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1 Introduction

Local adaptive grid refinement is an important technique in finite element methods.
Its study can be traced back to the pioneering work [2] in one dimension. In recent
years, mathematicians start to prove the convergence and optimal complexity of the
adaptive procedure in multi-dimensions. [11] first proved an error reduction in the en-
ergy norm for the Poisson equation provided the initial mesh is fine enough. [15, 16]
extended the convergence result without the constrain of the initial mesh and they
also reveal the importance of data oscillation. But results in [11, 15, 16] only estab-
lish the qualitative convergence estimate by a proof of an error reduction property.
The number of elements generated by the adaptive algorithm is not under control.
A natural theoretical question is if a standard adaptive finite element scheme would
give an optimal asymptotic convergence rate in terms of the number of elements. For
linear finite element approximation to second order elliptic boundary value prob-
lems in two dimensions, for example, an optimal asymptotic error estimate would be
something like

|u�uN |1,W  C(u)N�1/2, (1)

where uN is a finite element approximation of the Poisson equation with homogenous
Dirichlet boundary condition based on an adaptive grid with at most N elements.

An important progress has been made by [7] concerning the asymptotic esti-
mate (1). In their algorithm, an additional coarsening step is required to achieve
optimal complexity. However in practice the nearly optimal complexity is obtained
without the coarsening step. Such theoretical gap is filled by [18] which shows that
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the practical refinement without a recurrent coarsening will also generate finite el-
ement solution with quasi-optimal computational complexity. But marking for os-
cillation and refinement with interior nodes assumptions are still needed. Recently,
[8] presented the most standard AFEM and proved a contraction property and quasi-
optimal cardinality without any additional assumptions. Their results show that if
the solution u 2 As, where As is the approximation class space of rate s, then
|u�uN |1,W  |u|AsN

�s.
Another important theorethical and practical issue is to characterize the approx-

imation class A1/2 using the smoothness of u. A near characterization of A1/2 in
terms of Besov spaces Bk

p,q(W) in two dimensions can be found in [6, 7] which
shows that u 2 A1/2 implies that u 2 B2

1,1(W) and u 2 B2
p,p(W) for p > 1 implies that

u 2 A1/2.
In this paper, we shall provide a sharper result: We prove that

if u 2 W 2,L logL(W), i.e.,
Z

W
|D2u log |D2u| |dx < •,

then u 2 A1/2. This is an improved result since, when p > 1, B2
p,p(W) ⇢W 2,L logL(W)

from the Hölder inequality. With the regularity theory of elliptic equations, which
ensures u 2 W 2,L logL(W), we are led to conclude the following practical statement:
linear adaptive finite element approximation of second order elliptic equations in two
dimensions will achieve optimal rate of convergence.

Our contribution in this paper is further related with recent work on equidistribu-
tion and refinement strategies as follows:

1. The role of the equidistribution. In Section 2 we reveal that the equidistribution
principle can be severely violated but asymptoticly optimal error estimates can
still be maintained. The result (Theorem 1) is firstly presented in [9] and similar
idea can be also found in [8] around the same time.

2. The proof of the bound of the pollution of the local mesh refinement in the
completion is of its own interest. The estimate (Theorem 2) is a much sharper
constant comparing with existing results in [7]. The idea of the proof is borrowed
from [1] and the result is generalized from the uniform grids in [1] to compatible
divisible unstructured grids.

The rest of the paper is organized as follows. In Section 2 we explain the equidis-
tribution principle for the case when the function to be approximated belongs to
W 2,1(W). The advantage of our approach is that only standard approximation for the
interpolation operator are used, and approximation theory for Besov spaces is not
needed. In Section 3, we review the newest vertex bisection refinement strategy and
provide a sharp estimate for the number of triangle needed for the completion of the
mesh after an arbitrary marking and bisection refinement is performed. In Section 4,
we present a new approach for the local grid refinement based on the error estimate
and the equidistribution principle.
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2 Error Estimate and Equidistribution Principle

We shall consider a simple elliptic boundary value problem

�Du = f in W , u = 0 on ∂W , (2)

where, for simplicity, we assume W is a polygon and is partitioned by a shape regular
conforming triangulation TN with N number of triangles. Let VN ⇢ H1

0 (W) be the
corresponding continuous piecewise linear finite element space associated with this
triangulation TN .

