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We study the well-posedness (existence, uniqueness and stability) of the equation

(1) Tu = f,

where T is a linear and bounded operator between two linear vector spaces. We give equiv-
alent conditions on the existence and uniqueness of the solution and apply to variational
problems to obtain the so-called inf-sup condition (also known as Babuška condition [1]).
When the linear system is in the saddle point form, we derive another set of inf-sup condi-
tions (known as Brezzi conditions [2]).

When linear spaces are finite dimensional and therefore T is a matrix, the existence and
uniqueness of solution to (1) is equivalent to T is square and non-singular. The stability,
i.e., the solution u depends continuously on f characterized by ‖u‖ ≤ C‖f‖, is equivalent
to σmin(T ) > 0. The reason we study the operator equation (1) in infinite dimensional
spaces is that in numerical methods, there is a sequence of finite dimensional matrix equa-
tions Thuh = fh and the stability should be uniform to the parameter h so that we can
safely take the limit h→ 0 and study the order of convergence of ‖u− uh‖.

1. PRELIMINARY FROM FUNCTIONAL ANALYSIS

In this section we recall some basic facts in functional analysis, notably three theorems:
Hahn-Banach Theorem, Closed Range Theorem, and Open Mapping Theorem. For de-
tailed explanation and sketch of proofs, we refer to Chapter: Minimal Functional Analysis
for Computational Mathematicians.

1.1. Function Analysis. Calculus is the mathematical study of the relationship between
a function f and the independent variable x, specifically through the concepts of differen-
tiation and integration. Real analysis extends this study to include the space of functions,
exploring properties such as continuity, convergence, and limit behavior. Functional anal-
ysis takes this a step further, focusing on the operators that act on these function spaces,
including important examples such as functionals, which are defined as functions of func-
tions.

As an example, we list three type of limits considered in those subjects

Calculus/Analysis limxn→x f(xn)
Real Analysis limn→∞ fn

Functional Analysis limn→∞ Tn(f).

Linear algebra, also known as matrix analysis, studies the properties of operators be-
tween finite-dimensional spaces, while functional analysis extends this study to the realm
of infinitely-dimensional spaces. In functional analysis, operators can be viewed as infinite-
dimensional matrices, and the focus is on the properties of these operators and the spaces
on which they act.
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To transfer results from calculus and linear algebra to functional analysis, additional
conditions must be imposed on the space and/or operators. This is due to the fact that the
dimension of function spaces is typically infinite, which leads to many non-intuitive results.
Among many others, the following three properties are extremely important: closeness or
completeness, continuity (boundedness), and compactness.

In our study of functional analysis, we will primarily focus on spaces of functions,
denoted by u, v, f , g, and so on. We reserve the notation x and y for points in Rn, and
we use u(x) to represent a function u of x. The domain for x is usually denoted by Ω, and
the properties of Ω (closed or open, compact, or bounded) can impact the properties of the
function space defined on Ω.

1.2. Spaces. We begin by considering a set V with possibly infinitely many elements
and introduce structures on this set. One of the most fundamental structures is the linear
structure:

αu+ βv ∈ V, ∀u, v ∈ V, α, β ∈ F,
where F is a field. In this context, a field is an algebraic structure with well-defined ad-
dition, subtraction, multiplication, and division satisfying the conventional properties of
operations for numbers. We typically take F = R or F = C, i.e., all real or complex
numbers. Therefore, a linear space, also known as a vector space, is a space where we can
define addition of elements (an abelian group) and scalar multiplication. An element in a
vector space can be thought of as a vector, and the addition and scalar multiplication have
a geometric interpretation. However, we should note that an abstract vector may contain
infinitely many “coordinates”, and therefore some properties of vectors in Euclidean space
may not hold.

Topology is another fundamental structure that can be added to a set X . A topology on
X is a collection of subsets of X , called open sets U , satisfying certain properties:

• The empty set and X are open, i.e., ∅ ∈ U and X ∈ U .
• The intersection of finitely many open sets is open.
• The union of possibly infinitely many open sets is open.

