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1. CONJUGATE OF CONVEX FUNCTIONS

In this section, we provide an ‘outside’ characterization of convex sets and convex func-
tions. It is a coincise version of the section in Convex Analysis.

1.1. Convex Sets. A subset K of a vector space V is convex if

x, y ∈ K,α ∈ [0, 1] =⇒ (1− α)x+ αy ∈ K.
For a linear subspace u, it requires αx+βy ∈ S for any α, β ∈ R. Convexity, on the other
hand, restricts the coefficients such that α+β = 1 and α, β ≥ 0. Geometrically, convexity
implies that the line segment connecting x and y is contained within the set, while a linear
subspace requires that the plane spanned by vectors x and y is contained in the subspace.
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2 LONG CHEN

In particular, 0 must be in a subspace, while a convex set may not necessarily contain the
origin.

Convexity is translation invariant, meaning that if K is convex, then K + z := {x+ z :
x ∈ K} is also convex for any z ∈ V , and K + z is isomorphic to K. The intrinsic
properties of a convex set are thus translation invariant. Depending on the context, the
assumption that 0 ∈ K or 0 /∈ K can be easily satisfied through translation.

1.2. Dual Representation. Consider an example where we want to cut a polygon out of
a sheet of paper. One way is to use scissors to carefully trim along the boundary. However,
what if we don’t have scissors and only have a knife at our disposal? In this case, we can
use the knife to make a series of straight cuts, dividing the paper into two sections with each
cut, and keeping the portion containing the convex polygon. This method demonstrates an
‘outside’ approach to handling convex shapes by focusing on their properties related to
straight lines and planes.

FIGURE 1. Dual representation of a convex set

FIGURE 2. Supporting hyperplane of a convex set.

Now we present a mathematical description. Let V be a Hilbert space endowed with an
inner product (·, ·). Given a vector n ∈ V and a number b ∈ R, we can define the closed
half-planes

H+
n,b := {u ∈ V | (n, u) ≥ b}, H−n,b := {u ∈ V | (n, u) ≤ b},
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and the hyperplane

Hn,b := H+
n,b ∩H−n,b = {u ∈ V | (n, u) = b}.

The inner product (n, u) represents the signed distance of u along the normal direction
n. This formalization allows us to describe geometric objects, such as half-planes and
hyperplanes, and their relationships with convex sets in a Hilbert space.

Theorem 1.1 (Dual representation of a convex set). A non-empty and closed convex set u
is the intersection of all closed half space H+ containing it, i.e.,

S = ∩H+,S⊆H+H+.

If S ⊆ H+
n,b2

, then S ⊆ H+
n,b1

provided b1 < b2. So we can define

b∗ = b∗(n) = sup
S⊆H+

n,b

b.

Given the normal vector n, consider the signed distance from u to the normal direction,
which is infu∈S(n, u). Then we claim

(1) inf
u∈S

(n, u) = sup
S⊆H+

n,b

b,

which can be proved easily by definition. Indeed, as u is convex and closed, we have
u∗ ∈ S to achieve the infimum, and b∗ = (n, u∗) as illustrated by the following figure.
This example illustrates the duality of optimization problems, which involves switching
the roles of variables u and b, as well as the optimization problems inf and sup.

x

n

u∗b∗

b2

b1

sup b

inf (n, u)

0

FIGURE 3. Duality.

The hyperplane Hn,b∗ is known as the supporting plane of the set u at point u∗. When
the boundary of u is smooth, the supporting plane coincides with the tangent plane of u
at u∗. We can refine the characterization of a convex set from an external perspective as
follows:

(2) S =
⋂

n∈V
H+
n,b∗ .
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The function b∗(n), as a function of n, determines the convex set. A helpful analogy to
consider is that n represents a test, while b∗(n) corresponds to the test score. Evaluating
a convex set can be thought of as assessing its properties through a comprehensive, 360-
degree examination.

1.3. Epigraph. We associate a convex set with a convex function and use the geometric
characterization of convex sets to study convex functions.