A finite element approximation of the above problem is to find uN 2 VN such that

a(uN ,vN) = ( f ,vN) 8vN 2 VN , (3)

where
a(u,v) =

Z

W
—u ·—vdx, and ( f ,v) =

Z

W
f vdx.

For this problem, it is well known that for a fixed finite element space VN

|u�uN |1,W = inf
vN2VN

|u� vN |1,W . (4)

We then present a H1 error estimate for linear triangular element interpolation in
two dimensions. We note that in two dimensions, the following two embeddings are
both valid:

W 2,1(W) ⇢ W 1,2(W) ⌘ H1(W) and W 2,1(W) ⇢ C(W̄). (5)

Given u 2 W 2,1(W), let uI be the linear nodal value interpolant of u on TN . For any
triangle t 2 TN , thanks to (5) and the assumption that t is shape-regular, we have

|u�uI |1,t . |u|2,1,t .

As a result,
|u�uI |21,W . Â

t2TN

|u|22,1,t .

To minimize the error, we can try to minimize the right hand side. By Cauchy-
Schwarz inequality,

|u|2,1,W = Â
t2TN

|u|2,1,t  ( Â
t2TN

1)1/2( Â
t2TN

|u|22,1,t)
1/2 = N1/2( Â

t2TN

|u|22,1,t)
1/2.

Thus, we have the following lower bound:

( Â
t2TN

|u|22,1,t)
1/2 � N�1/2|u|2,1,W . (6)

The equality holds if and only if
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|u|2,1,t =
1
N

|u|2,1,W . (7)

The condition (7) is hard to be satisfied in general. But we can considerably relax
this condition to ensure the lower bound estimate (6) is still achieved asymptotically.
The relaxed condition is as follows:

|u|2,1,t  kt,N |u|2,1,W (8)

and
Â

t2TN

k2
t,N  c1N�1. (9)

When the above two inequalities hold, we have

|u�uI |1,W . N�1/2|u|2,1,W .

In summary, we have the following theorem.

Theorem 1. If TN is a triangulation with at most N triangles and satisfying (8) and
(9), then

|u�uN |1  |u�uI |1,W . N�1/2|u|2,1,W . (10)

In the above analysis, we see how equidistribution principle plays an important
role in achieving asymptotically optimal accuracy for adaptive grids. We would like
to further elaborate that, in the current setting, equidistribution is indeed a sufficient
condition for optimal error, but by no means this has to be a necessary condition.
Namely the equidistribution principle can be severely violated but asymptoticly opti-
mal error estimates can still be maintained. For example, the following mild violation
of this principle is certainly acceptable:

|u|2,1,t  c
N

|u|2,1,W . (11)

In fact, this condition can be more significantly violated on a finitely many elements
{t}

|u|2,1,t  cp
N

|u|2,1,W . (12)

It is easy to see if a bounded number of elements satisfy (12) and the rest satisfy (11),
the estimate (9) is satisfied and hence the optimal error estimate (10) is still valid.

As we can see that the condition (12) is a very serious violation of equidistri-
bution principle, nevertheless, as long as such violations do not occur on too many
elements, asymptotically optimal error estimates are still valid. This simple obser-
vation is important from both theoretical and practical points of view. The marking
strategy proposed by [11] may also be interpreted in this way in its relationship with
equidistribution principle. In [5], they propose to use certain penalty in using equidis-
tribution principle. Such a modification certainly has similar spirit.

We shall discuss how to generate a mesh TN to satisfy (8) and (9) in the next two
sections. To this end, we shall introduce the local refinement method: newest vertex
bisection, in the next section.
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3 Newest vertex bisection

In this section we shall give a brief introduction of the newest vertex bisection and
mainly concern the number of elements added by the completion process. We refer
to [14, 19] and [7] for detailed description of the newest vertex bisection refinement
procedure.

