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1. CONSTRAINED OPTIMIZATION PROBLEMS

As an introdutory example, let us consider a two-dimensional constraint optimization
problem

(1)
min
x∈R2

f(x)

s.t. g(x) = 0

We introduce the Lagrangian L(x, λ) = f(x) + λg(x) and find the critical points of L:

∇xL = ∇f(x) + λ∇g(x) = 0,

∂λL = g(x) = 0.

In the non-constrained case, where x = (x1, x2) is free to move in R2. The equation
g(x1, x2) = 0 defines a curve and x = x(t) can only move along this curve. Suppose
x0 = x(0) and x′(0) 6= 0 is a local minimum. Then, we have:

df(x(t))

dt

∣∣∣∣
t=0

= ∇f(x0) · x′(0) = 0.

Moreover, since g(x(t)) = 0 for all t near 0, taking derivative leads to

∇g(x0) · x′(0) = 0.

Therefore it implies that∇f(x0) is parallel to ∇g(x0), i.e., ∃λ ∈ R such that

∇f(x0) + λ∇g(x0) = 0.

See Fig. 1 for an illustration. When∇g(x0) 6= 0, we can calculate λ as follows:

λ = − (∇f(x0),∇g(x0))

‖∇g(x0)‖2
.

By introducing a parameter t, we can transform the problem into a one-dimensional
non-constrained problem.
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FIGURE 1. Minimization of function f(x, y) subject to the constraint
g(x, y) = 0. At the constrained local optimum, the gradients of f and g
are parallel, i.e.,∇f + λ∇g = 0.

2. INTEGRAL CONSTRAINT

We follow the book [1, Lecture 7] but simplify the presentation by introducing a param-
eterization. Given L,G ∈ C2

(
Ω̄× RN × RnN

)
, ρ ∈ C1

(
∂Ω,RN

)
, and

M =
{
u ∈ C1

(
Ω̄,RN

)
| u|∂Ω = ρ

}
,

consider the following constrained variational problem:

(2)
min
u∈M

I(u), I(u) =

∫
Ω

L(x, u,∇u)dx,

s.t. N(u) = 0, N(u) =

∫
Ω

G(x, u,∇u)dx.

Let u ∈ M ∩ N−1(0) and φ ∈ H1
0 (Ω). The variation u + εφ may not satisfy the

constraint. To address this, we introduce variation in another direction u+ εφ+ τψ. With
a slight abuse of notation, we define

I(ε, τ) = I(u+ εφ+ τψ), N(ε, τ) = N(u+ εφ+ τψ).

Now we face a situation similar to the 2D example. The two variables (ε, τ) are not free to
choose due to the constraint. To satisfy the constraint, we need to eliminate one variable.

Assuming we can find a parameterization (ε(t), τ(t)) such that N(ε(t), τ(t)) = 0 for t
near 0, and the minimum is achieved at t = 0 and (ε(0), τ(0)) = (0, 0), we then obtain a
linear system:

(3)


d

dt
I(ε(t), τ(t))

∣∣∣∣
t=0

= δI(u, φ)ε′(0) + δI(u, ψ)τ ′(0) = 0,

d

dt
N(ε(t), τ(t))

∣∣∣∣
t=0

= δN(u, φ)ε′(0) + δN(u, ψ)τ ′(0) = 0.

Assuming δN(u, ψ) 6= 0, we can solve τ ′(0) from the second equation and substitute it
back into the first equation to obtain:[

δI(u, φ)− δI(u, ψ)

δN(u, ψ)
δN(u, φ)

]
ε′(0) = 0.
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Assuming ε′(0) 6= 0, this implies that

δI(u, φ) + λ δN(u, φ) = 0,

where λ = −δI(u, ψ)/δN(u, ψ).
Let us verify the assumption on the parameterization. We have N(0, 0) = 0 and

∂τN(0, 0) = δN(u, ψ) 6= 0. Therefore, by the implicit function theorem, locally, i.e.
for |ε| sufficiently small, we can find a function τ = τ(ε) such that τ(0) = 0 and
N(ε, τ(ε)) = 0. The parameterization is given by ε = t, τ(t) = τ(ε), and the deriva-
tive ε′(0) = 1 6= 0.

Note that ψ is fixed, while φ is arbitrary. Thus, we arrive at the following result:

Theorem 2.1. Suppose N−1(0)∩M 6= ∅. Let u ∈M be a weak minimum of I(u) under
the constraint N(u) = 0, i.e.,

I(u) = min
w∈M∩N−1(0)

I(w).

If there exists ψ ∈ H1
0 (Ω,RN ) such that δN(u, ψ) 6= 0, then there exists λ ∈ R1 satisfying

(4) δI(u, φ) + λ δN(u, φ) = 0, ∀φ ∈ H1
0 (Ω,RN ).

The first order necessary condition (4) can be derived by introducing a Lagrangian with
multiplier λ

L(u, λ) = L(x, u,∇u) + λG(x, u,∇u)

and consider the inf-sup problem

inf
u∈M

sup
λ∈R

∫
Ω

L(u, λ) dx.

We include the existence result from Evan’s book [2, Chapter 8]. Consider an integral
constraint involving function only:

N(w) :=

∫
Ω

G(w)dx = 0

where G : R → R is a given, smooth function. Let us introduce as well the appropriate
admissible class

A :=
{
w ∈ H1

0 (Ω) | N(w) = 0
}

Theorem 2.2 (Existence of constrained minimizer). Assume that L satisfies the coercivity
inequality and is convex in the variable p. Assume the admissible set A is nonempty and
the constraint satisfies

|G′(z)| ≤ C(|z|+ 1)

for some constant C. Then there exists u ∈ A satisfying

I(u) = min
w∈A

I(w).

