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ABSTRACT. In this brief note, we provide an overview of the Calculus of Variations,
highlighting three key tools: the chain rule of differentiation, integration by parts, and
change of variables. To illustrate these aspects, we present a one-dimensional example.

1. PROBLEM FORMULATION

A typical problem in the calculus of variation is in the form

(1) inf
u∈M

I(u),

where the integral functional is

I(u) =

∫
Ω

L(x, u(x),∇u(x)) dx,

• Ω ⊂ Rd is an open domain;
• M is a subset of some function spaces defined on Ω called admissible set;
• L is called Lagrangian.

When considering 1-d problems, i.e., d = 1, usually we write the independent variable as
t, change u to x, and L = L(t, x(t), ẋ(t)).

So it is a minimization problem or in general optimization problems (finding minimum,
maximum, or saddle points) which shares many similarities with the calculus problem

(2) inf
x∈M

f(x).

Using equation (2) can be helpful in understanding key concepts and points related to the
calculus of variations problem described in equation (1).

What is the main difference between the calculus problem (2) and the calculus of vari-
ation problem (1)?

• The dependence in (2) is two-layer x 7→ f(x);
• While (1) contains three-layers: x 7→ u(x) 7→ I(u);

In 1-d, the dependence is: t 7→ x(t) 7→ I(x).

2. TOOLS

In the calculus of variations, the independent variable in the functional I(·) is a function
u, which itself is a function of x in some domain Ω of Euclidean space Rd. A function of
functions is called a functional, and functional analysis is the main mathematical tool used
in the calculus of variations.

We can gain insight into the role of functional analysis in the calculus of variations by
examining the existence and uniqueness of solutions to (1). This involves using various
concepts and tools from functional analysis, such as weak convergence, Banach spaces,
and Sobolev spaces.
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Recall that the infimum of the calculus problem (2) exists if M compact and f is con-
tinuous.

The subsetM in equation (1) is a subset of a function space, such as the Sobolev spaces
H1(Ω), which is typically infinite dimensional. In contrast, M in equation (2) is a subset
of the finite dimensional space Rd. This difference is fundamental and requires many
results and properties of finite dimensional linear spaces to be re-examined in the infinite
dimensional space.

One example is compactness. In a finite dimensional normed vector space, a set is
compact if and only if it is bounded and closed. However, in infinite dimensional spaces,
boundedness and closedness are necessary but not sufficient conditions for compactness.
An example is the {en} ⊂ `2, en = (0, 0, . . . , 1, 0, . . .) and ‖en − em‖ =

√
2. No

convergent subsequences. Weaker topologies need to be introduced to enable the unit ball
to be compact in that weak topology. In view of open sets, a weaker topology will have
less open sets and consequently less open covering which will increase the possibility to
satisfy “for every open covering” in the definition of compactness: for every open covering
of M , there exists a finite covering.

A function f : U → V between two topological spaces is continuous if for every open
sets in V , its pre-image is continuous. Weaker topology will have less open sets, which is
not favorable to the continuity. We can relax the continuity to the lower semi-continuity in
the weak topology (w.l.s.c) to balance the less open sets in the weaker topology. Coercivity
and convexity of the functional L will be introduced to ensure the existence of a solution
to equation (1).

More specifically, we summarize three most used tricks in Calculus of Variation.

• Chain rule of differentiation. (Easy but tedious)
• Integration by parts. (Medium to hard especially in high dimensions)
• Change of variables. (Hard and deep)

When taking derivatives, we have to be careful on the dependence of variables. For
example, when write the Lagrangian as L(x, u, p), variables (u, p) are independent. While
in the notation L(x, u(x),∇u(x)), p = ∇u is substituted and therefore the 2nd and 3rd
variables are now related.

The functional I(·) involves the derivative∇u and integral
∫

Ω
L. The interplay of these

two is: integration by parts. When the domain Ω is less smooth (e.g. a polyhedron),
integration by parts should be applied piecewisely and jump conditions at lower geometric
objects, such as corners and edges, may appear if the function is not smooth enough.

Change of variables turns out to be the key tool which leads to the deepest results in
calculus of variations. Examples include: Legendre transform and Noether’s theorem.

Legendre transform changes a Lagrangian to a Hamiltonian and the Euler-Lagrange
equation into the Hamiltonian system. The further introduce of a scalar potential gives
the Hamilton-Jacobi equation. Different variables and different equations reveal different
structures for the same physical system.