Given a function f : V → R ∪ {+∞}, its effective domain is

dom(f) = {x ∈ V : f(x) < +∞}.
The graph of f is a surface

G(f) = {(x, f(x)), x ∈ dom(f)} ⊂ V × R.
The epigraph (or supergraph) of f is the set

(3) epi(f) = {(x, t) ∈ V × R, x ∈ dom(f), f(x) ≤ t}.
Given a point (x, t) ∈ epi(f) ⊂ V × R, there is a vertical line passing through that

point, and f(x) will be the lowest value for the part in epi(f). That is,

(4) f(x) = inf
(x,t)∈epi(f)

t.

A continuous function f : X → R ∪ {+∞} is convex if

(5) f(αx+ (1− α)y) 6 αf(x) + (1− α)f(y) ∀ x, y ∈ X,∀ α ∈ [0, 1].

Theorem 1.2. f and dom(f) are convex if and only if epi(f) is convex.

1.4. Conjugate Function. For a convex function f , we will use the dual representation
of the convex set epi(f) to characterize f and introduce the conjugate function of f .

Consider an affine function L(x; a, b) := 〈a, x〉 − b. Its graph defines a hyperplane
Ha,b = {(x, t), b = 〈a, x〉 − t} in V × R. Here, the notation is slightly abused as n =
(−a, 1) in V × R. Then epi(f) ⊂ H+

a,b is equivalent to

(6) t ≥ 〈a, x〉 − b, ∀(x, t) ∈ epi(f).

This is the basic inequality connecting the four variables {x, t, a, b}.
Now, we will eliminate two of these four variables by optimizing two of them. First, fix

x; among many t satisfying (6), choosing the smallest one

inf
t∈epi(f)

t, t ≥ 〈a, x〉 − b,

which is f(x) = inf(x,t)∈epi(f) t. Rewrite the inequality as b ≥ 〈a, x〉 − f(x). Next, for a
fixed a, we choose the closest b by selecting

inf
b∈R

b, b ≥ 〈a, x〉 − f(x).

By the duality (1), this motivates the definition of the conjugate of f , also called the dual
of f or Legendre transformation, f∗ : V ∗ → R ∪ {+∞}:
(7) f∗(a) := sup

x∈dom(f)

[〈a, x〉 − f(x)] .

By definition, we have the Fenchel inequality.

Lemma 1.3 (Fenchel inequality). For a convex function, define the conjugate f∗(a) by
(7). Then for any x ∈ dom(f) and any a ∈ V ∗

(8) f(x) + f∗(a) ≥ 〈a, x〉.
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1.5. Smooth and Strongly Convex Functions. Note that f∗(a) = ∞ is possible for
convex but not strongly convex functions. For example, f(x) = e−x, then, for any positive
p, f∗(p) = +∞. If restricted to smooth convex function class S1,1µ,L, where is the class of
µ-strongly convex function and∇f is Lipschitz continuous with constant L, there exists a
unique maximizer for the sup problem in the definition (7). More specifically for a given
p ∈ V ∗, f∗(p) <∞ and there exists a unique x(p) s.t.

∇f(x(p)) = p, and(9)

f∗(p) = 〈p, x(p)〉 − f(x(p)).(10)

In view of (9), the function x(p) from V ∗ → V can be thought of as the inverse of ∇f :
V → V ∗. It is indeed the gradient of the dual of f , i.e., x(p) = ∇f∗(p).

In view of (10), equality in (8) is obtained when x = x(p).

Lemma 1.4. For f ∈ S1,1µ,L, let x(p) := arg sup [〈a, x〉 − f(x)], we have

(1) f∗ ∈ C1 and ∇f∗(p) = x(p),∇f(x(p)) = p, .
(2) f∗ is 1/L-strongly convex, i.e., f∗ ∈ S11/L.

(3) ∇f∗ is 1/µ-continuous. Consequently f∗ ∈ S1,11/L,1/µ.

As an illustration example, consider f(x) = 1
2 (Ax, x) whereA is an SPD operator with

µ = λmin(A) and L = λmax(A). Then f∗(p) = 1
2 (A−1x, x).

The above result shows that the dual of a strongly convex and Lipschitz smooth function
f remains in this class with switched and reversed parameters. Therefore the dual operator
can be applied to f∗ and the dual operator is reflective in the sense that.

