
EXISTENCE OF GLOBAL MINIMUM FOR CALCULUS OF VARIATION

LONG CHEN

ABSTRACT. The existence of a global minimum for problems in calculus of variation
is briefly reviewed in this notes. The main ingredients are: 1. use coercivity to get the
boundedness of a minimizing sequence; 2. use weak compactness to get a weak convergent
sub-sequence; 3. use convexity in the derivative to prove the functional is lower weak semi-
continuous.
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1. INTRODUCTION

We explore the calculus of variations problem given by the following expression:

(1) inf
u∈M

I(u),

where I(u) denotes the integral functional defined as:

I(u) =

∫
Ω

L(x, u(x),∇u(x)) dx,

where
• Ω ⊂ Rd represents an open and bounded Lipschitz domain;
• M = {u ∈ W 1,q(Ω) : traceu = g on ∂Ω} signifies the space of admissible

functions;
• L : Ω× R× Rd is known as the Lagrangian.

When expressing the Lagrangian as L(x, u, p), the variables (u, p) are independent.
However, in the notation L(x, u(x),∇u(x)), p = ∇u is substituted, resulting in the second
and third variables being related, and both becoming functions of x. After integration,
I(u) maps a function to a real value. Our objective is to find an admissible function that
minimizes this functional.
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Similar to the calculus of variations problem, we can also examine the following calcu-
lus problem:

(2) inf
x∈M

f(x),

where M denotes a subset of Rd.
There are two crucial sufficient conditions for the existence of solutions to (2):

(1) The function f exhibits continuity on the set M .
(2) The set M is compact, which is equivalent to M being both bounded and closed.

In summary, when searching for the minimum value of the function f over the set M , we
can ensure the existence of a solution provided that f is continuous and M is compact.

We want to find the minimum value for the calculus of variations problem (1). This task
is not straightforward, and it is essential to understand the main differences and challenges
when moving from the calculus problem (2) to the calculus of variations problem (1).

In the calculus of variations problem, the subset M is part of an infinite-dimensional
function space. On the other hand, the simpler calculus problem has a subset M that
belongs to a finite-dimensional space. We need to reexamine many concepts that we know
from finite-dimensional spaces.

One crucial difference between finite and infinite-dimensional spaces involves compact-
ness. In finite-dimensional spaces, a set is compact if it is both bounded and closed. How-
ever, in infinite-dimensional spaces, having a bounded and closed set is not enough to en-
sure compactness. For instance, consider the set {en} ⊂ `2, where en = (0, 0, . . . , 1, 0, . . .).
There is no convergent subsequences as ‖en − em‖ =

√
2.

To make sure a unit ball is compact, we introduce weaker topologies. Topologies de-
scribe a collection of subsets of a space as open sets. A set is called compact if, for every
open covering, a finite open covering exists. Weaker topologies have fewer open sets,
increasing the likelihood of satisfying “for every open covering.”

A mapping T : X → Y between two topological spaces is continuous if the pre-
image of open sets is open. However, having fewer open sets in X is not favorable to
continuity. Thus, I(u) may not be continuous in the weak topology. To address this, we
relax continuity to lower semi-continuity in the weak topology (w.l.s.c).

It remains to figure out conditions on the Lagrangian L to ensure the boundedness of a
minimizing sequence {uk} and the w.l.s.c. of I(·). By the scaling argument, the derivative
∇u is the dominate part and thus conditions are only imposed on the p variable for the
Lagrangian L(x, u, p). More specifically, we shall use the following properties of function
p→ L(x, u, p)

• Coercivity→ boundedness.
• Convexity→ w.l.s.c.

2. PRELIMINARY AND EXAMPLES

A minimizing sequence {uk} is defined by the property that limk→∞ I(uk) = inf I(u).
This concept can also be applied to the calculus problem (2). One approach to construct a
minimizing sequence involves using nested finite-dimensional subspaces or subsets {Mk}
to approximate the admissible function setM. That is,M1 ⊂ M2 ⊂ · · · , and ∪∞k=1Mk

is dense inM. We then restrict the problem in Equation (1) toMk to obtain uk. Due to
the nested structure, I(uk+1) ≤ I(uk), and if I(·) is bounded below, we can conclude that
a minimizing sequence exists.
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Is it possible to conclude that the limit of uk will be the global minimizer? We will
first present several examples below. Typically, we begin with a calculus example and then
proceed to the calculus of variations.

