weighted
volume

jsjqr ¼
Z

s
qrdx:

When q is constant on the simplex s, as in Lemma 2.7, we obtain
the formulaZ

s
ðuI � uÞqdx ¼ 1

ðdþ 1Þðdþ 2Þ
Xdþ1

i;j¼1;j>i

tijjsjq:

Again use (2.7), we then getZ
s
ðuI � uÞqdx P Cdjsj1þ2=dq ¼ Cdjsj1þ2=d

qr with r ¼ d
dþ 2

: ð2:8Þ

The inequality holds if and only if all edge lengths are equal. Sum-
ming over all elements and applying Hölder inequality, we haveZ

X
ðuI � uÞqdx ¼

X
s2T

Z
s
ðuI � uÞqdx P Cd

X
s2T
jsj1þ2=d

qr

P CdN�2=dkqkLr :

For general density, we can approximate it by a piecewise constant
function and the remainder is of high order o(N�2/d). We conclude
that for general density, an optimal triangulation will be shape reg-
ular and equidistribute the weighted volume jsjqr , which means
when q is big, the volume jsj should be small. Therefore, non-uni-
form density consequently leads to a shape-regular and graded
mesh.

3. Algorithms for Delaunay triangulations

In this section, we survey two popular algorithms, one local and
another global, for the construction of a Delaunay triangulation for
a given set of points.

3.1. Local method: edge flipping

One local method to construct a Delaunay triangulation is
known as edge flipping [36,33] in two dimensions or edge/face flip-
ping [21,33] in three dimensions. Here we describe a two dimen-
sional edge flipping algorithm following [33] and discuss its
convergence behavior from the function approximation point of
view.

Given a 2D triangulation T , we denote by E the edge set of T

and ne the number of edges in E. We say an edge ab 2 E is locally
Delaunay if (i) it belongs to only one triangle or (ii) it belongs to
two triangles, abc and abd, and d lies outside the circumcircle of
abc and c lies outside the circumcircle of abd. Notice that if ab is
not locally Delaunay then the union of the two triangles sharing
ab, i.e., the quadrilateral acbd is convex. It is fairly easy to see, then,
the other diagonal cd will be locally Delaunay. The flipping
algorithm replaces ab by cd, through updating the set of triangles
and edges.

Algorithm: Edge flipping for 2D triangulations
while exist non locally Delaunay edge do

find a non locally Delaunay edge ab;
find the two triangles sharing ab;
flip diagonals of the convex quadrilateral formed by these
two triangles.

end

We prove the flipping algorithm will terminate from the func-
tion approximation point of view. Different choices of diagonals
will lead to different linear interpolations. The interpolation error
will be the difference between the graph of the linear interpolation
and the paraboloid. From Fig. 1, we see that QðT 1;u; pÞ >
QðT 2;u; pÞ where T 2 is obtained via the flipping algorithm from
T 1. Thus local edge flipping algorithm will result a sequence of tri-
angulations T k; k ¼ 1;2; . . . m in T V with

QðT 1;u;pÞ > QðT 2;u; pÞ > . . . > QðT m;u;pÞ > 0:

Since #T V is fixed, the algorithm will stop. In 2D, it will end with a
Delaunay triangulation.

Similar algorithms of swapping faces, can be defined in 3D.
However in 3D it could get stuck in cases where we would like
to flip but we cannot. Extra effort is needed to resolve this non-
transformable case, for example, by changing their local neighbor-
hood [21,33].

The running time of the edge flipping algorithm is OðN2Þ and
the worst case is possible (that is, flipping all edges in the initial tri-
angulation to get a Delaunay triangulation). To speed up the algo-
rithm, one can interleave flipping edges with adding points
randomly. With a directed acyclic graph data structure, the run-
ning time of the randomized incremental algorithm can be reduced
to OðN log NÞ [44,33].

3.2. Global method: the lifting trick

We now give a geometric explanation of Theorem 2.3 and pres-
ent a global method for constructing Delaunay triangulations.

For a given point set V in Rd, we have a set of points V0 in Rdþ1 by
lifting point in V to the paraboloid xn+1 = kxk2. The convex hull
CH(V0) can be divided into lower and upper parts; a facet belongs
to the lower convex hull if it is supported by a hyperplane that sep-
arates V0 from (0,�1). We may assume the facets of the lower con-
vex hull are simplexes since if n + 2 more vertices forms a facet, we

Fig. 2. Three steps of the lifting method to construct a Delaunay triangulation.

L. Chen, M. Holst / Comput. Methods Appl. Mech. Engrg. 200 (2011) 967–984 971
can choose any triangulation of this facet. The projection of a lower
convex hull of V0 in Rdþ1 is a DT of V in Rn.

This is known as the lifting trick in the mesh generation commu-
nity [45], and a widely used algorithm to construct Delaunay trian-
gulations based on this approach is by using QHULL [16] to
construct the convex hull. We classify it as a global method by
assuming there is a fast algorithm to construct the convex hull of
a points set. We present the algorithm below and refer to Fig. 2
for an illustration.

Algorithm: The Lifting Method
1. lift points in Rd to the graph of the paraboloid in Rdþ1;
2. construct convex hull of lifted points in Rdþ1;
3. project the lower convex hull back to Rd.

As was the case earlier, the interpretation of the lifting trick
from the function approximation point of view is more transpar-
ent. We construct a linear interpolant based on the lifted points
on the paraboloid. The interpolation error in L1 norm will be the
volume of the region bounded between the graph of the paraboloid
and the linear interpolation. Since the paraboloid is convex, the
graph of the best linear interpolation will be the lower convex hull
of these lifted points.

The global method is expensive when the goal is to improve the
mesh quality, and not to construct Delaunay triangulation. For
example, in 2D, the computational cost of QHULL is like
OðN log NÞ and in 3D it could be OðN2Þ, where N is the number of
vertices. We can call QHULL when the location of mesh points
are changed dramatically. After the location of points is stabilized,
we use the local flipping method to improve the connectivity.
4. Algorithms for Optimal Delaunay Triangulation

In this section, we present iterative methods for the construc-
tion of Optimal Delaunay Triangulation. We also classify our meth-
ods into local and global classes. The local methods are relatively
easy to implement but slow to converge for large number of verti-
ces. The global method can significantly speed up the convergence
rate and may save computation cost (provided one can invert a
symmetric and positive definite matrix efficiently).

Since now the connectivity of vertices is fixed, we simplify our
energy notation as EðpÞ; p ¼ ðx1; . . . ; xNÞ; xi 2 Rd, where x1, . . . , xN

are all interior nodes. Here we assume the boundary nodes b ¼
ðxNþ1; . . . ; xNþNbÞ; xi 2 Rd are fixed and give a good discretization
of @X. When we refer to each vertex, we use xi and when we treat
all vertices as a set of points, we use a single letter p. We denote

@iE :¼ @E
@xi

:¼ @E
@x1

i

; . . . ;
@E
@xd

i

 !
and rE = (@1E, . . . ,@NE)T. Note that @iE is a vector in Rd and thus rE
is a vector field defined on each vertex. The Hessian r2E in general
should be a dN � dN matrix. But we will always approximate it by
one N � N matrix for all d components.

4.1. Overview of iterative methods

Let pk be the position of interior vertices in the kth-step. A gen-
eral iteration method for solving minpE(p) can be formulated as

pkþ1 ¼ pk � B�1rEðpkÞ; ð4:1Þ
where�rE(pk) is the direction in which the energy decreased in the
most rapid rate, and B is an invertible matrix. We unify different
methods as different choices of B.

4.1.1. Richardson-type method
A simple choice B�1 = a leads to the steepest descent method.

The parameter a is called step size and can be found by the line
search. This method can be also read as the forward Euler method
with time step a for solving the gradient flow
@p
@t
¼ �rEðpÞ:
4.1.2. Jacobi-type method
We use the diagonal information of the Hessian matrix, i.e.

B�1 = adiag(r2E(pk))�1. We write out the component-wise itera-
tion in the following subroutine.

function pk+1
= JacobiMethod (pk)

Compute rE(pk) and @iiE(pk).
for i = 1:N

xkþ1
i ¼ xk

i � a@iiEðpkÞ�1@ iEðpkÞ;
end

The step size a can be determined by the line search. For the
simplicity and efficiency, a fixed step size a 2 (0,1] is usually used.