(11) f(x) = f∗∗(x) := sup
a∈V ∗

[〈a, x〉 − f∗(a)] .

2. HAMILTONIAN SYSTEMS

In this section we shall apply the Legendre transformation to the Lagrangian to define
Hamiltonian. The dual formulation of the Euler-Lagrange equation is the Hamitonian sys-
tem.

2.1. Hamiltonian system. Recall that I(x) =
∫ 1

0
L(t, x(t), ẋ(t)) dt, which can be con-

sidered as the restriction of the functional

(12) I(x, v) =

∫ 1

0

L(t, x(t), v(t)) dt

to the curve (x(t), ẋ(t)) in the space (x, v). Assume L(t, x, ·) is convex in v. We apply
Legendre transformation to L and define Hamiltonian

(13) H(t, q, p) := L∗(t, q, ·) = sup
v
{(p, v)− L(t, q, v)} .

The sup is achieved at v(p, q, t) s.t.

(14) p = Lv(t, q, v).

That is we can solve (14) to get v as a function of (p, q, t) as L is convex in v. Then

(15) H(t, q, p) = (p, v)− L(t, q, v), when p = Lv(t, q, v).

By the reflexive of the conjugate operator, we can recover Lagrangian from Hamiltonian
by

(16) L(t, x, v) = H∗(t, q, ·) = sup
p
{(p, v)−H(t, q, p)} .
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We can write

(17) L(t, x, v) = (p, v)−H(t, q, p), when v = Hp(t, q, p).

When both (p, q) are functions of t, i.e., (p(t), q(t)), we define

(18) F (p, q) =

∫ b

a

(p(t), q̇(t))−H(t, q(t), p(t)) dt.

Then by (16), we obtain the equivalence of the problem

min
x
I(x, ẋ) = inf

q
sup
p
F (p, q).

By computing the first variation of the saddle point system infq supp F (p, q), we obtain
the Hamiltonian system

Hamilton system

(19)

{
ṗ = −Hq(t, q, p),

q̇ = Hp(t, q, p).

The Hamilton system can be written as an anti-symmetric gradient flow

(20)
dy

dt
= −J∇H(y).

where y = (p, q)ᵀ and J =

(
0 I
−I 0

)
is an skew-symmetric matrix.

The matrix J is skew-symmetric and unitary satisfying

Jᵀ = −J = J−1, −JᵀJ = J2 = −I.

Geometrically J is a rotation of 90◦ clockwise.
For Euler-Lagrange equation, two boundary conditions are provided while for Hamil-

tonian system (19), two initial condition is given.
As comparison, another major flow considered in the physics is the so-called gradient

flow:

(21)
dy

dt
= −∇E(y),

whereE is called energy. The two flow (20) and (21) will define different dynamic system.

2.2. Equivalence to Euler-Lagrange Equation. We write

H(t, p, q) = (p, v)− L(t, q, v)

and apply total differentiation to both sides. LHS is

dH = Hp dp+Hq dq +Ht dt

and RHS is

pdv + v dp− Lt dt− Lq dq − Lv dv = v dp− Lq dq − Lt dt+ (p− Lv) dv.
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Compare the coefficients, we obtain the relation:

v = Hp(22)
Hq = −Lq(23)
Ht = −Lt(24)
p = Lv.(25)

We take the total differentiation by treating all variables (p, q, v, t) are independent. The
relation (25) indeed implies these variable should be related.

Now we further impose conditions on these four variables (p, q, v, t). Assume q(t)
solves the Euler-Lagrange equation L̇v(t, q, q̇) = Lq(t, q, q̇). Then (22)-(23) becomes the
Hamiltonian system (19) by substituting v = q̇ and Lq = L̇v = ṗ. That is we verified the
solution of the Euler-Lagrange equation will give the solution to the Hamiltonian system
by the change of variable q = x and p = Lv . On the other hand, suppose (p(t), q(t))

solves the Hamiltonian system (19). Then L̇v(t, q, q̇) = ṗ = −Hq = Lq , i.e., q solves the
Euler-Lagrange equation.