If the functional is invariant under some transformations, then there is a conservation
law. This is the most beautiful and the deepest result in calculus of variations: Noether’s
theorem. According to Noether’s theorem, the conservation of energy arises from the sym-
metry of the system in time. In fact, a more accurate term for “invariance” is “symmetry”
and “change of variables” is “group actions”. Noether’s theorem provides examples of the
connection between symmetry and conservation laws. Three such examples are:

• Time translation symmetry: conservation of energy;
• Space translation symmetry: conservation of momentum;
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• Rotation symmetry: conservation of angular momentum.
This connection between symmetry and conservation laws is a deep, two-way relationship:
a symmetry implies a conservation law, and a conserved quantity generates the symme-
try itself. This relationship has inspired much of theoretical physics from experimental
physics. Scientists first observe a conserved quantity in experiments and then look for the
symmetry generated by that quantity.

3. AN EXAMPLE

We end this introduction by an example in 1-D. Recall that in 1-D, we use t ∈ R instead
of x, x to replace u, and ẋ instead of ∇u. Although t ∈ R, the function x(t) could be a
curve in space, i.e., x could be a vector. A typical example is

(3) inf
x∈M

∫ 1

0

L(t, x(t), ẋ(t)) dt,

with
• M = {x ∈ C1(0, 1), x(0) = x0, x(1) = x1}
• L(t, x, v) =

1

2
m|v|2 − U(x) is the difference of kinetic energy T (v) = 1

2m|v|
2

and potential energy U(x).
Recall that the first order condition for (2) is f ′(x) = 0. But now x = x(t) itself is a
function and may change in every point t ∈ (0, 1). How to take derivative of a function?

FIGURE 1. Variation of a curve.

The idea is to introduce a variation of the function. Let φ be a test function in M0

satisfies certain boundary conditions so that if x ∈M, then x+ εφ ∈M. For the example
considered,M0 = {φ ∈ C1(0, 1), φ(0) = φ(1) = 0}. The term εφ is an variation of x
and the symbol ε suggests it is small. Define f(ε) := I(x+ εφ). Then x is an infimum of
(1) if and only if 0 is a minimum of f(ε). So the optimality condition of an extreme curve
x of I(x) is characterized as

(4) f ′(0) =
d

dε
I(x+ εφ)|ε=0 = 0,

We then apply the three trickes.

Chain rule. By the chain rule, we obtain the variational form of Euler-Lagrange equation

(5)
∫ 1

0

Lx(t, x, ẋ)φ+ Lv(t, x, ẋ)φ̇ = 0 ∀φ ∈M0.



4 LONG CHEN

Integration by parts. Apply integration by parts, we obtain∫ 1

0

[
Lx(t, x, ẋ)− d

dt
Lv(t, x, ẋ)

]
φ = 0 ∀φ ∈M0.

The boundary terms disappeared as φ ∈ M0. AsM0 is dense in L2(0, 1), we conclude
the strong form of Euler-Lagrange equation

(6) − d

dt
Lv(t, x(t), ẋ(t)) + Lx(t, x(t), ẋ(t)) = 0,

which is in general a nonlinear second order ODE.
For L(t, x, v) = 1

2m|v|
2 − U(x), (6) becomes the Newton’s equation

mẍ = F, with F = −∇xU.
The way to derive Newton’s equation from (3) is known as “the principle of least action
(of Hamilton’s form)”.
Change of variables. Consider change of variables{

q = x,

p = Lv(t, q, q̇).

Assume L is convex in v. Then we can solve q̇ = q̇(p, q, t). Define Hamiltonian

(7) H(p, q, t) := pq̇ − L(t, q, q̇).

The variable q̇ on the right hand side can be expressed by variables (p, q, t) and thus q̇ is
eliminated. Then the Euler-Lagrange equation becomes the Hamiltonian system

(8)
{
ṗ = −Hq,

q̇ = Hp.

To derive the Hamiltonian system, we apply total differentiation to both sides of (7). LHS
is

dH = Hp dp+Hq dq +Ht dt

and RHS is

p dq̇ + q̇ dp− Lt dt− Lq dq − Lvdq̇ = q̇ dp− ṗ dq − Lt dt.

The last step is due to p = Lv by definition and E-L equation Lq = ṗ in terms of new
variables. Compare the coefficients of dp and dq, we get (8).

When HamiltonianH(p, q) is independent of t, for solutions to the Hamiltonian system,
we obtain the conservation of Hamiltonian, i.e.

d

dt
H(p(t), q(t)) = Hpṗ+Hq q̇ = 0.

An important example is L = T − U . For T (v) = 1
2m|v|

2, the variable p = mv is the
momentum. Then

H = pq̇(p)− L = pv − T (v)− U(q) =
1

2
m|v|2 + U(q) = T + U

is the total energy.
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