4.1.3. Gauss–Seidel type method
Another local relaxation scheme is to move one point xi at a

time. Most mesh smoothing schemes are in this form.

function pk+1
= GaussSeidelMethod (pk)

for i = 1:N

Compute @iE(pk) and @iiE(pk);
xkþ1

i ¼ xk
i � @ iiEðpkÞ�1

@iEðpkÞ;
end

The difference of JacobiMethod and GaussSeidelMethod

(G–S) is that in the G–S method, rE and r2E are updated once a
vertex is moved. When the energy is locally convex considering
as a function of one vertex only, which is the case for our energy

972 L. Chen, M. Holst / Comput. Methods Appl. Mech. Engrg. 200 (2011) 967–984
E, then the energy will be strictly decrease in the G–S method and
thus ensure the converges of the iteration. In this sense, G-S is
superior than Jacobi method. On the other hand, Jacobi method is
computationally efficient since no update of r2E and E inside the
for loop and the method is embarrassingly parallel.

4.1.4. Newton’s method
We choose B =r2E(pk) as the Hessian matrix of the energy to

get the well known Newton’s method. If r2E(pk) is symmetric po-
sitive definite (SPD), it is well known that Newton’s method will
converge with a quadratic rate provided the initial guess is suffi-
ciently close to the minimizer.

Richardson, Jacobi, and Gauss–Seidel type methods are classi-
fied as local methods since when updating xi only information of
the neighboring vertices of xi is used (through the computation
of @iE). Newton’s method is global since the inversion of the Hes-
sian matrix will bring the local effect @iE for xi to all vertices.

Local methods are frequently used in variational mesh adapta-
tion for several reasons. First, it is easy to implement. Second, con-
vergence can be easily ensured. For Gauss–Seidel method, the
energy is decreasing if it is locally convex. For Richardson- and
Jacobi-type methods, if we choose the step size a small enough,
one can easily prove the corresponding mapping T: pk

´ pk+1 is a
contraction and thus the scheme converges.

The drawback of local methods is the slow convergence. From a
multi-scale point of view, local smoothing cannot carry the infor-
mation in the coarse level to the fine level efficiently. The global
method, such as Newton’s method, is very desirable when the en-
ergy is globally convex (as a function of all vertices) and the initial
guess is sufficiently close to a minimizer, due to the quadratic con-
vergent rate. However, when the energy is non-convex and the ini-
tial guess is not close, the convergence conditions are very
restrictive. Another complexity of Newton’s method is the compu-
tation of the Hessian matrix and its inverse. In many cases, both
the computation of r2E and (r2E)�1 are not easy or efficient. Later
in the paper we propose a global method which strikes a good bal-
ance between the local and global methods.

4.2. Local mesh smoothing schemes

We first give formulas for E,rE and the diagonal ofr2E. We then
modify the energy slightly to get approximated formula for rE. We
derive formulas for uniform density and adapt to the non-uniform
and piecewise constant density through numerical quadrature. Based
on these formulas, we derive several local mesh smoothing schemes
and develop techniques to address issues near the boundary.

4.2.1. ODT smoothing
Recall that p is the set of all interior nodes of a triangulation. For

a vertex xi 2 p, let xi be the star of xi, i.e., the set of all simplices
containing xi, and ui the hat function of xi, i.e. a piecewise linear
function with value one at xi and zero at other vertices. Let j�j de-
note the Lebesgue measure in Rd.

Lemma 4.1. For uniform density q = 1,

EðpÞ ¼ 1
dþ 1

XN

i¼1

x2
i jxij �

Z
X
kxk2dx: ð4:2Þ
Proof. Since u(x) = x2 is convex, juI � uj ¼ uI � u ¼
PN

i¼1uðxiÞui � u.
ThenZ

X
ju� uIjdx ¼

Z
X

uIdx�
Z

X
kxk2dx

¼
XN

i¼1

uðxiÞ
Z

X
uidx�

Z
X
kxk2dx:
The desired results then follows from the integral formula for
ui. h

We then compute the gradient rE using this formula.

Lemma 4.2. Let xi be an interior node. For uniform density q = 1, one
has

@iEðxiÞ ¼
1

dþ 1
2xijxij þ

X
sj2xi

X
xk2sj ;xk–xi

kxkk2rxi
jsjj

24 35; ð4:3Þ

@iEðxiÞ ¼
1

dþ 1

X
sj2xi

X
xk2sj ;xk–xi

kxk � xik2rxi
jsjj; ð4:4Þ

@iEðxiÞ ¼
2

dþ 1

X
sj2xi

ðxi � cjÞjsjj; ð4:5Þ

where cj is the center of the circum-sphere of sj.
Proof. When xi is moved inside xi, the domain formed by xi does
not change. But it will change the star xj for other vertices xj con-
nected with xi. We thus need to include the constant rxi

jsjj in an
appropriate way. Formula (4.3) immediately follows from the dif-
ferentiation of formula (4.2) and the fact jxij does not depend on xi.

To prove (4.4), we note that the interpolation error depends
only on the quadratic part of the approximated function. More
specifically, if we change the function u(x) = x2 to v(x): = (x � xi)2,
we have u � uI = v � vI. The second formula is then obtained by
using v in the first formula.

To prove (4.5), we need some preparation. First we give more
explanation on the constant rxi jsjj. Let us use x to denote the free
node xi. When x is moving around in xi, the volume jsj(x)j is a
linear function of x. Let Fj be the face opposite to xi in sj. Then
obviously jsj(x)j = 0 for x 2 Fj, i.e. Fj is part of the zero level set of
linear function jsj(x)j. Therefore the vector

fFj :¼
X

xk2sj ;xk–xi

kxkk2rxi
jsjj

is a normal vector of Fj pointing to xi with magnitude depending on
Fj only. Physically fFj can be interpreted as a force acting on xi from
the ‘‘wall’’ Fj. When Fj is an interior face sharing by two simplices,
the vector �fFj will be the force acting on the other vertex opposite
to Fj.

Then we derive formulae for the circumcenter of a simplex.
Since jxij ¼

P
j2xi
jsjj does not depend on xi, we haveP

j2xi
rxi jsjj ¼ rxi jxij ¼ 0. By (4.4), if the neighboring vertices xk

lie on the same sphere with center xi and radius R, then

@iEðxiÞ ¼
d

dþ 1
R2
X
j2xi

rxi
jsjj ¼ 0;

and consequently the optimal location is the circumcenter. In par-
ticular, when the star is a simplex, the minimal point is the circum-
center of this simplex. By (4.3), we thus obtain a formula for the
circumcenter in terms of the force fF:

2jsjjcj ¼ �
X
F2sj

fF : ð4:6Þ

We now add artificial forces fF and �fF for each interior face F of the
star xi. Then the second term in (4.3) can be written asX
F2@xi

fF ¼
X
sj2xi

X
F2sj

fF ¼ �2
X
sj2xi

jsjjcj:

Formula (4.5) is then obtained by writing the first term
2xijxij ¼ 2

P
sj2xi
jsjjxi. h

L. Chen, M. Holst / Comput. Methods Appl. Mech. Engrg. 200 (2011) 967–984 973
Formula (4.3) is derived in Chen [1] and (4.4) can be found in
Chen [3]. The simplified version (4.5) is firstly derived in Alliez
et. al. [24]. From (4.5), we conclude that for an ODT, rE = 0, and
therefore

xi ¼
X
j2xi

jsjj
jxij

cj: ð4:7Þ

Namely for an ODT, each interior vertex xi is a weighted centroid of
circumcenters of simplices in the star of xi.

Next we compute the second derivative of the energy.

Lemma 4.3. For uniform density q = 1, one has

@iiEðxiÞ ¼
2

dþ 1
jxij: ð4:8Þ
Proof. Note that both rxi
jsjj and jxij do not depend on xi. Then

(4.8) comes from the differentiation of (4.3) with respect to xi. h

The error formula (4.2) and the gradient formula (4.3) can be
easily generalized to convex functions u by simply replacing kxkk2

by u(xk) and 2xi byru(xi); see [2]. This generalization is useful when
the convex function is available, which might be the case for the
numerical solution of partial differential equations (PDEs). When
applying to mesh optimization, it is hard to find such a convex
function. Therefore we switch to a density-based generalization.