Using open sets, we can define the notion of a neighborhood of an element: an open subset
of X that contains a point x is called a neighborhood of x. We can also define continuity
of mappings: a map between two topological spaces is continuous if the pre-image of any
open set is open.

Topology enables us to define important concepts such as inside, outside, and boundary.
If S is a subset of a topological space X , then x ∈ S is an interior point of S if there exists
an open set U such that x ∈ U ⊂ S. A subset is closed if its complement is open. For
a subset S, the closure S is the intersection of all closed sets containing S, which is the
smallest closed set containing S. The interior of S, denoted by S̊, is the complement of the
closure of the complement of S. The exterior of S is the complement of the closure of S.
Finally, the boundary ∂S = S̄\S̊ is the set of points in S that are not in S̊.

A normed vector space is a special and important example of TVS. A norm ‖ · ‖ is a
map V → R+ satisfying properties:

• scalar property: ‖αu‖ = |α|‖u‖;
• triangle inequality: ‖u+ v‖ ≤ ‖u‖+ ‖v‖;
• non-negativity: ‖u‖ ≥ 0 and ‖u‖ = 0 iff u = 0.

It will be called semi-norm and denoted by | · | if the last property is missing, i.e., there are
non zeros elements u 6= 0 but |u| = 0. The norm will induce a topology by collecting all
open balls B(u, r) = {v ∈ V, ‖v − u‖ < r} as open sets. It is easy to show that a normed
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vector space is a TVS. With the norm structure, we can talk about the length of a vector
and the distance between two elements but not the angle.

An inner product space is a linear space endowed with an inner product (·, ·) : V ×V →
R satisfying

• bilinear: (αu+ βv,w) = α(u,w) + β(v, w);
• symmetric: (u, v) = (v, u);
• non-negativity: (u, u) ≥ 0 and (u, u) = 0 iff u = 0.

An inner product can induce a norm ‖u‖ = (u, u)1/2. But not all norms are induced from
inner products. The missing property is the parallelogram property: if the norm is induced
from an inner product, then

‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2.
Euclidean space Rn with norm ‖ · ‖`p for p ∈ [1,∞] but p 6= 2 will not satisfy the
parallelogram property.

With the inner product structure, we can talk about the angle of two vectors: cos θ(u,v) =
(u, v)/‖u‖‖v‖. It is the inner product that gives the geometry structure. For example,
symmetry is always defined in an inner product vector space and is relative to the endowed
inner product.

Completeness means every Cauchy sequence will have a limit and the limit is in the
space. Completeness is a nice property. It guarantees that we can take limits in a safe
and consistent manner, without running into issues of convergence to points outside the
space. Here is an example of non-complete space: (C[0, 1], ‖ · ‖Lp

), p 6= ∞. Consider
the sequence {fn(x) = xn}. Then the limit is a discontinuous function f(x) = 0 for
x ∈ [0, 1) but f(1) = 1.

A complete normed space will be called a Banach space. A complete inner product
space will be called a Hilbert space. Completeness means every Cauchy sequence will
have a limit and the limit is in the space. Completeness is a nice property so that we can
safely take the limit.

1.3. Space of Linear Operators. Real analysis is studying Banach or Hilbert spaces con-
sisting of functions. Functional analysis is studying L (U, V ): the linear space consisting
of all linear operators between vector spaces U and V . The linear operator preserves the
linear structure:

T ∈ L (U, V ) if T (αu+ βv) = αT (u) + βT (v).

When U and V are TVS, the subspace B(U, V ) ⊂ L (U, V ) consists of all continuous
linear operators. Recall that an operator T is continuous if the pre-image of any open set
is open.

An operator T is bounded if T maps bounded sets into bounded sets (not the range of
T is bounded). When U and V are normed space, for a bounded operator, there exists a
constant M s.t. ‖Tu‖ ≤M‖u‖,∀u ∈ U . The smallest constant M is defined as the norm
of T . For T ∈ B(U, V ),

‖T‖ = sup
u∈U,‖u‖=1

‖Tu‖.