Example 2.1 (No lower bound). Consider f(x) = x(x2 − 1) and M = R, there is no
global minimizer as limx→−∞ f(x) = −∞. The function is not bounded below.

Example 2.2 (Minimizing sequence is unbounded). Consider f(x) = e−x and M = R+.
Function f is bounded below, i.e. f ≥ 0 and inf f = 0. But no global minimizer. The
minimizing sequence {xk} is not bounded. Here f is strictly convex but not µ-strongly
convex for any µ > 0.

We then move to examples in calculus of variation.

Example 2.3 (Not bounded below). Consider I(u) =
∫ 1

0
(1 + u)(u′)2 dx with boundary

condition u(0) = 0, u(1) = 3. Solving Euler-Lagrange equation, we can find a local
minimum u(x) = (7x+ 1)2/3 − 1. But there is no global minimum as inf I(u) = −∞ by
constructing 1 + u < 0 and (u′)2 becomes large.

Take a point h ∈ (0, 1). Construct a piecewise linear function uh such (1 + uh)(h) =
−4, then the integral from [h, 1] and [0, 2h/5] are zero by the symmetry. Overall I(uh) =
O(−1/h). As h→ 0, I(uh) goes to −∞.

Example 2.4 (Minimizing sequence is unbounded). Consider I(u) =
∫ 1

−1
x2(u′)2 dxwith

M = {u ∈ H1(−1, 1), u(−1) = −1, u(1) = 1}. The Lagrangian is convex but not at
x = 0. Construct a piecewise linear function with slop 1/h from (−h, h) to connect −1
and 1. Then I(uh) → 0. If u0 is a minimum of I on M , then u′0 = 0 and u0 is constant
which cannot satisfy the boundary condition. Notice that the minimizing sequence {uh} is
bounded in L2(0, 1) but not in H1(0, 1)

In the original example constructed by Weierstrass, it is a smooth function

uε =
arctan(x/ε)

arctan(1/ε)
.
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Example 2.5 (Weak convergence). Consider

I(u) =

∫ 1

0

u2 +
[
(u′)2 − 1

]2
dx
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x

w(x)

1-1

with boundary condition u(0) = u(1) = 0. The potential function w(x) = (x2 − 1)2 is
called double well potential and illustrated below.

We can construct a zig-zag piecewise linear function s.t. |uh| ≤ h but |u′h| = 1. Then
uh is a minimizing sequence and I(uh) → 0 but what is the limit of uh? The minimizing
sequence {uh}will converge to 0 in L2 but not inH1 as ‖u′h‖ = 1 not zero. The functional
is not continuous in L2: I(0) = 1 6= 0 = limh→0 I(uh).

x

y

0
1h

h

3. DIRICHLET’S PRINCIPLE AND FIX

In this section, we present an existence proof, which corrects a flawed proof based on
Dirichlet’s principle. The following presentation closely follows the works in [1, Chapter
9] and [4, Chapter 8].

3.1. Dirichlet’s principle. Historically, the existence proof relied on Dirichlet’s principle,
which states: “If I(·) is bounded below, then there exists a minimizer u such that I(u) =
infv∈M I(v).”

Here is a ‘proof’ of the Dirichlet’s principle (provided by Riemann [3]): “Choose a
minimizing sequence {uk} ⊂ M such that I(uk) → infu∈M I(u). Since the sequence
{uk} is bounded, there exists a convergent subsequence ukj → u0. This u0 is then the
desired solution, i.e., I(u0) = infu∈M I(u).”

The flaw in the ‘proof’ consists of
(1) {I(uk)} is bounded 6=⇒

{
‖uk‖H1(Ω)

}
is bounded. (Example 2.4)

(2)
{
‖uk‖H1(Ω)

}
is bounded 6=⇒ existence of a convergent subsequence ukj → u0

in H1(Ω). (Example 2.5)
We will introduce the assumption coercivity to fix (1) and weak convergence to fix (2).

