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ABSTRACT.

1. NOETHER’S THEOREM
1.1. Variation of the domain. Consider a smooth diffeomorphism
x — y(x,e)
y(2,0) =z, Oy(z,0) = v(x)
y(x,e) = x + ev(x) +0(¢)
Through this mapping: Q@ — Q. = {y = y(z,¢) : © € Q}. The difference y — x is called

displacement and the parameter € indicates we are considering small deformation of the
domain.

Lemma 1.1.

E_O/QV~(f17)dx

:/ fU-nds
o

Proof. We apply the integration by parts to get

d
i s

/ fly)dy = / Fy(a, )| (2, €)| da
Q. Q

where J = (%) is the Jacobian matrix and |J| = | det J|. By definition

H.0) = 1176.0) = 1.0..0) = (57 ) 0T 2.0) = V-5

Now the domain is independent of €. By the product rule, we have

VioeylJ| + fOelJll.og = V(@) + f(2)V 0=V (fV).

As a corollary, we have

& [ 200), Tuw) dy o= [ 9 [Llo o), Tu(w) 7)) .

=
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1.2. Variation of functions. Consider the following non-linear perturbation of «

u(z) = w(x,e),

w(z,0) = u(z), m(x)=0-w(z,0),

w(z,e) = u(z) + em(x) + o(e).
Lemma 1.2.

d

— | L(z,w(z,¢e),Vow(x,e)) da
de [e) e=0

= / Lym+ L,Vmdx
Q
= /(—V~Lp+Lu)m+V - (Lpm)de.
Q
Proof. We compute the derivative w.r.t. €

L,0-w(z,e) + Lp0:-V,w(x,e)

and switch 0.V to V,0e as w is smooth enough.
The procedure is the same as the linear perturbation u + ¢ except when apply integra-

tion by parts
/ L,Vmdx = / -V - Lymdx +/ n - L, mdS.
Q Q le)

And the boundary term is [, n - LymdS = [,V - (L, m). O

1.3. Noether’s theorem.

Theorem 1.3. [f there exists domain variation y(x, €) and function variation w(x, €) such
that

[ L), Vaute.e)) o = [ Ligu(y), Vuly) dy
Q Q.

then

(1)
/ EL(u)mdz + / V- (Lym — L?) dz = 0,
Q Q
where EL(u) stands for the Euler-Lagrange equation
EL(u) := =V - Ly(z,u, Vu) + L, (z,u, Vu).

(2) For u solves the Euler-Lagrange equation, i.e. EL(u) = 0, then
/V-(me—Lff) dz = 0.
Q
Furthermore if it holds for arbitrary domain, then we have the divergence identity
V- (Lym — Lv) = 0.

Proof. Combination of the two variation formulae. [
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2. EXAMPLES

2.1. Classic mechanics. Consider ¢ particles with mass: M, My, --- , M; moving in
space . The position function is denoted by ¢ = (q1,q2, - ,q¢) and each ¢;(t) =
z;(t)

yi(t) | is a function R — R3. Define the kinetic energy: T(q) = 3> M; |qj(t)|2
zi(t)
and the potential energy: V(q) = —C'>_,_; |

M; M, . .
q-qu» i where C' is a universal constant and
7 J

for simplicity will be skipped. The Lagrangian L(t,q,q) = T(q) — V(q)

I(q) = / Liq(t), 4(1)) dt.

The trajectory of the ¢ particles will be determined by the Euler-Lagrange equation and for
¢ > 3, we may not be able to find a closed form solution.

Using Noether’s theorem, we can still find out conservation laws without solving the
E-L equation.

Translation invariance in time. Consider the variation

t—>1=t+e¢, v=0(t,0) =1,
q(t) = w(t,e) = q(t +¢), m(t) = d-w(t,0) = q(t).
The domain change is 2 = (a,b) — . = (a + ¢, b+ €). Then we verify the invariance as
b bte
| Tt o) - viaw s epar= [ i) - via) i

So we will have the conservation
d d
— (L,g—L)=—H(p(t t)) = 0.

For g solves the E-L equation, by definition, L,g — L = H(p(t), q(t)). Indeed the Hamil-
tonian is conserved for all time independent Lagrangian.
For this example, the Hamiltonian

H=T+V

is the total energy. Conservation of energy is deduced from the translation invariance in
time.

Translation invariance in space. Consider the variation
t—T1=t, v = 0.7(t,0) =0,
qi(t) — w;(t,€) = q;(t) + ce, m(t) = O-w;(t,0) = e,

where e € R? is arbitrary but constant vector.

The invariance is obvious as w(t,e) = ¢(t) and ¢; — ¢; = w; — w; as the location is
shifted by a constant vector e.

So the conservation is

d
T (Lye) =0= ZMiqi - e = const.
By choosing e = (1,0,0),(0,1,0) and (0,0, 1), we obtain the conservation of the total

momentum as M;g; is the momentum of the ¢-th particle.
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Translation invariance in rotation. Consider the variation

t—T1=t, v = 0.7(t,0) =0,
T; T; = T; COSE + y; sin e,
yi | > i = —x;sine +y; cose, m(t) = d-w;(t,0) = RL(0),
Zi Zi = z;

where { R.} is a family of space-time coordinate transformations depending on the param-

etere :
_( cose sine ron (0 1
R. = <— sine cose) , Be(0) = <—1 O) '

Therefore the conservation property becomes
¢
Z M; (ys; — x;3;) = const.
i=1
Likewise, for rotations in the yz-plane and the xz-plane, we also have similar identities.
This is the conservation of angular momentum:
¢

Z M;q; N\ q; = const.
i=1
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