Lemma 4.4. For general density q,

EðpÞ ¼
XN

i¼1

x2
i jxijqui

�
Z

X
kxk2qðxÞdx; ð4:9Þ

@iEðxiÞ � 2xijxijqui
þ
X
sj2xi

X
xk2sj ;xk–xi

kxkk2rxi
jsjjqui

; ð4:10Þ

@iEðxiÞ �
2

dþ 2

X
sj2xi

ðxi � cjÞqsj
jsjj: ð4:11Þ
Proof. The formula (4.9) is proved as before.
The formula (4.10) only gives an approximation to @iE. The termR

xi
q@iuidx is skipped. The practical formula (4.11) is obtained by

one point quadrature jsjjqui
� qsj

jsjj=ðdþ 1Þ and the same argu-
ment as before. h

Formula (4.11) will be the one we used in this paper to compute
rE for general density. It retains its nice geometric meaning by
only changing of the weight of circumcenters. Meanwhile it is a
(a) circumenters

Fig. 3. For boundary elements, we use barycenters not circumcenters. The bold line is th
neighboring vertices lie on a circle, the weighted average of centers is the center of this
circumcenter of the triangle near the boundary to the barycenter. Then the weighted av
good approximation of the true gradient when q varies smoothly
(more precisely jrqj 6 C). The formula (4.10) is presented for pos-
sibly high-order approximations of the gradient. For example, we
could use qI to replace q and compute the weighted volume using
middle points of edges (which is exact in two dimensions). Sup-
pose xi, xj, and xk are three vertices of the triangle sj; we could then
use quadrature

jsjjqui
� jsj

6
ð2qðxiÞ þ qðxjÞ þ qðxkÞÞ

and consequently a better approximation of the gradient

rxi
jsjjqui

� 1
3

qðxiÞrxi
jsjj þ rqðxiÞjsjj

� �
:

Thanks to these formulas, we now derive a local mesh smoothing
scheme by considering the minimization of the energy as a function
of xi only. Namely we fix all other vertices and consider the optimi-
zation problem

min
xi

EðxiÞ: ð4:12Þ

We use (4.11) to get a ODT based scheme

xnew
i ¼ ð1� aÞxi þ a

X
sj2xi

jsjjqs

jxijqs

cj: ð4:13Þ

When a = 1, the geometric explanation is first computing circum-
centers of simplices in the star, and then move the point to the
weighted center of the polytope formed by these circumcenters.
The step size a is incorporated to avoid the folding of simplices as
explained below. The initial setting is a = 1. If moving xi to xnew

i re-
sults a non-valid triangulation (some simplices could have negative
signed volume), we then reduce a by half. That is we use a = 1, 1/2,
1/4, . . . as a simple line search strategy.

When near the boundary, the ODT smoothing could result
squashed/stretched elements. For example, in Fig. 3(a), since the
neighboring vertices lie on a circle, the weighted average of cir-
cumcenters is the center of this circle, which results a stretched tri-
angle near the boundary. If this edge is inside the domain, the
stretched triangle will disappear after one or two edge flipping.
But for a boundary edge, flipping is not possible.

The reason for this problem near boundary is that the object
function in our minimization problem is the interpolation error
which is not directly related to geometric mesh quality such as as-
pect ratio. It is well known that optimization of location of vertices
may result well distributed points which is not necessarily lead to
meshes with good aspect ratio [46]. Obtuse triangles are examples
in 2D and similar examples in 3D are known as silvers. Optimiza-
tion of topology, i.e., the connectivity of points is necessary to
(b) modified centers

e boundary of the domain. The square dots are centers of triangles. In (a), since the
circle, which results a stretched triangle near the boundary. In (b), we change the
erage of modified centers, the triangle dot, is moved away from the boundary.

974 L. Chen, M. Holst / Comput. Methods Appl. Mech. Engrg. 200 (2011) 967–984
further improve the aspect ratio, which is possible for interior parts
but may fail for boundary parts.

Ideally we should change the object function near the bound-
ary. Commonly used object function include: minimum/maximum
angle [22,23,47], aspect ratio [48,17], or distortion metrics [19].

To keep the simple form and geometric interpretation of our
mesh smoothing scheme, we simply modify the center for the
squashed element close to the boundary following the rule:

For boundary elements, use the barycenter.
Here boundary elements are defined as simplexes containing at

least one node on the boundary. For the implementation, one can
record a logical array isBdNode to indicate which node is on the
boundary and boundary elements can be easily found by

% 2D

isBdElem = isBdNode(t(:,1)) j isBdNode(t(:,2)) j
isBdNode(t(:,3));

% 3D

isBdElem = isBdNode(t(:,1)) j isBdNode(t(:,2)) j . . .

isBdNode(t(:,3)) j isBdNode(t(:,4));

With such a modification, the polytope formed by the centers is
still inside the domain. When stretched elements appear near the
boundary, their volume is small. Therefore, the contribution of
the corresponding center to the new location is not major, as the
other centers will attract the points back; see Fig. 3(b).

4.2.2. CPT smoothing
We present another formula for our energy. The proof is given

in [1]. For completeness, we include it here.

Lemma 4.5. For uniform density q = 1, one has

EðpÞ ¼ 1
dþ 1

XN

i¼1

Z
xi

kx� xik2dx: ð4:14Þ
Proof. Recall that fkiðxÞgdþ1
i¼1 is the barycenter coordinate of x in the

simplex s. Then x ¼
Pdþ1

i¼1 kixi and

Xdþ1

k¼1

Z
s
kx� xkk2 ¼

Xdþ1

i;j;k¼1

Z
s

kikjðxi � xkÞtðxj � xkÞ

¼ jsj
ðdþ 2Þðdþ 1Þ

Xdþ1

i;j;k¼1

ðxi � xkÞtðxj � xkÞ

¼ dþ 1
2

jsj
ðdþ 2Þðdþ 1Þ

Xdþ1

i;j¼1

kxi � xjk2

¼ ðdþ 1Þ
Z

s
ðuI � uÞðxÞdx:

The last equality follows from Lemma 2.7. The third one is obtained
by summing up the following basic identity for i, j, k = 1, . . . , d + 1:

kxi � xjk2 ¼ kxi � xkk2 þ kxj � xkk2 � 2ðxi � xkÞtðxj � xkÞ:

By rearranging the summation from element-wise to vertex-wise,
we obtainZ

X
ðuI � uÞðxÞdx ¼ 1

dþ 1

XNT

i¼1

Xdþ1

k¼1

Z
si

kx� xs;kk2

¼ 1
dþ 1

XN

i¼1

Z
xi

kx� xik2
:

Here NT is the number of elements in the triangulation. h
The formula (4.14) motives a slightly different energy for gen-
eral density function q defined as:

eEðpÞ ¼ 1
dþ 1

XN

i¼1

Z
xi

kx� xik2qðxÞdx: ð4:15Þ

When q is piecewise constant on each simplex, E ¼ eE in views of
Lemma 4.5. Otherwise, eE can be thought as a high-order perturba-
tion of E.

We shall derive an approximation of the derivative @ i
eE by con-

sidering the following 1D optimization problem:

min
xi

eEi; where eEi ¼
1

dþ 1

Z
xi

kx� xik2qðxÞdx: ð4:16Þ

Since [ixi is an overlapping decomposition of X, the change of xi

will affect other patches and thus the overall energy will not neces-
sarily be reduced by solving this local optimization problem. Never-
theless it will result an efficient local mesh smoothing scheme.

Again since the domain formed by xi does not depends on xi,
differentiation of the energy eEi gives the following result.

Lemma 4.6. For general density q, one has

@i
eEi ¼

2
dþ 1

xi

Z
xi

qðxÞdx�
Z

xi

xqðxÞdx

" #
ð4:17Þ

and therefore the minimizer of (4.16) is the centroid of xi with respect
to the density q(x), namely

x�i ¼
R
xi

xqðxÞdxR
xi

qðxÞdx
: ð4:18Þ
Definition 4.7. For a triangulation T , if for any vertex xi 2 T , xi is
also the centroid of its patch xi with respect to the density q, we
call it Centroidal Patch Triangulation (CPT) with respect to the den-
sity q.
Remark 4.8. This mimics the definition of Centroidal Voronoi Tes-
sellations in [14] for which the generator and centroid of each
Voronoi region coincide. For various application of CVT to the mesh
generation and numerical solution of PDEs, we refer to [14,13,49–
53]. Mesh smoothing based on CVT in Du and Gunzburger [13] is
the mostly closely related work.