Then the third difficulty arises.
(3) uk ⇀ u0 6=⇒ I(u0) = limk→∞ I(uk). (Example 2.5)

In the weak topology, we have less open sets and thus the functional I(·) may not be
continuous or lower semi-continuous in the weak topology.

Let us examine these flaws and address them one by one. Using the scaling argument,
we find that the derivative ∇u is dominated, which implies that most assumptions are
imposed on the p variable in the Lagrangian L(x, u, p).
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3.2. Coercivity. The Lagrangian L(x, u, p) is said to be coercive with respect to the vari-
able p if there exist constants α > 0, β ≥ 0, and 1 < q <∞ such that

(3) L(x, u, p) ≥ α|p|q − β, ∀p ∈ Rn, u ∈ R, x ∈ Ω.

As a result, for any w ∈W 1,q(Ω),

I(w) ≥ δ‖∇w‖qLq(Ω) − γ,

where γ := β|Ω| and some constant δ > 0.
If I(w) < ∞, then ‖∇w‖Lq < ∞. Fix a specific function ug ∈ M. Then, w − ug ∈

W 1,q
0 (Ω). We apply the Poincaré inequality to bound ‖w− ug‖Lq . ‖∇(w− ug)‖Lq and

use the triangle inequality to conclude ‖w‖Lq <∞.
In summary, by assuming the Lagrangian is coercive, we obtain the boundedness of a

minimizing sequence.

3.3. Weak compactness. Let X be a Banach space. A sequence {uk} ⊂ X is called
weak convergent to u ∈ X and denoted by

uk ⇀ u if 〈f, uk〉 → 〈f, u〉 ∀f ∈ X∗.
For comparison, the strong convergence is

uk → u if lim
k→∞

‖uk − u‖X = 0.

Exercise 3.1 (Exercise 1 of Chapter 8 in [4]). This problem illustrates that a weakly con-
vergent sequence can be rather badly behaved.

(1) Prove uk(x) = sin(kx)→ 0 as k →∞ in L2(0, 1).
(2) Fix a, b ∈ R, 0 < λ < 1. Define

uk(x) :=

{
a if j/k ≤ x < (j + λ)/k

b if (j + λ)/k ≤ x < (j + 1)/k
(j = 0, . . . , k − 1).

Prove uk ⇀ λa+ (1− λ)b.

Recall that the duality pair

〈f, u〉, f ∈ X∗, u ∈ X
can be used to define a natural embedding X → X∗∗ = (X∗)∗. If this map is surjective,
i.e. X = X∗∗, we call X is reflexive.

In the dual space X∗, we have the weak convergence:

fk ⇀ f if 〈fk, u〉 → 〈f, u〉 ∀u ∈ (X∗)∗.

If we restrict the test function to a smaller subspace X ⊆ (X∗)∗, we obtain the weak-*
convergence:

(4) fk ⇀
∗ f if 〈fk, u〉 → 〈f, u〉 ∀u ∈ X ⊆ X∗∗.

In finite element dimensional spaces, a bounded sequence will have a convergence sub-
sequence. In infinite dimensional spaces, this may not be true for strong convergence but
did hold in the weak convergence provide the space X is reflexive.

Exercise 3.2. Consider the space `2. Assume {xn ∈ `2} is a bounded sequence, i.e.
supn ‖xn‖`2 < C. Prove that there exists a coordinate-wise convergent subsequence.
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We will present a result under a stronger condition: X is separable. Recall that a normed
space X is considered separable if there exists a countable subset Y that is dense in X .
When X is separable, we can find a convergent subsequence coordinate-wise and apply
the diagonal argument. In functional analysis, the Banach-Alaoglu theorem (also known as
Alaoglu’s theorem) states that the closed unit ball of the dual space of a separable normed
vector space is compact in the weak-* topology.