On the solution curve (p(t), q(t)) of the Hamiltonian system or x(t) of the E-L equation,
as the relation p = Lv(t, q, q̇) or q̇ = Hp(t, q, p) holds, we can safely switch between
Hamiltonian and Lagrangian

H(t, q(t), p(t)) = (p, q̇)− L(t, q, q̇)(26)

L(t, q(t), q̇(t)) = (p, q̇)−H(t, q(t), p(t)).(27)

2.3. Conservation of Hamiltonian. When Hamiltonian H(p, q) is independent of t, for
solutions to the Hamiltonian system, we obtain the conservation of Hamiltonian, i.e.

d

dt
H(p(t), q(t)) = Hpṗ+Hq q̇ = 0.

Using the matrix form (20), the calculation is

d

dt
H(y(t)) = (∇H(y), ẏ) = (∇H(y),−J∇H(y)) = 0.

An important example is L(x, v) = T (v) − U(x). For T (v) = 1
2m|v|2, the variable

p = mv is the momentum. Then

H = pq̇(p)− L = pv − T (v)− U(q) =
1

2
m|v|2 + U(q) = T + U

is the total energy.
As a comparison, for the gradient flow (21), we have the energy dispersion

d

dt
E(y(t)) = (∇E(y), ẏ) = −‖∇E(y)‖2 ≤ 0.

That is the energy E(y(t)) is non-increasing along the trajectory of the gradient flow.

2.4. Liuville’s theorem. This is part of content in [1, Chapter 3, Section 16]. Define the
phase flow gt : (p(0), q(0)) → (p(t), q(t)) where (p, q) is the solution of Hamiltonian
system with initial condition (p(0), q(0)). It forms an one-parameter group of transforma-
tions.

Theorem 2.1 (Liuville’s Theorem). The phase flow preserves volume: for any region D
we have vol (gt(D)) = vol(D).
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A general proposition: gt(x) = x + f(x)t + O
(
t2
)

is the group of transformation
corresponding to ODE

ẋ = f(x).

Let D(0) be a region and D(t) = gtD(0). Define the function V (t) = vol(D(t)).

Lemma 2.2. det(I +At) = 1 + t tr(A) +O
(
t2
)

as t→ 0

Proof. Use the characteristic polynomial of A: det(λI −A) and let t = −1/λ. �

Lemma 2.3.
dV

dt

∣∣∣∣
t=0

=

∫

D(0)

div f dx.

Proof. We write

V (t) =

∫

D(t)

1 dy =

∫

D(0)

det

(
∂x(t)

∂x(0)

)
dx,

where we have applied change of variable x(0)→ x(t). We expand x(t) in terms of t as

x(t) = x(0) + ẋ(0)t+O(t2) = x(0) + f(x(0))t+O(t2).

Then the Jacobian matrix satisfies
(
∂x(t)

∂x(0)

)
= I +

∂f

∂x
+O(t).

By Lemma 2.2, we have

dV

dt

∣∣∣∣
t=0

=

∫

D(0)

det

(
I +

∂f

∂x

)
dx =

∫

D(0)

div f dx.

�

When applied to the Hamiltonian flow, the setting is x = (p, q)ᵀ and f(x) = (−Hq, Hp)
so that

div f = ∂p(−Hq) + ∂qHp = 0.

Therefore the phase flow defined by the Hamiltonian system preserves volume. A famous
illustration is Arnold’s cat in [1].

FIGURE 4. Conservation of volume of the Hamiltonian flow.

An application of Liouville’s theorem is the following Poincaré’s recurrence theorem.
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Theorem 2.4 (Poincaré’s recurrence theorem). Let g be a volume-preserving continuous
one-to-one mapping which maps a bounded regionD of euclidean space onto itself: gD =
D. Then in any neighborhood U of any point of D there is a point x ∈ U which returns to
U , i.e., gnx ∈ U for some n > 0.

Proof. We consider the images of the neighborhood U :

U, gU, g2U, . . . , gnU, . . .