We use one point numerical quadrature to evaluate the integral,
i.e.

R
s xqiðxÞdx � bsqsjsj where bs is the barycenter of s and

qs = q(bs). The quadrature is exact for constant density. We then
get an approximation of the gradient as

@iEðxiÞ � @i
eEi ¼

2
dþ 1

X
sj2xi

ðxi � bjÞjsjjqsj
; ð4:19Þ

where bj is the barycenter of simplex sj. Note that @iEðxiÞ ¼P
xj2xi

@iEj. We skip the contribution from other patches to get an
approximation which is more computationally efficient.

We thus get a CPT-based mesh smoothing scheme

xnew
i ¼ ð1� aÞxi þ a

X
sj2xi

jsjjqs

jxijqs

bj: ð4:20Þ

What is the difference between ODT and CPT smoothing? In CPT
(4.20) we use the barycenter while in ODT (4.13) the circumcenter.
There are several advantages to using barycenters over
circumcenters:

� The barycenter (an averaging of coordinates of vertices) is easy
to compute while the computation of circumcenter is relatively
costly; see the formula (4.6), for example.

L. Chen, M. Holst / Comput. Methods Appl. Mech. Engrg. 200 (2011) 967–984 975
� Barycenters will be always inside the simplex. Therefore mov-
ing to the average of the barycenters without changing the con-
nectivity will very likely result a valid triangulation.
� No modification is needed near the boundary.

On the other hand, we should be aware that barycenter-based
CPT smoothing only minimizes an approximation of the energy.
Numerical examples in Section 5 show that ODT is slightly better
than CPT.

What is the right choice of the density function q? It could be
given a priori. Namely, the density is given by the user according
to a priori information. For example, we choose q = 1 for uniform
meshes and non-constant q for graded meshes. In practice, espe-
cially when solving partial differential equations, the density could
be given by a posteriori error estimate, which of course is problem
dependent. In application to mesh optimization, q can be chosen as
the curvature of the boundary curves or as distance to the bound-
ary or other feature, with high density near the feature of interest.
The density q can be also estimated from the current triangulation.
We will discuss one of such choice in the next.

4.2.3. Laplacian smoothing
Laplacian smoothing [54], in its simplest form, involves moving

each vertex to the arithmetic average of the neighboring points.

xnew
i ¼ 1

k

X
xj2xi ;xj–xi

xj; ð4:21Þ

where k is the number of vertices of xi other than xi. Laplacian
smoothing is easy to implement and requires very low computa-
tional cost, but it operates heuristically and does not guarantee an
improvement in the geometric mesh quality. We now derive a var-
iant of Laplacian smoothing from CPT smoothing by a special choice
of the density.

When the mesh is obtained by local refinement driven by error
indicators, it is reasonable to assume that local refinement will
equidistribute the product qjsj. Namely we could take qs=1/jsj. If
we chose qs = 1/jsj and a = 3/2 in formula (4.20) in 2D, we obtain
Laplacian smoothing, i.e. Laplacian smoothing is an over-relaxation
of CPT smoothing. We emphasis that in 3D, no such a relation exists.
For a vertex xj of xi and xj – xi, the number of simplices containing
the edge formed by xi and xj in xi is not fixed while in two dimen-
sions, this number is always two since xi is an interior vertex.

From the discussion above, we see Laplacian smoothing will
preserve the current mesh density. Therefore if triangles in the cur-
rent mesh are well shaped, Laplacian smoothing will be more effi-
cient (without computing the volume). But even in this case, i.e., to
keep the current mesh density, we recommend using CPT or ODT
smoothing (with choices q = 1/jsj, a = 1)

xnew
i ¼ 1

k

X
sj2xi

bj; or xnew
i ¼ 1

k

X
sj2xi

cj; ð4:22Þ

where, recall that, bj is barycenter, cj is circumcenter, and k is the
number of simplexes in the star.

4.3. Global mesh optimization scheme

Writing bs as combination of vertices, i.e. bs ¼
Pdþ1

k¼1xk=ðdþ 1Þ in
(4.19), we obtain another form of the approximated gradient

@i
eEi ¼

X
s2xi

X
xk2s

2jsjqs

ðdþ 1Þ2
ðxi � xkÞ: ð4:23Þ

Therefore we can approximate rE by a nonlinear diffusion system.
More specifically, let �p ¼ p [b be the set of all vertices and ps the set
of vertices of s. We define a matrix Að�pÞ such that
Að�pÞ�p ¼
X
s2T

Asps; with As ¼
2jsjqs

dðdþ 1Þ

d �1 � � � �1
�1 d � � � �1
� � � � � � � � � � � �
�1 �1 � � � d

0BBB@
1CCCA:
ð4:24Þ

We then define A ¼ Að1 : N;1 : NÞ as the submatrix of A restricted to
interior vertices. From the element-wise relation, it is not hard to
write out the matrix A explicitly. Let xi, i = 1, . . . , N + Nb be N interior
points and Nb boundary points. We construct the
(N + Nb) � (N + Nb) matrix A by

ai;j ¼ �
2

dðdþ 1Þ
X

sk2xi\xj

jskjq for i – j; i; j ¼ 1 : N þ Nb ð4:25Þ

and

ai;i ¼
X
j–i

�ai;j for i ¼ 1 : N þ Nb: ð4:26Þ

The scaling factor 2/(d(d + 1)) is chosen such that aii = @iiE when the
density is uniform, i.e., q = 1.

We choose A as an approximation of r2E to obtain an ODT-
based global mesh optimization scheme

pkþ1 ¼ pk � aA�1rEðpkÞ; ð4:27Þ

or CPT-based global mesh optimization scheme by using the
approximated gradient

pkþ1 ¼ pk � aA�1 ereEðpkÞ: ð4:28Þ

It is easy to see the matrix A is an SPD and M-matrix. These nice
properties enable us to solve the resulting algebraic system effi-
ciently, e.g. using algebraic multigrid methods (AMG). See [55] on
the nearly optimal complexity analysis for AMG for an SPD and
M-matrix on general unstructured grids.

Why not solve Euler–Lagrange type equation reE ¼ 0 directly?
Let us write Apb ¼ Að1 : N;N þ 1 : N þ NbÞ. Then in view of (4.23),
we have

ereEðpÞ � d
dþ 1

ðApþ ApbbÞ:

Therefore reE ¼ 0 becomes a diffusion equation with Dirichlet
boundary condition:

Að�pÞp ¼ �Apbð�pÞb: ð4:29Þ

Note that this is a non-linear equation since the matrix Að�pÞ de-
pends on p also. The simplest fixed-point iteration is
pkþ1 ¼ �A�1ð�pkÞApbðpkÞb may not converge. The iteration (4.28) can
be written as

pkþ1 ¼ pk � aA�1 d
dþ 1

ðApk þ ApbbÞ

¼ 1� ad
dþ 1

� �
pk � ad

dþ 1
A�1Apbb;

which is a damped fixed-point iteration.
We can construct more efficient mesh optimization schemes by

using advanced numerical algorithms for solving the nonlinear dif-
fusion Eq. (4.29). One such algorithm is the two-grid method
developed in [56]. Let us use subscript H and h to denote meshes
with different scales and assume h	 H. The mesh T H is called
the coarse mesh and T h is the fine mesh. To solve the nonlinear
equation on the fine mesh T h, we first solve it on the coarse mesh
to get an accurate approximation pH and then start the damped
fixed-point iteration with pH. The computational cost of the nonlin-
ear problem on the coarse mesh is usually small.

In our setting, we will replace the coarse grid solver by any ro-
bust (not necessarily efficient) mesh generator, which also solves

976 L. Chen, M. Holst / Comput. Methods Appl. Mech. Engrg. 200 (2011) 967–984
the deficiency of fixing boundary nodes in our mesh improvement
schemes. We then uniformly refine the coarse mesh several times
and apply our local and global methods to further improve the
mesh; see odtmesh2d in Section 5.3.

5. Numerical examples

In this section, we present several numerical examples to show
the efficiency of our mesh smoothing and optimization schemes.
We first present local mesh smoothing schemes of Gauss–Seidel
type for both uniform density and non-uniform density cases.
We then give an example to show fast convergence of our new glo-
bal method compared with local methods. Next we combine a ro-
bust mesh generator, distmesh [12], with our efficient mesh
optimization methods to obtain a robust and efficient mesh gener-
ator in 2D. Last we present examples on local mesh smoothing
schemes for 3D meshes.

