NOETHER'S THEOREM

LONG CHEN

Abstract.

1. Noether's Theorem

1.1. Variation of the domain. Consider a smooth diffeomorphism

$$
\begin{aligned}
& x \rightarrow y(x, \varepsilon) \\
& y(x, 0)=x, \quad \partial_{\varepsilon} y(x, 0)=\vec{v}(x) \\
& y(x, \varepsilon)=x+\varepsilon \vec{v}(x)+0(\varepsilon)
\end{aligned}
$$

Through this mapping: $\Omega \rightarrow \Omega_{\varepsilon}=\{y=y(x, \varepsilon): x \in \Omega\}$. The difference $y-x$ is called displacement and the parameter ε indicates we are considering small deformation of the domain.

Lemma 1.1.

$$
\begin{aligned}
\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} \int_{\Omega_{\varepsilon}} f(y) \mathrm{d} y\right|_{\varepsilon=0} & =\int_{\Omega} \nabla \cdot(f \vec{v}) \mathrm{d} x \\
& =\int_{\partial \Omega} f \vec{v} \cdot n \mathrm{~d} s
\end{aligned}
$$

Proof. We apply the integration by parts to get

$$
\int_{\Omega_{\varepsilon}} f(y) \mathrm{d} y=\int_{\Omega} f(y(x, \varepsilon))|J(x, \varepsilon)| \mathrm{d} x
$$

where $J=\left(\frac{\partial y}{\partial x}\right)$ is the Jacobian matrix and $|J|=|\operatorname{det} J|$. By definition

$$
J(x, 0)=I,|J(x, 0)|=1, \partial_{\epsilon} J(x, 0)=\left(\frac{\partial \vec{v}}{\partial x}\right),\left|\partial_{\epsilon} J(x, 0)\right|=\nabla \cdot \vec{v}
$$

Now the domain is independent of ε. By the product rule, we have

$$
\nabla f \partial_{\varepsilon} y|J|+f \partial \varepsilon \mid J \|_{\varepsilon=0}=\nabla f(x) \vec{v}+f(x) \nabla \cdot \vec{v}=\nabla \cdot(f \vec{v})
$$

As a corollary, we have

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} \int_{\Omega_{\varepsilon}} L(y, u(y), \nabla u(y)) \mathrm{d} y\right|_{\varepsilon=0}=\int_{\Omega} \nabla \cdot[L(x, u(x), \nabla u(x)) \vec{v}(x)] \mathrm{d} x . \tag{1}
\end{equation*}
$$

[^0]1.2. Variation of functions. Consider the following non-linear perturbation of u
\[

$$
\begin{aligned}
& u(x) \rightarrow w(x, \varepsilon) \\
& w(x, 0)=u(x), \quad m(x)=\partial_{\varepsilon} w(x, 0) \\
& w(x, \varepsilon)=u(x)+\varepsilon m(x)+o(\varepsilon)
\end{aligned}
$$
\]

Lemma 1.2.

$$
\begin{aligned}
& \left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} \int_{\Omega} L\left(x, w(x, \varepsilon), \nabla_{x} w(x, \varepsilon)\right) \mathrm{d} x\right|_{\varepsilon=0} \\
& =\int_{\Omega} L_{u} m+L_{p} \nabla m \mathrm{~d} x \\
& =\int_{\Omega}\left(-\nabla \cdot L_{p}+L_{u}\right) m+\nabla \cdot\left(L_{p} m\right) \mathrm{d} x
\end{aligned}
$$

Proof. We compute the derivative w.r.t. ε

$$
L_{u} \partial_{\varepsilon} w(x, \varepsilon)+L_{p} \partial_{\varepsilon} \nabla_{x} w(x, \varepsilon)
$$

and switch $\partial_{\varepsilon} \nabla_{x}$ to $\nabla_{x} \partial \varepsilon$ as w is smooth enough.
The procedure is the same as the linear perturbation $u+\varepsilon \phi$ except when apply integration by parts

$$
\int_{\Omega} L_{p} \nabla m \mathrm{~d} x=\int_{\Omega}-\nabla \cdot L_{p} m \mathrm{~d} x+\int_{\partial \Omega} n \cdot L_{p} m \mathrm{~d} S
$$

And the boundary term is $\int_{\partial \Omega} n \cdot L_{p} m \mathrm{~d} S=\int_{\Omega} \nabla \cdot\left(L_{p} m\right)$.