Given an initial shape regular triangulation T0 of W , it is possible to assign to
each t 2 T0 exactly one vertex called the newest vertex. The opposite edge of the
newest vertex is called refinement edge. The rule of the newest vertex bisection in-
cludes:

1. a triangle is divided to two new children triangles by connecting the newest
vertex to the midpoint of the refinement edge;

2. the new vertex created at a midpoint of a refinement edge is assigned to be the
newest vertex of the children.

It is easy to verify that all the descendants of an original triangle fall into four sim-
ilarity classes (see Figure 1) and hence the angles are bounded away from 0 and p
and all triangulations refined from T0 using newest vertex bisection forms a shape
regular class of triangulations.

CHAPTER 1. CONVERGENCEOF ADAPTIVE FINITE ELEMENTMETHODS 10

Figure 1.1: Edges in bold case are bases
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Figure 1.2: Four similarity classes of triangles generated by the newest vertex bisection
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Fig. 1. Four similarity classes of triangles generated by the newest vertex bisection

The triangulation obtained by the newest vertex might have hanging nodes. We
have to make additional subdivisions to eliminate the hanging nodes, i.e., complete
the new partition. The completion should also follow the bisection rules. We shall
consider more combinatory properties of the completion.

Let the triangles of the initial triangulation be assigned generation 0. We refer to
the two triangles obtained by splitting a triangle t in two sub-triangles by the newest
vertex procedure as being the children of t . For i = 1,2, . . . , we define the generation
of the children of t to be i if the parent t has the generation i � 1. It can be shown
that the completion will terminate in finite steps, due to the fact that the completion
process will not create new generations of triangles (see [13, 3]).

We ask more than the termination of the completion process. That is we want
to control the number of elements refined due to the completion. To this end, we
have to carefully assign the newest vertexs for the initial partition T0. A triangle is
called compatible divisible if its refinement edge is either the refinement edge of the
triangle that shares that edge or an edge on the boundary. A triangulation T is called
compatible divisible or compatible labled if every triangle is compatible divisible.
See Figure 2 for an example of such compatible initial labeling.
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Fig. 2. A conforming divisible labeling of the initial triangulation where edges in bold case
are refinement edges.

It is obvious that the completion for a compatible triangulation is terminated in
one step. [13] proves that for any conforming triangulation T , there exist a compat-
ible label scheme. [4] present an O(N) algorithm to find a compatible labeling for a
triangulation T with N elements.

Let T0 be a compatible triangulation and let T 1
2

be a triangulation obtained by
the newest vertex bisection by performing m0 bisections starting from T0. Denote by
M0 the set of all m0 marked and split triangles. Note that not all the triangles of M0
have to be in T0. Let T1 be the (minimal) conforming refinement of T 1

2
and denote

by nk the number of triangles of Tk, k = 0,1.

(a) T0 (b) T 1
2

(c) T1

Fig. 3. Marking, splitting, and completing.

Theorem 2. Let T0 be a compatible triangulation and T1 be obtained as above.
Then there exists a constant C only depending on the minimal angle of T0 such that

n1  n0 +(C +1) m0. (13)

Remark 1. It is a temptation to repeat the Theorem 2 to conclude: for j = 1,2, . . . , p�
1, we have that T j+1 is obtained from T j, by m j markings and then minimal com-
pletion, then

np  n0 +(C +1) (m0 +m1 + · · ·+mp�1). (14)
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Unfortunately this argument does not work since T1 may not be compatible divisible
anymore. The inequality (14) still holds but the proof is much involved; See Theorem
2.4 in [7]. The bound (13) can be derived from that theorem; See Lemma 2.5 in [7].
However, careful tracing the argument in [7] would give a huge constant in (14) in
the magnitude of ten thousands. We shall give another more direct and simpler proof
based on an improved technique in [1]. The constant in our proof is much smaller
and usually below 100. Note that numerically in the average case of the constant is
around 4 and in the worst case is around 14; see [1].