To measure the mesh quality, we use the ratio of radius of in-
scribed and circumscribed circles or sphares. In 2D, we have the
following formula

qðsÞ ¼ 2
rin

rout
¼ ðbþ c � aÞðc þ a� bÞðaþ b� cÞ

abc
; ð5:1Þ

where rin and rout are radius of inscribed and circumscribed circles
of the triangle s, and a, b, c are the side lengths. The idea equilateral
triangle has q = 1, and the smaller the q is, the worse the aspect ratio
of s. As indicated in [12], if all triangles have q > 0.5, the results are
good. We calculate the minimal and mean value of the mesh quality
and sometimes show its histogram.

We also include a measure of uniformity [12]: the standard
deviation of the ratio of actual sizes to desired sizes specified by
a function h. That number is normalized to measure the relative
sizes. The smaller the value of the uniformity, the more uniform
(with respect to h) is the point distribution.

5.1. Local mesh smoothing

For completeness, we present a Gauss–Seidel type mesh smooth-
ing and edge flipping algorithms for a 2D triangulation below.
Fig. 4. Comparison of meshes obtained by O
for k = 1:step

% mesh smoothing

for i = 1:N

if x⁄ is interior

x⁄=smoother(xi,xi,q);
end

if x⁄ is acceptable

xi = x⁄;
end

end

% edges flipping

for e = 1:ne

if e is non locally Delaunay

find the convex quadrilateral sharing e;

flip the diagonals;

end

end

end

Recall that xi is the triangles attached to the vertex xi and q is a
density function specified by users. Here x⁄ is acceptable means by
replacing xi by x⁄, the resulting mesh is still valid, i.e. all signed area
is positive.

We incorporate the edge flipping after one step of mesh
smoothing since it can change the topological structure of the
mesh to further minimize the energy – these are two sub-problems
associated with the minimization of our energy. However, we do
not repeat edge flipping until the mesh is Delaunay. Instead we
only perform one loop for all edges and flip non Delaunay edges.

There are several variants of the above subroutine. One can per-
form two or more iterations of smoothing loops and followed by
one loop of edge flipping. To further save computational cost, in-
side each mesh smoothing or edge flipping loop, one can restrict
the operation to triangles or edges with bad respect ratio.
5.1.1. Uniform density
The goal of the mesh smoothing is to get a mesh consisting of

equilateral triangles with equal areas. We use CPT (4.20) and
DT and CPT smoother for 10 iterations.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x 10 4

iteration step

ap
pr

ox
im

at
ed

 in
te

rp
ol

at
io

n
er

ro
r

ODT smoothing
CPT smoothing

Fig. 5. Error comparison of ODT and CPT smoother.

L. Chen, M. Holst / Comput. Methods Appl. Mech. Engrg. 200 (2011) 967–984 977
ODT (4.13) smoothing with step size a = 1 and uniform density
q = 1, and show the reduction of the interpolation error.

We use a mesh for a wavy channel displayed in Fig. 4(a). The
nodes inside the domain are perturbed randomly while the nodes
on the boundary is equally spaced since only interior nodes are al-
lowed to move. We perform ten iterations and present meshes ob-
tained by different smoothers in Fig. 4. Both ODT and CPT result in
much better meshes than the initial mesh; see Fig. 4(b) and (c). The
mesh quality obtained by ODT and CPT smoothers are almost the
same. However ODT results in a better uniformity than CPT.

In Fig. 5, we plot the energy shifted by a constant. Let E1
k ; E

2
k de-

note the integral
R

X uIðxÞdx on the mesh obtained by k-th iteration
of ODT or CPT smoothing, respectively. Ideally the energy will be
obtained by subtracting

R
X kxk

2dx from Ek; see the formula in Lem-
ma 4.1. Instead we compute approximate energy by E1

k � E1
10 and

E2
k � E1

10. Fig. 5 clearly shows the reduction of this approximated
energy after each iteration. The ODT smoother is better in reducing
the energy since it has a provable reduction property. The numer-
ical convergence of the interpolation errors for those smoothers is
very clear from this figure. A Gauss–Seidel type convergence his-
tory is also evident. Namely, the energy is decreased most rapidly
in the first few steps and then the curve becomes flat.

5.1.2. Non-uniform density
In practice, to resolve the complex geometry or to resolve the

singularity of the solution to some PDEs, it is advantageous to have
different sizes in different regions. The mesh size will be controlled
by the density function. We shall show our mesh smoothing
schemes are also effective for non-uniform density functions.

For highly curved boundaries, the curvature or the distance to
the boundary may be used in the formulation of q. For functions
with singularity, a posteriori or a priori error estimators can serve
in the role of density function. Usually we assume the density q
is specified by the user and we will present relevant examples
later.

There are some cases for which the user may not know the den-
sity function a priori. In other words, the user provides a mesh as
an input, and wants an output mesh with better mesh quality
while keeping similar mesh density. In this case, we simply choose
q = C/jsj in ODT or CPT smoothers and thus use the formulae (4.22).
The constant C is not important since it will cancel out in the
normalization.

We choose an air foil mesh displayed in Fig. 6(a). The average of
the mesh quality is 0.9 and the minimal one is 0.25. In Fig. 6(b), we
display the mesh obtained by performing three iterations of ODT
mesh smoothing. The average quality is improved to 0.95 and
the minimal one is 0.57. Histograms of the mesh quality for the
original mesh and smoothed mesh are presented in Fig. 6(c) and
(d). The mesh density in the original mesh is kept in the smoothed
mesh.

We would expect higher quality for the min(q). By tracing the
triangles with smaller q, we found it is constrained by the topology
of the input mesh. We could improve the mesh quality by remov-
ing some grid points on the boundary. However in this example,
the goal is to improve the mesh quality by using the same set of
vertices, so we are not allowed to delete any vertex. This suggests
incorporating our mesh smoothing/optimization into the mesh
generator; see Section 5.3.
5.2. Global mesh optimization schemes

Again for completeness, we recall a general mesh optimization
algorithm below.

for k = 1:step

p = p + aA�1rE(p);
t = delaunay (p);

end

We choose uniform density q = 1. We compute an area based
graph Laplacian A using the element-wise formula (4.24) and the
standard assembling procedure. The inverse A�1 is computed using
the backslash (or left matrix divide) function in MATLAB which is a
very fast direct solver for SPD matrices. The step size a is included
for generality and a common choice is a 2 [0.75,1]. If we replace A
by diag (A), we get a Jacobi-type local mesh smoothing method. We
shall compare our global method with this local method.

To illustrate that local method will fail to capture the error
made in the coarse level, we construct a special input triangulation
in two steps. First we perturb a uniform mesh of an equilateral tri-
angle by moving 3 interior nodes; see Fig. 7(a). Then we apply sev-
eral global refinements; see Fig. 7(b). The quality of the finest mesh
is determined by that of the coarse mesh.

We apply both local mesh smoothing and global mesh optimi-
zation to the mesh in Fig. 7(b). As we have shown in the previous
step, the local method will improve the mesh quality and the
resulting mesh is equilateral almost everywhere. But the improve-
ment is gradually; see Fig. 7(c) for a mesh obtained by 42 iterations
of the local method. The reason is, inside each coarse triangle, the
star around a vertex is symmetric and rE vanishes. Therefore, the
local method can only move vertices on the edge of the coarse
mesh first and then conduct the movement to the interior nodes
gradually. In contrast, the global method is extremely fast and it
leads to the best triangulation, i.e., all triangles are equilateral, in
four iterations; see Fig. 7(d). Again we plot approximated energies
by shifting the integral

R
X uIðxÞdx in Fig. 8. The global method will

converge in very few steps, and Newton-type convergence is
observed.

Remark 5.1. It is likely that the global method can bring the
energy down to a lower level. In this example, the global
method leads to the global minimizer. In general it may not be
the case.
5.3. Combination of distmesh and ODT mesh optimization

One constraint in our previous examples is the fixing of the
boundary nodes. The distribution of boundary nodes is crucial for
capturing the geometry of the domain, which is considered a func-
tion of mesh generators. It is natural to combine our mesh optimi-
zation schemes with any robust mesh generator to produce a
better meshing algorithm.

