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1. NOETHER’S THEOREM

1.1. Variation of the domain. Consider a smooth diffeomorphism

x→ y(x, ε)

y(x, 0) = x, ∂εy(x, 0) = ~v(x)

y(x, ε) = x+ ε~v(x) + 0(ε)

Through this mapping: Ω→ Ωε = {y = y(x, ε) : x ∈ Ω}. The difference y − x is called
displacement and the parameter ε indicates we are considering small deformation of the
domain.

Lemma 1.1.
d

dε

∫
Ωε

f(y) dy

∣∣∣∣
ε=0

=

∫
Ω

∇ · (f~v) dx

=

∫
∂Ω

f~v · nds

Proof. We apply the integration by parts to get∫
Ωε

f(y) dy =

∫
Ω

f(y(x, ε))|J(x, ε)|dx

where J =
(
∂y
∂x

)
is the Jacobian matrix and |J | = |det J |. By definition

J(x, 0) = I, |J(x, 0)| = 1, ∂εJ(x, 0) =

(
∂~v

∂x

)
, |∂εJ(x, 0)| = ∇ · ~v.

Now the domain is independent of ε. By the product rule, we have

∇f∂εy|J |+ f∂ε|J ||ε=0 = ∇f(x)~v + f(x)∇ · ~v = ∇ · (f~v).

�

As a corollary, we have

(1)
d

dε

∫
Ωε

L(y, u(y),∇u(y)) dy |ε=0=

∫
Ω

∇ ·
[
L(x, u(x),∇u(x))~v(x)

]
dx.
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1.2. Variation of functions. Consider the following non-linear perturbation of u

u(x)→ w(x, ε),

w(x, 0) = u(x), m(x) = ∂εw(x, 0),

w(x, ε) = u(x) + εm(x) + o(ε).

Lemma 1.2.
d

dε

∫
Ω

L (x,w(x, ε),∇xw(x, ε)) dx

∣∣∣∣
ε=0

=

∫
Ω

Lum+ Lp∇mdx

=

∫
Ω

(−∇ · Lp + Lu)m+∇ · (Lpm) dx.

Proof. We compute the derivative w.r.t. ε

Lu∂εw(x, ε) + Lp∂ε∇xw(x, ε)

and switch ∂ε∇x to∇x∂ε as w is smooth enough.
The procedure is the same as the linear perturbation u+ εφ except when apply integra-

tion by parts ∫
Ω

Lp∇m dx =

∫
Ω

−∇ · Lpm dx+

∫
∂Ω

n · Lpm dS.

And the boundary term is
∫
∂Ω
n · Lpm dS =

∫
Ω
∇ · (Lpm). �

1.3. Noether’s theorem.

Theorem 1.3. If there exists domain variation y(x, ε) and function variation w(x, ε) such
that ∫

Ω

L (x,w(x, ε),∇xw(x, ε)) dx =

∫
Ωε

L (y, u(y),∇u(y)) dy

then

(1) ∫
Ω

EL(u)m dx+

∫
Ω

∇ · (Lpm− L~v) dx = 0,

where EL(u) stands for the Euler-Lagrange equation

EL(u) := −∇ · Lp(x, u,∇u) + Lu(x, u,∇u).

(2) For u solves the Euler-Lagrange equation, i.e. EL(u) = 0, then∫
Ω

∇ · (Lpm− L~v) dx = 0.

Furthermore if it holds for arbitrary domain, then we have the divergence identity

∇ · (Lpm− L~v) = 0.

Proof. Combination of the two variation formulae. �
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2. EXAMPLES

2.1. Classic mechanics. Consider ` particles with mass: M1,M2, · · · ,Ml moving in
space . The position function is denoted by q = (q1, q2, · · · , q`) and each qi(t) =xi(t)yi(t)
zi(t)

 is a function R → R3. Define the kinetic energy: T (q̇) = 1
2

∑
Mj |q̇j(t)|2

and the potential energy: V (q) = −C
∑
i<j

MiMj

|qi−qj | where C is a universal constant and
for simplicity will be skipped. The Lagrangian L(t, q, q̇) = T (q̇)− V (q)

I(q) =

∫ b

a

L(q(t), q̇(t)) dt.

The trajectory of the ` particles will be determined by the Euler-Lagrange equation and for
` ≥ 3, we may not be able to find a closed form solution.

Using Noether’s theorem, we can still find out conservation laws without solving the
E-L equation.

Translation invariance in time. Consider the variation

t→ τ = t+ ε, v = ∂ετ(t, 0) = 1,

q(t)→ w(t, ε) = q(t+ ε), m(t) = ∂εw(t, 0) = q̇(t).

The domain change is Ω = (a, b)→ Ωε = (a+ ε, b+ ε). Then we verify the invariance as∫ b

a

T (q̇(t+ ε))− V (q(t+ ε)) dt =

∫ b+ε

a+ε

T (q̇(τ))− V (q(τ)) dτ.

So we will have the conservation
d

dt
(Lpq̇ − L) =

d

dt
H(p(t), q(t)) = 0.

For q solves the E-L equation, by definition, Lpq̇−L = H(p(t), q(t)). Indeed the Hamil-
tonian is conserved for all time independent Lagrangian.

For this example, the Hamiltonian

H = T + V

is the total energy. Conservation of energy is deduced from the translation invariance in
time.

Translation invariance in space. Consider the variation

t→ τ = t, v = ∂ετ(t, 0) = 0,

qi(t)→ wi(t, ε) = qi(t) + εe, m(t) = ∂εwi(t, 0) = e,

where e ∈ R3 is arbitrary but constant vector.
The invariance is obvious as ẇ(t, ε) = q̇(t) and qi − qj = wi − wj as the location is

shifted by a constant vector e.
So the conservation is

d

dt
(Lpe) = 0⇒

∑
Miq̇i · e = const.

By choosing e = (1, 0, 0), (0, 1, 0) and (0, 0, 1), we obtain the conservation of the total
momentum as Miq̇i is the momentum of the i-th particle.
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Translation invariance in rotation. Consider the variation

t→ τ = t, v = ∂ετ(t, 0) = 0,xiyi
zi

→
 x̃i = xi cos ε+ yi sin ε,

ỹi = −xi sin ε+ yi cos ε,
z̃i = zi

m(t) = ∂εwi(t, 0) = R′ε(0),

where {Rε} is a family of space-time coordinate transformations depending on the param-
eter ε :

Rε =

(
cos ε sin ε
− sin ε cos ε

)
, R′ε(0) =

(
0 1
−1 0

)
.

Therefore the conservation property becomes∑̀
i=1

Mi (yiẋi − xiẏi) = const.

Likewise, for rotations in the yz-plane and the xz-plane, we also have similar identities.
This is the conservation of angular momentum:∑̀

i=1

Miqi ∧ q̇i = const.
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