Let us introduce notation for uniform bisection by setting T k as the triangulation
obtained by bisecting each triangle in T0 completely up to the k-th generation. The
assumption: T0 is compatible divisible implies that T k is conforming and compat-
ible divisible for all k � 1. Note that this may not hold if the initial labeling is not
compatible divisible.

For a triangle t , we define a neighbor of t as another triangle sharing a common
edges of t . By the definition, a triangle has at most three neighbors. Among them, for
t 2 T k, we define the refinement neighbor of t as the triangle t 0 2 T k such that t
and t 0 use the same edge as their refinement edges. We allow t 0 = ? for t touching
the boundary. We define the barrier of t as all triangles in T g(t) which intersect
t [ t 0 and denoted by B(t), i.e.,

B(t) = {t̂ 2 T g(t), t̂ \ (t [ t 0) 6= ?}.

!

!

(a) Barrier 1

!

!1
!

(b) Barrier 2

Fig. 4. Barrier of a safe triangle

Definition 1. We say that t is a safe triangle if none of the barrier elements of t is
marked in going from T0 to T1, namely t̂ /2 M0 for any t̂ 2 B(t).

The following lemma will justify the name of safe triangles. They are triangles
that not touched going from T0 to T1.
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Lemma 1. Any safe triangle t in T0 or born in the marking and completion process
of going from T0 to T1 will never be bisected during the completion process.

Proof. We shall prove it by the induction over the generation of t . Suppose g(t) =
maxt̃2T 1

2
g(t̃) and t is safe. Then t will not be bisected during the completion since

the completion will not increase the maximal generation.
Assume that our statement holds for all safe triangles of generation p+1. We will

show that the statement also holds for a safe triangle with generation p. Note that to
trigger the bisection of t , one has to refine one of the two neighbors of t (which do
not share the refinement edge with t) twice or two such neighbors of t 0 twice (since t
and t 0 share the refinement edge). Without loss of generality, let us say that one of the
neighbor t 0 is bisected once in the completion process. Then it produces a children
triangle t1 of generation p + 1 which has a common edge with t 0. It is important
to note that B(t1) ⇢ B(t) and thus t1 is safe; See Figure 4 for an illustration. By
the inductive hypothesis t1 will never be bisected anymore during the completion
process. Consequently, t will never be bisected during the completion process.

Now we are in the position to prove Theorem 2.

Proof. (of Theorem 2) We denote by M 1
2

as the set of all triangles t which are split
in the completion process of going from T 1

2
to T1. Let us choose a triangle t 2 M 1

2
.

Since t is split in the completion process, by the above Lemma, t is not safe. It
implies that there should exist a same-generation triangle F(t) in B(t) such that
F(t) 2 M0. In this way, we defined a map from F : M 1

2
! M0.

Note that F is not necessary a one-to-one map, but a triangle t 2 M0 could be
in only finite number of barriers, due to the space limitation of the same-generation
assumption. Given a triangle t , we define the first ring of t as all triangles intersect
t and the second ring of t as the union of first rings of triangles in the first ring of t .
Then t can be only in the barrier of triangles in its second ring and thus the number
is bounded by the maximum number of triangles in the second ring of a triangle, say
C, which is usually below 100. Thus any triangle in M0 is the image of at most C
triangles from M 1

2
. This leads to the fact that the number of splittings needed for

completion can be bounded by Cm0. Since any splitting in the completion process
adds one more triangle towards the completed mesh T1, we have proved (13).

4 Local Grid Refinement Algorithm

In this section we shall propose a new approach for the local grid refinement based
on the error estimate and the equidistribution principle. We will use newest vertex
bisection to refine the grid and use |u|2,1,t as an error indicator. With a little bit higher
regularity requirement of u, we are able to prove the effectiveness of our algorithm.
Namely, it will end with an optimal asymptotic error estimate similar to (1).
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4.1 Local refinement strategy

We will illustrate a way to find a nearly optimal grid for the solution of (2). We will
use the newest vertex bisection refinement procedure with the marking strategy given
by (11). For the later analysis, we will have to assume that the solution u is in W 2,1

and that the Hardy-Littlewood maximal function of D2u is in L1(W). Due to a result
of [17], this is equivalently D2u 2 L logL(W). Such further assumption holds if for
example u 2 W 2,p for some p > 1.