Fig. 6. ODT smoothing applied to a non-uniform mesh.

978 L. Chen, M. Holst / Comput. Methods Appl. Mech. Engrg. 200 (2011) 967–984
Our previous example indicates that the global method can cap-
ture both fine and coarse level errors. This motivates a paradigm
based on the combination: first, we apply any robust (not necessar-
ily efficient) mesh generator at a very coarse level to capture the
geometry of the domain; then, we apply several uniform refine-
ment of the coarse mesh and use our global mesh optimization
to obtain a fine and smoothed mesh.

This paradigm will be extremely useful for large size simulation
of PDEs where the number of nodes is above several hundred of
thousands. For such large size meshes, local mesh smoothing
methods will not be efficient.

The mesh generator we choose is distmesh [12]. The geometry
of the domain is represented by a signed distance function d and
the nodes are distributed by solving for equilibrium in a truss
structure. The combination of distance function representation
and node movements from spring-like forces, which can be also
treat as a local mesh smoothing method, enable distmesh to cap-
ture the boundary and improve mesh quality. It can produce
non-uniform meshes by using an element size function h to weight
the force associated to each edge. The size function h is small for a
denser region i.e. where q is big. A relation between them is q = 1/
hr with r = 2 or 3.

The main disadvantages of distmesh are slow execution and the
possibility of nontermination when the number of grid points is
large. The slow execution is partially due to the local feature of
the mesh movement. The possibility of nontermination is from

Fig. 7. Comparison of meshes obtained by local and global methods based on ODT.

5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

x 10 5

iteration step

ap
pr

ox
im

at
e

in
te

rp
ol

at
io

n
er

ro
r

Global method
Local method

Fig. 8. Error comparison of a local method and a global method.

L. Chen, M. Holst / Comput. Methods Appl. Mech. Engrg. 200 (2011) 967–984 979
the lack of convergence theory. As noted in [12], the equilibrium
position is hard to find due to the discontinuity in the force func-
tion when the topology of the mesh is changed. Furthermore, near
the boundary, some stretched triangles are possible; see Fig. 3(a)
for such an example. At equilibrium, it is highly possible the verti-
ces will be projected onto the boundary to eliminate such
stretched triangles but without guarantee. However it may take a
long time to reach the equilibrium, especially when the number
of grid points is large.

We shall use distmesh in the coarse level. For small size meshes,
say around 300 vertices, it is fast and reliable. We modify
distmesh2d in [12] into a mesh smoothing subroutine
distmeshsmoothing. Since we need only a initial guess for the fine
mesh, we perform a fixed number of iterations rather than run the
algorithm to reach an equilibrium configuration. Then we apply
global uniform refinement several times. To better capture the
boundary, we also apply distmeshsmoothing on the fine mesh a
few times which will take care of the high frequency of the error.
After that we use global method odtmeshoptimization. Lastly,
to eliminate some bad triangles caused by some degree 2 vertices,
which are vertices sharing by only two triangles, on the boundary
(see Fig. 6(e)), we code a cleanup subroutine. We summarize our
algorithm as follows.

function[p,t]=odtmesh2d(fd,fh,h0,hbox,pfix,varargin)
h0 = h0 ⁄ 2^ level;
[p,t] = initmesh (fd,fh,h0,hbox,pfix);

[p,t] = distmeshsmoothing (p,t,fd,fh,pfix,80);

[p,t] = uniformrefine (p,t,level);

[p,t] = distmeshsmoothing (p,t,fd,fh,pfix,10);

[p,t] = odtmeshopt (p,t,fd,fh,pfix,3);

[p,t] = cleanup (p,t,fd,pfix);

The interface of odtmesh2d is identical to distmesh2d. In
the input arguments, fd is the distance function, fh is the size
function, h0 is the distance between points in the initial distri-
bution, hbox is a rectangle containing the domain, pfix are
fixed nodes, and varargin allows additional parameters; see
[12] for details.

We include two examples to show the change of mesh quality
and uniformity. Since we apply distmeshsmoothing only a fixed
number of times, the quality after the smoothing is not necessarily
high. Some triangles (near the boundary) may still have bad aspect
ratio. odtmeshoptimization (with modification near the bound-
ary) will improve the quality dramatically. The final step cleanup

will further take care of those bad triangles caused by degree 2
boundary nodes.

(d) Square with hole (refined at hole) h = 0.02

1. distmeshsmoothing - Min (q) 0.48 - Mean (q) 0.95 - Uniformity 5.1%

2. uniform refinement - Min (q) 0.48 - Mean (q) 0.95 - Uniformity 6.9%

3. distmeshsmoothing - Min (q) 0.25 - Mean (q) 0.96 - Uniformity 4.6 %

4. odtmeshoptimization - Min (q) 0.63 - Mean (q) 0.97 - Uniformity 5.0 %

5. clean up - Min (q) 0.71 - Mean (q) 0.97 - Uniformity 5.4%

(e) Geometric Adaptivity h = 0.01

1. distmeshsmoothing - Min (q) 0.50 - Mean (q) 0.96 - Uniformity 6.4%

2. uniform refinement - Min (q) 0.50 - Mean (q) 0.96 - Uniformity 6.4%

3. distmeshsmoothing - Min (q) 0.54 - Mean (q) 0.96 - Uniformity 6.1%

4. odtmeshoptimization - Min (q) 0.73 - Mean (q) 0.97 - Uniformity 6.1 %

5. clean up - Min (q) 0.73 - Mean (q) 0.97 - Uniformity 6.1 %

980 L. Chen, M. Holst / Comput. Methods Appl. Mech. Engrg. 200 (2011) 967–984
We present some sample meshes produced by odtmesh2d in
Fig. 9 and the corresponding quality in Table 1. Almost all exam-
ples have minimal q > 0.7 and the average quality is greater than
0.97. The last example (f) has a sharp corner and the minimal qual-
ity is constrained by the triangle containing that corner.
(a) Unit circle

(c) Square with hole (uniform)

(e) Geometric Adaptivity

Fig. 9. Sample meshes pro
5.4. Three dimensional mesh generation and optimization

The methods and formulae presented in this paper are for gen-
eral dimensions. In this subsection, we shall provide two examples
of mesh smoothing for three dimensional tetrahedron meshes.
1

(b) Unit circle with hole

(d) Square with hole (refined at hole)

(f) Pie with hole

duced by odtmesh2d.

Table 1
Quality of all sample meshes in Fig. 9.

Examples (a) (b) (c) (d) (e) (f)

Min (q) 0.74 0.74 0.76 0.71 0.73 0.57
Mean (q) 0.99 0.98 0.98 0.97 0.97 0.97
Uniformity 2.9% 4.5% 3.8% 5.4% 6.1% 7.6%

L. Chen, M. Holst / Comput. Methods Appl. Mech. Engrg. 200 (2011) 967–984 981
We first present an example of local mesh smoothing using CPT
(4.20) and ODT (4.13) smoothing with step size a = 1 and uniform
density q = 1.
(a) The original mesh of the unit ball.

0
0

50

100

150

200

250

300

350

(c) A smoothed mesh after 40 steps of ODT
smoothing.

0
0

50

100

150

200

250

(e) A smoothed mesh after 40 steps of CPT
smoothing.

0
0

50

100

150

200

250

Fig. 10. ODT and CPT mesh smoothing
We choose a initial mesh of the unit ball produced by distmesh,
and apply only few steps of the mesh smoothing schemes in dist-
mesh. The mean value of the mesh quality for the initial mesh is
0.74, and quite a few bad elements (q 6 0.4) exist; see Fig. 10(a)
and (b). We then apply CPT (4.20) and ODT (4.13) smoothing to this
initial mesh. Note that, in ODT, we modify the centers of the
boundary elements (defined as tetrahedrons containing at least
one boundary vertex) to be barycenters, not circumcenters. We
present the histogram of the mesh quality for two meshes obtained
by applying 40 steps of ODT and CPT smoothing in Fig. 10(d) and
(f). We apply the delaunayn command in MATLAB after each 2
smoothing steps to optimize the connectivity.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 Min 0.0002
 Mean 0.7426
 Uniformity 17.32%

(b) Quality of the original mesh.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 Min 0.1879
 Mean 0.8388
 Uniformity 5.41%

(d) Quality of the smoothed mesh in (c).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 Min 0.1437
 Mean 0.8345
 Uniformity 7.03%

(f) Quality of the smoothed mesh in (e).

applied to a mesh of the unit ball.