All of these have the same volume. If they never intersected,D would have infinite volume.
Therefore, for some k ≥ 0 and l ≥ 0, with k > l,

gkU ∩ glU 6= ∅

Therefore, gk−lU ∩ U 6= ∅. If y is in this intersection, then y = gnx, with x ∈ U(n =
k − l). Then x ∈ U and gnx ∈ U(n = k − l). �

3. HAMILTON-JACOBI EQUATION

The key idea is: change of variable.

3.1. Poincaré-Cartan invariant form. We first rewrite (18) as a line integral

(28) J(γ, p) =

∫

γ

p(t, x(t)) dx−H(t, x(t), p(t, x(t))) dt

where γ is a curve on the (t, x) plane connecting two points (a,A) and (b, B), and q̇ dt =
ẋ dt = dx. On the curve γ = (t, x(t)), x(t) is a function of t. The vector field p(t, x) is
considered a function of (t, x) and H(t, x, p) is the known Hamiltonian. The 1-form

ω = p(t, x) dx−H(t, x, p(t, x)) dt

is known as Poincaré-Cartan invariant form. When p and x are vector functions, pdx =∑
i pi dxi. But we will stick to the simple notation p dx.
When restricted to an extremal curve γ∗ = (t, x∗(t)) where x∗ solves the Euler-Lagrange

equation which equivalently solves Hamilton system ẋ∗ = Hp(t, x∗, p∗) with the vector
field p∗ = Lv(t, x∗(t), ẋ∗(t)), we have

J(γ∗, p∗) =

∫ b

a

[(p∗, ẋ∗)−H(t, x∗, p∗)] dt =

∫ b

a

L(t, x∗(t), ẋ∗(t)) dt = I(x∗).

For general curve γ and p, we may not have J(γ, p) = I(x).

3.2. Hamilton-Jacobi equation. If the line integral is independent of path, i.e., there ex-
ists a potential function u(t, x) : R× V → R, which is called an eikonal, s.t.

J(γ, p) = u(b, B)− u(a,A)

for any simple curve from (a,A) to (b, B) on the (t, x) plane, then

grad (t,x)u = p(t, x) dx−H(t, x(t), p(t, x)) dt,

which is equivalent to

(29) ∂tu = −H(t, x, p(t, x)), ∇u = p.

Can we find such potential function u?
We can eliminate the unknown p(t, x) in (29) and obtain a PDE for the potential function

u which is known as Hamilton-Jacobi equation.
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Hamiton-Jacobi Equation

(30) ∂tu(t, x) +H(t, x,∇u(t, x)) = 0.

If we can solve (30), then we get such u and we can compute the action on the extreme
curve without finding the path x∗, i.e.,

I(x∗) = u(b, B)− u(a,A).

On the other hand, to be closed, the form ω = p(t, x) dx−H(t, x, p(t, x)) dt should satisfy
the condition dω = 0 which may not hold. Namely it is possible no solution exists to (30).

3.3. Directional field. Assume we have found a solution u to the H-J equation (30). Can
we find the extreme curve x∗ more easily? Yes. We can solve the ODE

ẋ = Hp(t, x,∇u(t, x(t))).

As u is known, the right hand side is a known vector field.
Let Ω be a simply connected domain in (t, x) domain containing the ending points

(a,A) and (b, B). Consider a field ψ(t, x) defined on Ω and assume the solution of ODE
system

ẋ = ψ(t, x)

passing through a point (t0, x0) is locally unique and satisfies the Euler-Lagrange equa-
tion. Such ψ(t, x) is called a directional field and the domain Ω is called a field of ex-
tremals. With such ψ, instead of solving a 2nd order we can solve a first order ODE
with initial condition x(a) = A to get the extreme curves. We just mentioned ψ(t, x) =
Hp(t, x,∇u(t, x)) is a directional field.

August 19, 2016 10:39 ws-book9x6 BC: 10157 – Lecture Notes on Calculus of Variations book page 47
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Fig. 4.2

Suppose we can extend u0 to a larger interval J1 = (a, b) � J and suppose
{(t, u(t,↵)) | t 2 J1,↵ 2 B✏1(✓) ⇢ RN , ✏1 > 0} is a family of sufficiently
smooth extremal curves of I .