With such norm, the space B(U, V ) becomes a normed vector space.
Continuity is a fundamental concept in topology, and its definition relies solely on the

underlying topology of a space. However, when considering linear transformations be-
tween topological vector spaces, the linear structure provides additional properties that can
be used to characterize continuity.
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A particularly important example of the space of linear transformations L (U, V ) arises
when V = R. In this case, the space of linear transformations L (U,R) is known as the
(algebraic) dual space of U , denoted by U∗. For a linear operator T ∈ L (U, V ), we can
define its transpose T ∗ ∈ L (V ∗, U∗) by the equation 〈T ∗f, u〉 = 〈f, Tu〉, where 〈·, ·〉
denotes the duality pairing between V ∗ and V , and U∗ and U , respectively. The transpose
T ∗ is a linear operator that plays an important role in the study of functional analysis, as it
provides a way to relate the properties of T to those of its dual.

If V is a normed space, we denote the space of continuous linear functionals on V by
V ′ = B(V,R). In this case, the continuous transpose T ′ ∈ L (V ′, U ′) of a linear operator
T ∈ L (U, V ) is defined analogously to the algebraic case, by 〈T ′f, u〉 = 〈f, Tu〉 for
all f ∈ V ′ and u ∈ U . Note that whereas the algebraic dual space only relies on the
linear structure of V , the continuous dual space V ′ requires a topology to define continuity.
However, in the context of topological vector spaces, we often use the notation T ∗ and T ′

interchangeably to refer to both the algebraic and continuous duality.
It is worth noting that since R is Banach, V ′ is also Banach, regardless of whether V is

complete or not.

Lemma 1.1. If U is a normed vector space and V is a Banach space. Then B(U, V ) is a
Banach space.

Proof. Suppose {Tn} is a Cauchy sequence. Then for each u ∈ U , {Tn(u)} is Cauchy in
V . By the completeness of V , the limit of Tn(u) exists and thus we can define T (u) :=
limn→∞ Tn(u). Clearly T ∈ B(U, V ). Convergence of ‖Tn − T‖ to zero can be proved
by using the fact {Tn} is a Cauchy. �

Through the duality pair 〈u, f〉, we can identify an element u ∈ V as an element in V ′′

and obtain an embedding V ⊂ V ′′. If V ′′ = V , then space V is called reflective. But V ′

in general is a space different to V except for Hilbert space for which Reisz representation
theorem shows V is isometric to V ′.

Question: Why are the dual space and the dual operator so important?
(1) For an inner product space, the inner product structure is quite useful. For normed

vector spaces, the duality pair 〈·, ·〉 : V ′ × V → R can play the (partial) role of
the inner product.

(2) Since U ′ and V ′ are Banach spaces, T ′ is “nicer” than T . Many theorems are
available for continuous linear operators between Banach spaces.

In the finite dimensional case, elements in both V and V ′ can be represented by standard
vectors in Rn with n = dimV once a basis of V is chosen. The operator T ∈ L (U, V )
can be represented by a matrix. Functional analysis is to extend results of matrices and
vectors for finite dimensional linear spaces to infinite dimensional linear spaces.

1.4. Riesz Representation Theorem. The dual space V ′ is an abstract space. When V
is an Hilbert space with inner product (·, ·), we can find a concrete representation. For a
given u ∈ V , (u, ·) : V → R is a continuous linear functional. That is fu := (u, ·) ∈ V ′.
The mapping

V → V ′, u→ (u, ·).
Riesz representation theorem says the mapping is invertible.

Theorem 1.2 (Riesz Representation Theorem). Consider an Hilbert space V with inner
product (·, ·). For any f ∈ V ′, there exists a unique element u ∈ V s.t.

〈f, v〉 = (u, v) ∀v ∈ V.
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Furthermore ‖f‖V ′ = ‖u‖V .

We skip the proof but provides two examples.