Proof. We can choose a minimizing sequence {uk}∞k=1 ⊂ A with

I [uk]→ inf
w∈A

I(w).

Then extract a subsequence

ukj ⇀ u weakly in H1
0 (U), ukj → u in L2(U).

The H1-norm of {uk} is uniformly bounded and I(u) ≤ infw∈A I(w) = lim inf I(uk).
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We only need to verify N(u) = 0 so that u ∈ A.

|N(u)| = |N(u)−N (uk)| ≤
∫

Ω

|G(u)−G (uk)| dx

≤ C
∫

Ω

|u− uk| (1 + |u|+ |uk|) dx

→ 0 as k →∞.

�

3. POINTWISE CONSTRAINTS

Now we consider the pointwise constraint N(u(x)) = 0 for all x ∈ Ω, where u : Ω →
Rn is a vector function and N : Rn → R is a smooth function. We still consider the
following constrained variational problem:

(5)
min
u∈M

I(u), I(u) =

∫
Ω

L(x, u,∇u)dx,

s.t. N(u) = 0, N(u) = 0.

with the Dirichlet boundary condition

M =
{
u ∈ C1

(
Ω̄,RN

)
| u|∂Ω = ρ

}
.

Again we follow the book [1, Lecture 7] but simplify the presentation. Notice that u is
a vector function and∇u is a matrix as illustrated below

L(x,


u1

u2

...
un

 ,


−p1−
−p2−

...
−pn−

)

Rd Rn Rn×d.

Let u ∈ M∩N−1(0) and φ ∈ H1
0 (Ω). We first consider the non-constraint case with

the following variation
u1

u2

...
un

→ u+ εφ1~e1 :=


u1 + εφ1

u2

...
un

 .

Then we compute the varation

d

dε
I (u+ εφ1~e1)

∣∣∣∣
ε=0

=

∫
Ω

Lu1
φ1 + Lp1 · ∇φ1 dx =

∫
Ω

(−∇ · Lp1 + Lu1
)φ1 dx

So d
dεI (u+ εφ1~e1)

∣∣
ε=0

= 0 ∀φ1 ∈ H1
0 implies the Euler-Lagrange equation in multi-

dimensions
−∇ · Lpi + Lui

= 0, i = 1, · · · , n,
where we change the index 1 to any index from 1 : n. It can be further simplified to

−∇ · Lp + Lu = 0,

where Lp is a n × d matrix function and Lu is n × 1 vector function and the divergence
operator is applied row-wise.
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In the constraint case, the variation u+εφ1~e1 may not satisfy the constraint. To address
this, we introduce a projection operator P : H1(Ω) → H1(Ω) s.t. N(P (v)) = 0 and
P (u) = u for u ∈M∩N−1(0). Then we consider the first order condition

(6)
d

dε
I(x, P (u+ εφ),∇xP (u+ εφ)) |ε=0= 0.

Here we use ∇x to denote the derivative w.r.t to x and use∇u for the derivative w.r.t. u.
It remains to figure out the projection and its derivative. We assume the constraint

is non-degenerate in the sense that ∇xN(u(x)) 6= 0, then locally one variable can be
eliminated. More precisely, ∀x0 ∈ Ω, there exists a ball Br (x0) ⊂ Ω such that

∇x (N (u(x))) = ∇uM (u(x)) · ∇u(x) 6= 0, ∀x ∈ Br (x0) .

Without loss of generality, we may assume Nun
(u(x)) 6= 0,∀x ∈ Br (x0). where U is a

C2 function and

(7) N (u1 + εφ1, u2, · · · , U (u1 + εφ1, · · · , un−1)) = 0.

Namely the projection P is given by

P ((v1, v2, . . . , vn)) = (v1, v2, . . . , vn−1, U(v1, . . . , vn−1)),

L(x,


u1 + εφ1

u2

...
U (u1 + εφ1, · · · , un−1)

 ,


∇xu1 + ε∇xφ1

∇xu2

...
∇xU (u1 + εφ1, · · · )

)

The variation (6) is
Lu1φ1 + Lp1∇φ1

+Lun
∂u1

Uφ1 + Lpn∂ε∇xU (u1 + εφ1, · · · )

We can switch ∂ε∇x to ∇x∂ε. So the last term is Lpn · ∇x (∂u1
Uφ1). Apply integration

by parts, we get

(8) −∇ · Lp1 + Lu1 + (Lun
−∇ · Lpn) ∂u1

U = 0.

What is the partial derivative ∂ui
U? We take derivative of (7) and obtain

Nu1
+Nun

∂u1
U = 0 =⇒ ∂u1

U = −Nu1

Nun

.

Plugging back to (8) and let

λ =
1

Nun

(∇ · Lpn − Lun
)

we arrive the following theorem.

Theorem 3.1. Let Ω̄ ⊂ Rn be a closed and bounded set. Let L ∈ C2
(
Ω̄× RN×

RnN ,R1
)
, N ∈ C2

(
RN ,R1

)
, ρ ∈ C1

(
∂Ω,RN

)
, and

M =
{
u ∈ H1

(
Ω̄,RN

)
| u|∂Ω = ρ

}
.

Suppose u ∈M is a local minimum under the above constraint and it is C2 outside finitely
many (n− 1) dimensional piecewise C1 hypersurfaces. If ∀x ∈ Ω̄, ∇N (u(x)) 6= 0, then
there exists a continuous function λ ∈ C(Ω̄) such that u satisfies the E-L equation of the
adjusted Lagrangian L(u, λ) = L+ λN :

−∇ · Lpi + Lui + λNui = 0, 1 ≤ i ≤ n.
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