Definition 4.2 (A field of extremals) Let ⌦ be a simply connected neighborhood
of {(t, u(t,↵)) | t 2 J1,↵ 2 B✏(✓) ⇢ RN} (✏ 2 (0, ✏1)). If  2 C1(⌦, RN ) is a
vector field which satisfies:

1. every solution of u̇(t) =  (t, u(t)) is a solution of the E-L equation of I;
2. det(@↵iuj(t,↵)) 6= 0;

3. 8 (t1, u1) 2 ⌦, 9 a unique ↵1 2 B✏1(✓), such that u(t1,↵1) = u1;

4. u(t, 0) = u0(t),

then ⌦ is said to be a field of extremals and  is said to be its directional field
(flow) (see Figure 4.2).

Example 4.2 Let L = 1
2p2, then the E-L equation ü = 0 has solutions u� =

mt + �. Hence, ⌦ = {(t, mt + �) | (t,�) 2 R1 ⇥ R1} and  (t, u) = m is a field
of extremals and its directional field, where m is a constant (see Figure 4.3).

Example 4.3 Let L =
p

(1 + p2), then the E-L equation ü = 0 has solutions
u� = �t. Hence, ⌦ = {(t,�t) | (t,�) 2 (t0,1) ⇥ R1}. When t0 > 0, ⌦ and
 (t, u) = u

t is a field of extremals and its directional field (see Figure 4.4).

Example 4.4 Let L = 1
2 (p2 � u2), then the E-L equation ü = �u has so-

lutions u� = sin (t + �), 8 � 2 R1. For any open interval J , let ⌦ =

{(t, sin (t + �)) | (t,�) 2 J ⇥ (�1, +1)}. Although ⌦ is covered by extremal
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FIGURE 5. Direction field

Given a directional field ψ, consider pψ(t, x) = Lv(t, x, ψ(t, x)) and denote by

J(γ, ψ) = J(γ, pψ) =

∫

γ

Lv(t, x(t), ψ(t, x(t))) dx−H(t, x(t), Lv(t, x(t), ψ(t, x(t))) dt.



HAMILTON JACOBI THEORY IN CALCULUS OF VARIATION 11

Again restricted the solution curve γ∗ : ẋ∗ = ψ(t, x∗), here we use notation with ∗ to
emphasize x∗(t) solves the E-L equation, then using (26), we have

J(γ∗, ψ) =

∫

γ

[p∗ẋ∗ −H(t, x∗, p∗)] dt

=

∫ b

a

L(t, x∗(t), ẋ∗(t)) dt = I(x∗).

The directional field ψ can be also derived from the no conjugate point condition. As-
sume x(t) solves the E-L equation and along the extreme curve (t, x(t)) for t ∈ [a, b],
there is no conjugate point and Lvv(t, x(t), ẋ(t)) > 0. Then solve the E-L equation

∂tLv(t, ϕ(t, α), ϕ̇(t, α)) = Lx(t, ϕ(t, α), ϕ̇(t, α))

but with initial condition

ϕ(a, α) = x(a), ∂tϕ(t, α) = ẋ(a) + α.

For |α| is small enough, we can guarantee the existence of the solution and the extremal
curve x(t) = ϕ(t, 0). Use the no conjugate point condition, we can conclude ∂αϕ(t, α) >
0 for |α| small enough. By the implicit function theorem, the equation

x = ϕ(t, α)

has a unique continuously differentiable solution α = w(t, x) locally. Finally

ψ(t, x) = ∂tϕ(t, w(t, x))

is a directional field as
ẋ = ∂tϕ(t, w(t, x)) = ψ(t, x).

3.4. Strong Weierstrass condition. Next we verify γ∗ is a local strong minimum if a
stronger Weierstrass condition satisfies: there exists an ε > 0 s.t.