(a) An initial mesh of the Stanford bunny

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500

 Min 0.0062
 Mean 0.7801

(b) Quality of the initial mesh.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

 Min 0.0951
 Mean 0.8727

(c) Quality of a mesh after 10 steps ODT smoothing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

 Min 0.0825
 Mean 0.8798

(d) Quality of a mesh after 50 steps ODT smoothing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

 Min 0.0682
 Mean 0.8711

(e) Quality of a mesh after 10 steps CPT smoothing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

 Min 0.0459
 Mean 0.8774

(f) Quality of a mesh after 50 steps ODT smoothing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

 Min 0.0062
 Mean 0.8375

(g) Quality of a mesh after 10 steps CVT smoothing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

 Min 0.0236
 Mean 0.8707

(h) Quality of a mesh after 50 steps CVT smoothing.

Fig. 11. ODT, CPT and CVT mesh smoothing applied to a mesh of the bunny.

982 L. Chen, M. Holst / Comput. Methods Appl. Mech. Engrg. 200 (2011) 967–984
We observe similar behavior as in 2D case. The mesh
quality is improved significantly by ODT and CPT; see
Fig. 10(b), (d), and (f). The improvement of the mesh quality
due to ODT and CPT are similar; concerning uniformity, ODT
smoothing produces a better result when compared with CPT
smoothing.

L. Chen, M. Holst / Comput. Methods Appl. Mech. Engrg. 200 (2011) 967–984 983
ODT smoothing has been included in the Computational Geom-
etry Algorithms Library (CGAL) [57]. We use CGAL to demonstrate
the effectiveness of ODT smoothing on 3D meshing. The initial
mesh of the Stanford bunny object is obtained by applying con-
strained Delaunay refinement; a description of this algorithm can
be found in [58] or [59]. The average shape quality of 0.78 is rea-
sonably good.

We then apply ODT and CPT smoothing to the initial mesh. The
density q in CGAL ODT smoothing is determined as follows: first
we compute a size function at all vertices h(x) = mean (kx � ck),
where c is the circumcenter, and the average is taken in the star
of the vertex x. This leads to a piecewise linear size function. The
element-wise density function is chosen as qs = 1/h(bs)3, with bs
as the barycenter of the element s. Lloyd mesh smoothing from
CVT [13] is also included in CGAL. The difference between CVT
and ODT is that the average of circumcenters is in the Voronoi re-
gion, not the star of the vertex.

In each step of mesh smoothing, a surface smoothing step is
also included for the boundary mesh. After several steps smooth-
ing, constrained Delaunay algorithms are applied to ensure the
current triangulation is still Delaunay (constrained to the
boundary).

We apply these three mesh smoothing schemes to the same
initial mesh in Fig. 11(a), and compare the mesh quality. From
Fig. 11, we can conclude:

1. The mesh quality is improved by these three mesh smoothing
schemes.

2. ODT mesh smoothing is the best among these three smoothers.
3. In the first 10 steps, the ODT and CPT smoothing improved the

quality a lot and then the improvement is slow down. While
CVT smoother in the 10 steps is not as good as other two
methods.

Although our mesh smoothing scheme is not sliver-free (there
are still some tetrahedron with tiny aspect ratios), it appears that
mesh smoothing based ODT will produce fewer sliver tetrahedra;
see [24,60] for more supporting numerical examples.

In [24,60], the authors use and improve some of the local mesh
smoothing schemes developed in our previous work [1]. We expect
the more efficient global method developed in this paper will fur-
ther improve the performance of 3D mesh generation. However,
the implementation of such a method requires critical and non-
trivial work on the boundary surface mesh; see [61–63].

6. Conclusion and further work

In this paper we have introduced several local mesh smoothing
and global mesh optimization schemes based on minimizing ener-
gies related to a weighted interpolation error. We combined our
global mesh optimization of a fine mesh with a robust mesh gen-
erator for a coarse mesh, to get an efficient mesh generation algo-
rithm in two dimensions. The splitting of scales in the mesh
generation and optimization procedures is critical for the numeri-
cal solution of partial differential equations. In future work, we will
apply such a methodology to adaptive finite element methods, in
the hope to develop more efficient adaptive mesh refinement pro-
cedures. We shall also investigate the combination of surface mesh
smoothing with 3D mesh smoothing or optimization.

Acknowledgment

The authors would like to thank Huayi Wei from Xiangtan Uni-
versity on the preparation of the last 3D example: mesh smoothing
for a mesh of the bunny using CGAL.
References

[1] L. Chen, Mesh smoothing schemes based on optimal Delaunay triangulations,
in: 13th International Meshing Roundtable, Sandia National Laboratories,
Williamsburg, VA, 2004, pp. 109–120.

[2] L. Chen, J. Xu, Optimal Delaunay triangulations, J. Comput. Math. 22 (2004)
299–308.

[3] L. Chen, Robust and accurate algorithms for solving anisotropic singularities,
Ph.D. thesis, Department of Mathematics, The Pennsylvania State University,
2005.

[4] P. Knupp, S. Steinberg, Fundamentals of Grid Generation, CRC Press, 1994.
[5] G. Carey, Computational Grids: Generation, Adaptation, and Solution

Strategies, CRC (1997).
[6] V.D. Liseikin, Grid Generation Methods, Springer Verlag, Berlin, 1999.
[7] W. Huang, Variational mesh adaptation: isotropy and equidistribution, J.

Comput. Phys. 174 (2001) 903–924.
[8] A.S. Dvinsky, Adaptive grid generation from harmonic maps on Riemannian

manifolds, J. Comput. Phys. 95 (1991) 450–476.
[9] W. Huang, R.D. Russell, Moving mesh strategy based on a gradient flow

equation for two-dimensional problems, SIAM J. Sci. Comput. 20 (1999) 998–
1015.

[10] R. Li, T. Tang, P. Zhang, Moving mesh methods in multiple dimensions based on
harmonic maps, J. Comput. Phys. 170 (2001) 562–588.

[11] A. Anderson, X. Zheng, V. Cristini, Adaptive unstructured volume remeshing –
i: the method, J. Comput. Phys. 208 (2005) 616–625.

[12] P.-O. Persson, G. Strang, A simple mesh generator in matlab, SIAM Rev. 46
(2004) 329–345.

[13] Q. Du, M. Gunzburger, Grid generation and optimization based on centroidal
Voronoi tessellations, Appl. Math. Comput. 133 (2002) 591–607.

[14] Q. Du, V. Faber, M. Gunzburger, Centroidal Voronoi tessellations: applications
and algorithms, SIAM Rev. 41 (4) (1999) 637–676.

[15] K.Q. Brown, Voronoi diagrams from convex hulls, Inform. Process. Lett. 9
(1979) 223–228.

[16] C. Barber, D. Dobkin, H. Huhdanpaa, The quickhull algorithm for convex hulls,
ACM Trans. Math. Softw. (TOMS) 22 (1996) 469–483.

[17] M. Aiffa, J.E. Flaherty, A geometrical approach to mesh smoothing, Comput.
Meth. Appl. Mech. Engrg. 192 (2003) 4497–4514.

[18] N. Amenta, M. Bern, D. Eppstein, Optimal point placement for mesh
smoothing, J. Algorithms (1999) 302–322.

[19] R.E. Bank, R.K. Smith, Mesh smoothing using a posteriori error estimates, SIAM
J. Numer. Anal. 34 (1997) 979–997.

[20] L.A. Freitag, M.T. Jones, P.E. Plassmann, A parallel algorithm for mesh
smoothing, SIAM J. Sci. Comput. 20 (1999) 2023–2040.

[21] L. Freitag, C. Ollivier-Gooch, Tetrahedral mesh improvement using swapping
and smoothing, Int. J. Numer. Meth. Engrg. 40 (1997) 3979–4002.

[22] L. Freitag, On combining Laplacian and optimization-based mesh smoothing
techniques. AMD trends in unstructured mesh generation, ASME 220 (July)
(1997) 37–43.

[23] T. Zhou, K. Shimada, An angle-based approach to two-dimensional mesh
smoothing, in: 9th International Meshing Roundtable, Sandia National
Laboratories, 2000, pp. 373–384.