1.3. Noether's theorem.

Theorem 1.3. If there exists domain variation $y(x, \varepsilon)$ and function variation $w(x, \varepsilon)$ such that

$$
\int_{\Omega} L\left(x, w(x, \varepsilon), \nabla_{x} w(x, \varepsilon)\right) \mathrm{d} x=\int_{\Omega_{\varepsilon}} L(y, u(y), \nabla u(y)) \mathrm{d} y
$$

then

$$
\begin{equation*}
\int_{\Omega} \mathrm{EL}(u) m \mathrm{~d} x+\int_{\Omega} \nabla \cdot\left(L_{p} m-L \vec{v}\right) \mathrm{d} x=0 \tag{1}
\end{equation*}
$$

where $\mathrm{EL}(u)$ stands for the Euler-Lagrange equation

$$
\operatorname{EL}(u):=-\nabla \cdot L_{p}(x, u, \nabla u)+L_{u}(x, u, \nabla u)
$$

(2) For u solves the Euler-Lagrange equation, i.e. $\mathrm{EL}(u)=0$, then

$$
\int_{\Omega} \nabla \cdot\left(L_{p} m-L \vec{v}\right) \mathrm{d} x=0
$$

Furthermore if it holds for arbitrary domain, then we have the divergence identity

$$
\nabla \cdot\left(L_{p} m-L \vec{v}\right)=0
$$

Proof. Combination of the two variation formulae.

2. Examples

2.1. Classic mechanics. Consider ℓ particles with mass: $M_{1}, M_{2}, \cdots, M_{l}$ moving in space. The position function is denoted by $\boldsymbol{q}=\left(q_{1}, q_{2}, \cdots, q_{\ell}\right)$ and each $q_{i}(t)=$ $\left(\begin{array}{l}x_{i}(t) \\ y_{i}(t) \\ z_{i}(t)\end{array}\right)$ is a function $\mathbb{R} \rightarrow \mathbb{R}^{3}$. Define the kinetic energy: $T(\dot{\boldsymbol{q}})=\frac{1}{2} \sum M_{j}\left|\dot{q}_{j}(t)\right|^{2}$ and the potential energy: $V(\boldsymbol{q})=-C \sum_{i<j} \frac{M_{i} M_{j}}{\left|q_{i}-q_{j}\right|}$ where C is a universal constant and for simplicity will be skipped. The Lagrangian $L(t, \boldsymbol{q}, \dot{\boldsymbol{q}})=T(\dot{\boldsymbol{q}})-V(\boldsymbol{q})$

$$
I(\boldsymbol{q})=\int_{a}^{b} L(\boldsymbol{q}(t), \dot{\boldsymbol{q}}(t)) \mathrm{d} t
$$

The trajectory of the ℓ particles will be determined by the Euler-Lagrange equation and for $\ell \geq 3$, we may not be able to find a closed form solution.

Using Noether's theorem, we can still find out conservation laws without solving the E-L equation.

Translation invariance in time. Consider the variation

$$
\begin{aligned}
t & \rightarrow \tau=t+\varepsilon, & v & =\partial_{\epsilon} \tau(t, 0)=1 \\
\boldsymbol{q}(t) & \rightarrow w(t, \epsilon)=\boldsymbol{q}(t+\varepsilon), & m(t) & =\partial_{\varepsilon} w(t, 0)=\dot{\boldsymbol{q}}(t)
\end{aligned}
$$