EL(t, x, v, ξ) := L(t, x, v + ξ)− L(t, x, v)− ξ · Lv(t, x, v) ≥ 0,

for all ξ ∈ RN , ∀(x, v) ∈ Bε((x∗, ẋ∗), ‖ · ‖1,∞). Recall that Weierstrass condition only
requires the inequality holds for one point (x∗, x′∗).

a figure here
Assume we have the potential u solves the H-J equation. Set ψ = Hp(t, x,∇u) and

assume ψ is Lipschitz continuous. Now take a curve γ = (t, x(t)) with the same ending
points of γ∗ which may not solve the ODE, i.e. ẋ 6= ψ(t, x). As the line integral is
independent of path, i.e.,

I(x∗) = J(γ∗, p∗) = J(γ, pψ)

=

∫ b

a

Lv(t, x, ψ) dx+ [L(t, x, ψ)− ψLv(t, x, ψ)] dt

=

∫ b

a

L(t, x, ψ) + (ẋ− ψ)Lv(t, x, ψ) dt.

Then we get the difference

I(x)− I(x∗) =

∫ b

a

L(t, x, ẋ)− L(t, x, ψ)− (ẋ− ψ)Lv(t, x, ψ) dt

=

∫ b

a

EL(t, x, ψ, ẋ− ψ) dt ≥ 0,
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for x ∈ Bε(x∗, ‖ · ‖∞), t ∈ [a, b] and ‖ψ(t, x)−ψ(t, x∗)‖ ≤ C‖x−x∗‖ ≤ Cε. Therefore
x∗ is a local minimum.

3.5. An example. We provide an example in [2] to illustrate the procedure to solve the
Hamilton-Jacobi equation first and then solve the Hamiltonian system afterwards.

Consider the harmonic oscillator example. Given m and k two positive constants, the
Lagrangian and Hamiltonian is

L(t, x, v) =
1

2

(
mv2 − kx2

)
, H(t, p, q) =

1

2

(
p2

m
+ kx2

)
,

where the dual variable p = mv represents the momentum. H-J equation becomes

∂tu+
1

2

( |∇u|2
m

+ kx2
)

= 0.

To solve the H-J equation, try a special form (change of variable)

(31) u(t, x) = φ(x)− αt,
where α is a parameter and φ is an unknown function to be determined.

Substitute back to H-J equation, we get

1

2

(
(φ′(x))2

m
+ kx2

)
= α

i.e.
φ′(x) =

√
m (2α− kx2),

which can be solved by separation of variables:

u(t, x, α) =

∫ x

0

√
m (2α− ky2) dy − αt.

The integral on the right hand side is still not easy to compute. We further take partial
derivative of α We now solve the equation

−∂αu = t−
∫ x

0

m√
m (2α− ky2)

dy = t−
√
m

k
arcsin

(√
k

2α
x

)
.

Solving β = −∂αu, we get

x =

√
2α

k
sin

(√
k

m
(t− β)

)
.

Substituting it back into u, it follows that

p = ∇u = φ′(x) =
√

2αm cos

(√
k

m
(t− β)

)
.

This gives the solution of the Hamiltonian system of a harmonic oscillator involving the
two parameters α, β.

For this example, it seems easier to solve the Euler-Lagrange equation or Hamiltonian
system. The reader is encouraged to try the Lagrangian

L(t, x, v) = e−x
√

1 + v2,

and compare the three approaches.
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TABLE 1. Comparison of Euler-Lagrange equation, Hamiltonian sys-
tem, and Hamilton-Jacobi equation

Function L(t, x, v) H(t, q, p) u(t, x)

Unknown x(t) (p(t), q(t)) u(t, x)

Equation d
dtLv = Lx

{
ṗ = −Hq,

q̇ = Hp,
∂tu+H(t, x,∇u) = 0

2nd order ODE 1st order ODE system 1st order PDE

3.6. Physics from H-J equation. We use the light through a medium example to explain
the physical property from H-J equation.

Denote the density of a medium by ρ(t, x). Consider the Lagrangian

L(t, x, v) = ρ(t, x)
√

1 + v2.

By Fermat’s principle, the path taken by a ray between two given points is the path that
can be traveled in the least time which is equivalent the problem

inf
x

∫
L(t, x(t), ẋ(t)) dt

By direct calculation, we get the Hamiltonian

H(t, p, q) = −
√
ρ2(t, q)− p2.