[24] P. Alliez, D. Cohen-Steiner, M. Yvinec, M. Desbrun, Variational tetrahedral
meshing, ACM Trans. Graph. 24 (2005) 617–625.

[25] M. Berndt, M. Shashkov, Multilevel accelerated optimization for problems in
grid generation, in: Proceedings of the 12th International Meshing Roundtable,
Sandia Nat. Lab., 2003, pp. 351–359.

[26] Y. Koren, I. Yavneh, A. Spira, A multigrid approach to the scalar quantization
problem, IEEE Trans. Inform. Theory 51 (2005) 2993–2998.

[27] Y. Koren, I. Yavneh, Adaptive multiscale redistribution for vector quantization,
SIAM J. Sci. Comput. 27 (2006) 1573–1593.

[28] R.M. Spitaleri, Full-fas multigrid grid generation algorithms, Appl. Numer.
Math. 32 (2000) 483–494.

[29] Q. Du, M. Emelianenko, Uniform convergence of a nonlinear energy-based
multilevel quantization scheme, SIAM J. Numer. Anal. 46 (2008) 1483–1502.

[30] L. Chen, New analysis of the sphere covering problems and optimal polytope
approximation of convex bodies, J. Approx. Theory 133 (2005) 134–145.

[31] L. Chen, On minimizing the linear interpolation error of convex quadratic
functions, East J. Approx. 14 (2008) 271–284.

[32] L. Chen, P. Sun, J. Xu, Optimal anisotropic simplicial meshes for minimizing
interpolation errors in Lp-norm, Math. Comput. 76 (2007) 179–204.

[33] H. Edelsbrunner, Triangulations and meshes in computational geometry, Acta
Numer. (2000) 1–81.

[34] M. Bern, D. Eppstein, Mesh generation and optimal triangulation, in: D.-Z. Du,
F. Hwang (Eds.), Computing in Euclidean Geometry, Lecture Notes Series on
Computing, vol. 1, World Scientific, 1992, pp. 23–90.

[35] S. Fortune, Voronoi diagrams and Delaunay triangulations, in: Ding-Zhu Du,
Frank Hwang (Eds.), Computing in Euclidean Geometry, Lecture Notes Series
on Computing, vol. 1, World Scientific, 1992.

[36] R. Sibson, Locally equiangular triangulations, Comput. J. 21 (1978) 243–245.
[37] T. Lambert, The Delaunay triangulation maximize the mean inradius, in:

Proceedings of the 6th Canadian Conference on Computational Geometry,
1994, pp. 201–206.

[38] S. Rippa, Minimal roughness property of the Delaunay triangulation, Comput.
Aided Geom. Des. 7 (1990) 489–497.

984 L. Chen, M. Holst / Comput. Methods Appl. Mech. Engrg. 200 (2011) 967–984
[39] E.F. D’Azevedo, R.B. Simpson, On optimal interpolation triangle incidences,
SIAM J. Sci. Statist. Comput. 6 (1989) 1063–1075.

[40] V.T. Rajan, Optimality of the Delaunay triangulation in Rd, in: Proceedings of
the Seventh Annual Symposium on Computational Geometry, 1991, pp. 357–
363.

[41] S. Rippa, Long and thin triangles can be good for linear interpolation, SIAM J.
Numer. Anal. 29 (1992) 257–270.

[42] E.A. Melissaratos, Lp Optimal d Dimensional Triangulations for piecewise
linear interpolation: a new result on data dependent triangulations, Technical
Report RUU-CS-93-13, Department of Information and Computing Sciences,
Utrecht University, 1993.

[43] D.S. Mitrinovic, J.E. Pecaric, V. Volenec, Recent advances in geometric
inequalities, Math. Appl. East Eur. Ser. 28 (1989).

[44] L.J. Guibas, D.E. Knuth, M. Sharir, Randomized incremental construction of
Delaunay and Voronoi diagrams, in: Proceedings of the Seventeenth
International Colloquium on Automata, Languages and Programming,
Springer-Verlag Inc., New York, NY, USA, 1990, pp. 414–431.

[45] H. Edelsbrunner, R. Seidel, Voronoi diagrams and arrangements, Disc. Comp.
Geom. 8 (1986) 25–44.

[46] H. Edelsbrunner, X.-Y. Li, G. Miller, A. Stathopoulos, D. Talmor, S.-H. Teng, A.
Üngör, N. Walkington, Smoothing and cleaning up slivers, in: STOC’00:
Proceedings of the Thirty-Second Annual ACM Symposium on Theory of
Computing, ACM, New York, NY, USA, 2000, pp. 273–277.

[47] H. Xu, T.S. Newman, An angle-based optimization approach for 2d finite
element mesh smoothing, Finite Elem. Anal. Des. 42 (2006) 1150–1164.

[48] V. Parthasarathy, S. Kodiyalam, A constrained optimization approach to finite
element mesh smoothing, Finite Elem. Anal. Des. 9 (1991) 309–320.

[49] Q. Du, D. Wang, Tetrahedral mesh generation and optimization based on
centroidal Voronoi tessellations, Int. J. Numer. Meth. Engrg. 56 (2003) 1355–
1373.
[50] Q. Du, D. Wang, Recent progress in robust and quality Delaunay mesh
generation, J. Comput. Math. 195 (2006) 8–23.

[51] Q. Du, M. Gunzburger, L. Ju, Voronoi-based finite volume methods, optimal
Voronoi meshes, and PDEs on the sphere, Comput. Meth. Appl. Mech. Engrg.
192 (2003) 3933–3957.

[52] L. Ju, Conforming centroidal voronoi delaunay triangulation for quality mesh
generation, Int. J. Numer. Anal. Model. 4 (2007) 531–547.

[53] L. Ju, M. Gunzburger, W. Zhao, Adaptive finite element methods for elliptic
PDEs based on conforming centroidal Voronoi Delaunay triangulations, SIAM J.
Sci. Comput. 28 (2007) 2023–2053.

[54] D.A. Field, Laplacian smoothing and Delaunay triangulation, Commun. Appl.
Numer. Meth. 4 (1988) 709–712.

[55] D.A. Spielman, S.-H. Teng, Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems, Preliminary Draft, 2006.

[56] J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J.
Numer. Anal. 33 (1996) 1759–1777.

[57] CGAL, Computational Geometry Algorithms Library, <http://www.cgal.org>.
[58] J.R. Shewchuk, Tetrahedral mesh generation by Delaunay refinement, in: 14th

Annual ACM Symposium on Computational Geometry, 1998, pp. 86–95.
[59] T.K. Dey, Delaunay mesh generation of three dimensional domains, Technical

Report OSU-CISRC-9/07-TR64, 2007.
[60] J. Tournois, C. Wormser, P. Alliez, M. Desbrun, Interleaving Delaunay

refinement and optimization for practical isotropic tetrahedron mesh
generation, ACM Trans. Graph. 28 (2009) 1–9.

[61] Q. Du, D. Wang, Constrained boundary recovery for three dimensional
Delaunay triangulations, Int. J. Numer. Meth. Engrg. 61 (2004) 1471–1500.

[62] Q. Du, M. Gunzburger, L. Ju, Constrained centroidal Voronoi tessellations for
surfaces, SIAM J. Sci. Comput. 24 (2003) 1488–1506.

[63] Z. Yu, M.J. Holst, J.A. McCammon, High-fidelity geometric modeling for
biomedical applications, Finite Elem. Anal. Des. 44 (2008) 715–723.

http://www.cgal.org

	Efficient mesh optimization schemes based on Optimal Delaunay Triangulations
	Introduction
	Delaunay and Optimal Delaunay Triangulations
	Algorithms for Delaunay triangulations
	Local method: edge flipping
	Global method: the lifting trick

	Algorithms for Optimal Delaunay Triangulation
	Overview of iterative methods
	Richardson-type method
	Jacobi-type method
	Gauss–Seidel type method
	Newton’s method

	Local mesh smoothing schemes
	ODT smoothing
	CPT smoothing
	Laplacian smoothing

	Global mesh optimization scheme

	Numerical examples
	Local mesh smoothing
	Uniform density
	Non-uniform density

	Global mesh optimization schemes
	Combination of distmesh and ODT mesh optimization
	Three dimensional mesh generation and optimization

	Conclusion and further work
	Acknowledgment
	References