Theorem 3.3 (Banach-Alaoglu). Let X∗ be the dual space of a separable normed lin-
ear space X . Suppose {fn | n = 1, 2, . . .} ⊂ X∗ is a norm-bounded sequence: M =
sup ‖fn‖ <∞, then it has a weak-* convergent subsequence.

Proof. Since X is separable, it has a countable dense subset {xk | k = 1, 2, . . .}. For
x1, since |〈fn, x1〉| is a bounded sequence, it has a subsequence fn1

j
such that

〈
fn1

j
, x1

〉
converges.

For x2, since
∣∣∣〈fn1

j
, x1

〉∣∣∣ is a bounded sequence, it has a subsequence fn2
j

such that〈
fn2

j
, x1

〉
converges.

Continuing in this fashion and applying the diagonal method, we can choose a subse-
quence

{
fnj

j

}
such that

〈
fnj

j
, xk
〉

converges, ∀k = 1, 2, . . .

However, since {xk | k = 1, 2, . . .} is dense and {fn | n = 1, 2, . . .} ⊂ X∗ is bounded
in norm, for any x ∈ X , the sequence

{〈
fnj

j
, x
〉}

converges. Define

f(x) = lim
j→∞

〈
fnj

j
, x
〉

It is clear that f(x) is linear and continuous,

|f(x)| ≤ sup
j

∥∥fnj
j

∥∥‖x‖ ≤M‖x‖ ∀x ∈ X.
Thus f ∈ X∗, and

fnj
j
⇀∗ f.

�

The separable condition can be relaxed to the space is reflective, i.e. X = X∗∗ and
thus weak convergence is equivalent to weak-* convergence. In a reflexive Banach space,
a bounded sequence is weakly sequential compact.

Theorem 3.4. LetX be a reflexive Banach space and {uk} ⊂ X is bounded, i.e. supk ‖uk‖ ≤
C. Then there exists a subsequence {ukj} and an element u ∈ X s.t. uk ⇀ u.

Example 3.5. The space Lp(Ω), 1 < p < +∞, is reflexive. But not including the ending
points p = 1,+∞. We do have

(L1(Ω))′ = L∞(Ω), but (L∞(Ω))′ ⊃ L1(Ω).

3.4. Lower semi-continuity. A function f : X → R is lower weak semi-continuous if:

f(u) ≤ lim inf
k→∞

f(uk) when uk ⇀ u.

We introduce the extended-valued function f : X → R+∞ = R ∪ {+∞}, and define the
effective domain

dom(f) = {x ∈ X : f(x) < +∞}.
A function is called proper if dom f 6= ∅.

The graph of f is a surface in space V × R:

G(f) = {(x, f(x)), x ∈ dom(f)} ⊂ V × R.



EXISTENCE OF GLOBAL MINIMUM FOR CALCULUS OF VARIATION 7

The epigraph (or supergraph) of f is the set

(5) epi(f) = {(x, t) ∈ V × R, x ∈ dom(f), f(x) ≤ t}.

Theorem 3.6. For any function f : X → R+∞, the following statements are equivalent:

(1) Function f is lower semi-continuous.
(2) The epigraph epi(f) is a closed set in X × R+∞.

The closeness implies a certain continuity of the boundary of epi(f). The vertical dis-
continuity of the graph of f might actually be due to the choice of the coordinate system.
By choosing a suitable local coordinate, the function can indeed be Lipschitz continuous.

x

t

epi(f) = {(x, t) ∈ R2 | f(x) ≤ t}

FIGURE 1. A lower semi-continuous function

3.5. Convexity. A continuous function f : X → R+∞ is convex if

(6) f(αx+ (1− α)y) 6 αf(x) + (1− α)f(y) ∀ x, y ∈ X,∀ α ∈ [0, 1],

and it is strictly convex if

f(αx+ (1− α)y) < αf(x) + (1− α)f(y) ∀x, y ∈ X,∀α ∈ (0, 1).

A convex function is called µ-strongly convex or µ-convex with parameter µ > 0 if

(7) f(αx+ (1− α)y) 6 αf(x) + (1− α)f(y)− µ

2
α(1− α)‖x− y‖2 ∀x, y ∈ X,

for all α ∈ [0, 1]. A direct computation shows that (7) is equivalent to f(x) − µ
2 ‖x‖2 is

convex. Convexity is helpful for the existence of global minimum.