The maximal function of an integrable function f on W is defined by

eM f (x) = sup
1

|Q|

Z

Q
| f (y)| dy,

where the supremum is taken over all square domains contained in W and containing
x.

For a triangulation obtained by the newest vertices bisection from T0. The simi-
larity classes are in fact completely represented by the children and grandchildren of
all triangles from T0. Let us denote by C0 the following family of triangles:

C0 = {t| t is a triangle contained in W and is similar with
a child or grandchild of of a triangle from T0}

We define another maximal function

M f (x) = sup
1
|t|

Z

t
| f (y)| dy,

where the supremum is taken over all triangles t 2 C0 containing x. Then it is easy
to show that eM and M are equivalent in the sense that

c1 eM f (x)  M f (x)  c2 eM f (x), 8x 2 W

with c1 and c2 independent of x. Thus, for theoretical purposes, the two operators M
and eM are interchangeable.

The following result concerns the number of the new triangles added in the re-
finement procedure. The main idea of the proof for the 1-D case was showed to the
authors by DeVore and can be found in [10].

Theorem 3. Let f be an integrable function on W such that M f 2 L1(W), and let
e > 0 be given. Assume that the newest vertex bisection refinement procedure is
applied to an compatible initial triangulation T0 with n0 triangles. Let the marking
strategy be given by: a triangle t is marked if

Z

t
| f (x)| dx > e.

Denote by M0 the set of all marked and split triangles. Then, the marking and re-
finement procedure will terminate in finite steps and we have
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n0 +m0 <
2
e

Z

W
M f (x) dx, (15)

where m0 is the number of elements of M0. Assume that T 1
2

is the triangulation
obtained from T0 after the m0 bisections. Let T1 be the (minimal) conforming re-
finement of T 1

2
and denote by n1 the number of triangles of T1. Then,

n1  C1

e

Z

W
|M f (x)| dx, (16)

with a constant C1 independent of the function f and the number e . More precisely,
C1 = 2(C +1), with C the constant of Theorem 2.

Proof. Since lim|t|!0
R

t | f (x)| dx = 0 and the areas of new triangles are exponen-
tially decreased, the refinement procedure will terminate in finite steps.

We can assume without loss of generality that each triangle in T 1
2

is not a triangle
in T0. Now, let t 2 T 1

2
and let t̃ be its parent. Then t̃ 2 M0. (Recall that M0 is

the collection of marked triangles in the refinement procedure). By our refinement
strategy Z

t̃
| f (x)| dx > e,

Thus,

M f (x) >
1
|t̃|

Z

t̃
| f (y)| dy >

e
|t̃| , 8x 2 t.

Integrating the above inequality on t we have,
Z

t
M f (x) dx >

e
2
. (17)

Here we use fact |t̃| = 2|t|. If we sum up (17) over all n0 +m0 triangles t 2 T 1
2

we
obtain (15).

By using Theorem 2 we have that

n1  n0 +m0 +C m0  (C +1) (n0 +m0).

The estimate (16) follows now as a direct consequence of (15) and the above inequal-
ity.

An application of Theorem 1 and the estimate (16) for f = D2u and e = 1/N,
leads to the proof of the existence of a nearly optimal grid. Starting from a coarse
grid T0, we define the approximation class A1/2 as

A1/2 = {u 2 H1
0 (W) : |u|A1/2 := sup

N�#T0

N�1/2 inf
#T N

inf
vh2V (T )

|u� vh|1 < •}.

Corollary 1. If u 2 W 2,L logL(W), then u 2 A1/2.
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Remark 2. The (L logL) norm is needed only for proving the success of the algorithm
but is not effectively needed for the implementation of the algorithm. If we can find
good approximations or upper bound for

R
t D2udx on triangles using e.g., gradient

and Hessian recovery methods (from the discrete Galerkin approximation of u) or
using regularity result in [12], then the ideas presented in this paper can lead to new
and optimal adaptive methods.
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