The domain change is $\Omega=(a, b) \rightarrow \Omega_{\varepsilon}=(a+\epsilon, b+\epsilon)$. Then we verify the invariance as

$$
\int_{a}^{b} T(\dot{\boldsymbol{q}}(t+\varepsilon))-V(\boldsymbol{q}(t+\varepsilon)) \mathrm{d} t=\int_{a+\varepsilon}^{b+\varepsilon} T(\dot{\boldsymbol{q}}(\tau))-V(\boldsymbol{q}(\tau)) \mathrm{d} \tau
$$

So we will have the conservation

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(L_{p} \dot{\boldsymbol{q}}-L\right)=\frac{\mathrm{d}}{\mathrm{~d} t} H(\boldsymbol{p}(t), \boldsymbol{q}(t))=0
$$

For \boldsymbol{q} solves the E-L equation, by definition, $L_{p} \dot{\boldsymbol{q}}-L=H(\boldsymbol{p}(t), \boldsymbol{q}(t))$. Indeed the Hamiltonian is conserved for all time independent Lagrangian.

For this example, the Hamiltonian

$$
H=T+V
$$

is the total energy. Conservation of energy is deduced from the translation invariance in time.

Translation invariance in space. Consider the variation

$$
\begin{aligned}
t & \rightarrow \tau=t, & v & =\partial_{\epsilon} \tau(t, 0)=0 \\
q_{i}(t) & \rightarrow w_{i}(t, \epsilon)=q_{i}(t)+\varepsilon \boldsymbol{e}, & m(t) & =\partial_{\varepsilon} w_{i}(t, 0)=\boldsymbol{e}
\end{aligned}
$$

where $e \in \mathbb{R}^{3}$ is arbitrary but constant vector.
The invariance is obvious as $\dot{w}(t, \epsilon)=\dot{\boldsymbol{q}}(t)$ and $q_{i}-q_{j}=w_{i}-w_{j}$ as the location is shifted by a constant vector \boldsymbol{e}.

So the conservation is

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(L_{p} \boldsymbol{e}\right)=0 \Rightarrow \sum M_{i} \dot{q}_{i} \cdot \boldsymbol{e}=\mathrm{const} .
$$

By choosing $\boldsymbol{e}=(1,0,0),(0,1,0)$ and $(0,0,1)$, we obtain the conservation of the total momentum as $M_{i} \dot{q}_{i}$ is the momentum of the i-th particle.

Translation invariance in rotation. Consider the variation

$$
\begin{aligned}
t & \rightarrow \tau=t, & v=\partial_{\epsilon} \tau(t, 0)=0 \\
\left(\begin{array}{c}
x_{i} \\
y_{i} \\
z_{i}
\end{array}\right) & \rightarrow\left\{\begin{array}{l}
\widetilde{x}_{i}=x_{i} \cos \varepsilon+y_{i} \sin \varepsilon, \\
\widetilde{y}_{i}=-x_{i} \sin \varepsilon+y_{i} \cos \varepsilon, \\
\widetilde{z}_{i}=z_{i}
\end{array}\right. & m(t)=\partial_{\varepsilon} w_{i}(t, 0)=R_{\varepsilon}^{\prime}(0),
\end{aligned}
$$

where $\left\{R_{\varepsilon}\right\}$ is a family of space-time coordinate transformations depending on the parameter ε :

$$
R_{\varepsilon}=\left(\begin{array}{cc}
\cos \varepsilon & \sin \varepsilon \\
-\sin \varepsilon & \cos \varepsilon
\end{array}\right), \quad R_{\varepsilon}^{\prime}(0)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Therefore the conservation property becomes

$$
\sum_{i=1}^{\ell} M_{i}\left(y_{i} \dot{x}_{i}-x_{i} \dot{y}_{i}\right)=\text { const. }
$$

Likewise, for rotations in the $y z$-plane and the $x z$-plane, we also have similar identities. This is the conservation of angular momentum:

$$
\sum_{i=1}^{\ell} M_{i} \boldsymbol{q}_{i} \wedge \dot{\boldsymbol{q}}_{i}=\text { const. }
$$

[^0]: Date: June 9, 2023.