Then the Hamilton-Jacobi equation becomes

(∂tu)2 + |∇u|2 = ρ2.

The level set
u(t, x) = const

is the wavefront of light.
The Jacobi field is

ψ(t, x) = Hp(t, x,∇u) =
∇u√

ρ2 − |∇u|2
=
∇u
∂tu

.

For the extremal curve, ẋ = ψ(t, x), the tangential direction is

(ṫ, ẋ) = (1, ẋ) = c(∂tu,∇u) with c = (∂tu)−1.

Therefore a ray of light travels perpendicularly to the wavefronts. more from Arnold [1].

3.7. Hopf-Lax formula. We consider solving a special form of H-J equation

ut +H (∇u) = 0,(32)

u(0, x) = g(x).(33)

That is the Hamiltonian H(p) only depends on p and in turn the Lagrangian L(v) depends
on v only.

We present a motivation of Hopf-Lax formula from [4]. For any fixed y, z, the function

v(t, x) = g(y) + (x− y) · z − tH(z)

solves (32) which can be verified by direct calculation: ∇xv = z and ∂tv = −H(z) =
−H (∇xv). But v(0, x) = g(y) + (x− y) · z 6= g(x).
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The Hopf-Lax formula is obtained as a two-parameter envelope solution:

u(x, t) = inf
y∈Rn

sup
z∈Rn

{g(y) + (x− y) · z − tH(z)}

Interpreting the inner sup as a Legendre transform, we arrive the Hopf-Lax formula

(34) u(x, t) = inf
y∈Rn

{
g(y) + tL

(
x− y
t

)}
.

When g is convex, we can obtain another Hopf-Lax formula by switching inf and sup:

u(x, t) = sup
z∈Rn

inf
y∈Rn
{g(y) + (x− y) · z − tH(z)}

The inner inf can be interpreted as a Legendre transform to obtain

u(x, t) = sup
z∈Rn

{x · z − g∗(z)− tH(z)}

The verification
u(x, 0) = g(x)

is given by Lemma 2 in Evans [3, Chapter 3] and u(t, x) defined by (34) solves the H-J
equation (32) is Theorem 5 [3, Chapter 3].

We will verify a simple but important case

L(v) =
1

2
‖v‖2, H(p) =

1

2
‖p‖2.

The Hopf-Lax formulae becomes

(35) u(x, t) = inf
y∈Rn

[
g(y) +

1

2t
‖y − x‖2

]
,

which is known as the Moreau envelope of g. Assume g is bounded below so that the inf
in (35) is achievable.

To simplify the further discussion, we also assume g ∈ C1. Then we conclude the inf
is achieved at a point x̂ s.t.

−∇g(x̂) =
x̂− x
t

and
u(x, t) = g(x̂) +

1

2t
‖x̂− x‖2.

The x̂ is a function of x and is known as the proximal operator x̂ = proxtg(x). We can
write as

(36) x̂ = x− t∇g(x̂).

That is x̂ is the implicit Euler method for the gradient flow ẋ = −∇g(x) with step size t.
From formulae (36), we immediately conclude u(x, 0) = g(x) as x̂ = x. On the other

extreme, for t = +∞, u(x,+∞) = miny g(y) is a constant function. For a fixed x, u(x, ·)
will decrease from g(x) to miny g(y) as t increases from 0 to +∞.

Computing derivatives is a little bit complicated. Let x̂ = proxtg(x). The function
u(x, t) can be evaluated at x̂ and by definition u(x+ εh, t) ≤ g(x̂) + 1

2t‖x̂− (x+ εh)‖2.
Then the difference

u(x+ εh, t)− u(x, t) ≤ 1

2t

[
‖x̂− (x+ εh)‖2 − ‖x̂− x‖2

]
.

From that we can conclude

∇u(x, t) =
x̂− x
t

.
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Similarly

u(x, t+ ε)− u(x, t) ≤ 1

2(t+ ε)
‖x̂− x‖2 − 1

2t
‖x̂− x‖2.

From which we can conclude

∂tu = − 1

2t2
‖x̂− x‖2 = −1

2
‖∇u‖2.
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