Exercise 3.7 (Strictly convex function). Show that if f is µ-strongly convex for some µ >
0, then there exists a unique global minimizer of minx∈X f(x).

The convexity can be characterized through the geometry set epi(f). The following
equivalence of convexity can be easily verified by definition.

Theorem 3.8. f and dom(f) is convex if and only if epi(f) is convex.
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One of the most helpful facts derived from convexity is the equivalence between strong
closedness and weak closedness. More precisely, let X be a Banach space and K ⊂ X
be a convex set. Then, K being closed is equivalent to K being weakly closed. This
equivalence is due to Mazur’s theorem, which states that if uk ⇀ u, then there exists a
convex combination of uk, e.g., vk =

∑N(k)
n=k α(k)nun, such that vk → u strongly.

Theorem 3.9. Let X be a Banach space and f : X → R is a convex function. Then f is
l.s.c. is equivalent to f is l.w.s.c.

Proof. Using the characterization of l.s.c. as the closedness of epigraph which is convex
and thus equivalent to it is l.w.s.c. �

3.6. Application to Calculus of Variations. We aim to establish the lower weak semi-
continuity (l.w.s.c.) for the functional I(u). A sufficient condition is that L(x, u, p) is
convex with respect to (u, p). However, this condition might be too strong. Since p will
be substituted by ∇u, which has a dominant scaling, we only need the convexity of the
Lagrangian as a function of p.

In a 1-D setting, we can calculate the scaling of u and ∇u to demonstrate the differ-
ence in scaling. In an abstract setting, the dominance of the scaling can be argued using
the Sobolev embedding: weak convergence in W 1,q will imply a strong convergent subse-
quence.

Theorem 3.10 (Tonelli-Morrey). Suppose L : Ω̄× R× Rn → R1 satisfies
(1) L ∈ C1

(
Ω̄× R× Rn

)
,

(2) L ≥ 0,
(3) ∀(x, u) ∈ Ω× R, p 7→ L(x, u, p) is convex,

then I(u) =
∫

Ω
L(x, u(x),∇u(x))dx is weakly sequentially lower semicontinuous in

W 1,q (Ω) (1 ≤ q <∞).

Proof. Suppose uk ⇀ u in W 1,q and consequently supk ‖uk‖1,q ≤ C.
The convexity implies that

L(x, uk,∇uk) ≥ L(x, uk,∇u) + Lp(x, uk,∇u) · (∇uk −∇u).

Integrate over Ω to get

I(uk) ≥
∫

Ω

L(x, uk,∇u) +

∫
Ω

Lp(x, u,∇u) · (∇uk −∇u)

+

∫
Ω

(Lp(x, uk,∇u)− Lp(x, u,∇u)) · (∇uk −∇u).

The third term is where we can use the weak convergence

(f,∇uk −∇u)→ 0

using the weak convergence.
For the first term, using compact embedding theorem, we can find subsequence s.t.

uk → u strongly. To exchange the integral and limit, we can make it rigorous as follows.
For any ε > 0, there exists a subset K ⊂ Ω with |Ω\K| < ε and

(1) uj → u uniformly on K (Egorov’s theorem),
(2) u and ∇u are continuous on K (Luzin’s theorem),
(3) By the continuity of the integral∫

K

L(x, u(x),∇u(x)) dx ≥
∫

Ω

L(x, u(x),∇u(x)) dx− ε
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In summary,

lim inf
k→∞

I (uk) ≥
∫
K

L(x, u(x),∇u(x)) dx ≥ I(u)− ε.

Since ε > 0 is arbitrary,
lim inf
k→∞

I (uk) ≥ I(u).

�

We summarize the existence theorem below.

Theorem 3.11 (Existence of minimizer). Assume that L satisfies the coercivity inequality
and is convex in the variable p. Suppose also the admissible set M is nonempty. Then
there exists at least one function u ∈M solving

I(u) = min
w∈M

I(v).
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