Example 1.3. Consider V = R3 with the standard vector inner product. An element
v = (x, y, z)ᵀ ∈ V and a functional f ∈ V ′ can be written as

f(v) = ax+ by + cz.

What is the representation of f? The vector formed by the coefficients.

f(v) = (n, v), n = (a, b, c).

Example 1.4. Consider V = Rn. Let A be an n × n symmetric and positive definite
matrix. Define a new inner product by

(u, v)A := (Au, v) = (u,Av).

What is the representation of a f ∈ V ′? It is the solution to the linear algebraic equation

Au = f.

But it may not be easy to compute uwhen the dimension n is large andA is ill-conditioned.

1.5. Hahn-Banach Theorem. A subspace S of a linear space V is a subset such that itself
is a linear space with the addition and the scalar product defined for V . For a normed TVS,
a closed subspace means the subspace is also closed under the topology, i.e., for every
convergent sequence, the limit also lies in the subspace.

Theorem 1.5 (Hahn-Banach Extension). Let V be a normed linear space and S ⊂ V a
subspace. For any f ∈ S′ = B(S,R) it can be extended to f ∈ V ′ = B(V,R) with
preservation of norms.

For a continuous linear functional defined on a subspace, the natural extension by den-
sity can extend the domain of the operator to the closure of S. So we can take the closure
of S and consider closed subspaces only. The following corollary says that we can find a
functional to separate a point with a closed subspace.

Corollary 1.6. Let V be a normed linear space and S ⊂ V a closed subspace. Let
v ∈ V but v /∈ S. Then there exists a f ∈ V ′ such that f(S) = 0 and f(v) = 1 and
‖f‖ = dist−1(v, S).

Proof. Consider the subspace Sv = span(S, v). For any u ∈ Sv , u = us + λv with us ∈
S, λ ∈ R, we define f(u) = λ and use Hahn-Banach theorem to extend the domain of f to
V . Then f(S) = 0 and f(v) = 1 and it is not hard to prove the norm of ‖f‖ = 1/d. �

The corollary is obvious in an inner product space. We can use the vector f̃ = v −
ProjSv which is orthogonal to S and scale f̃ with the distance such that f(v) = 1. The
extension of f is through the inner product. Thanks to the Hahn-Banach theorem, we can
prove it without the inner product structure.

Another corollary resembles the Reisz representation theorem.

Corollary 1.7. Let V be a normed linear space. For any v ∈ V , there exists a f ∈ V ′
such that f(v) = ‖v‖2 and ‖f‖ = ‖v‖.
Proof. For a Hilbert space, we simply chose fv = v and for a norm space, we can apply
Corollary 1.6 to S = {0} and rescale the obtained functional. �

Exercise 1.8. Prove ‖T‖ = ‖T ′‖ for T ∈ B(U, V ) and U, V are normed linear spaces.
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The norm structure in Hahn-Banach theorem is not necessary. It can be relaxed to a
sub-linear functional and the preservation of norm can be relaxed to the preservation of an
inequality.

Theorem 1.9 (Generalized Hahn-Banach Theorem). Let V be a linear space and S be
a subspace of V . Let p : V → R be a sub-linear functional. For any linear functional
f ∈ S′ satisfying f(v) ≤ p(v) for all v ∈ S, it can be extended to V ′ and still satisfies the
same inequality for v ∈ V .

Proof. We can modify the proof of Corollary 1.6 to construct an extension from S to S+v
as follows: for u = us + λv, we define f(v) = f(us) + cλ. The constant c is carefully
chosen to satisfy the constraint f(v) ≤ p(v). We keep doing this until ‘no point left’.
Notice that the space is in general infinite dimensional (not even countable). To make the
arguments more rigorous, we collect all extensions K and introduce a partially ordering on
K. Then we chose the maximal element in K and show the domain of this element is V by
contradiction. Can we attain the maximal element? The answer is yes, if we can apply the
Zorn’s lemma on the axiom of choice. �

The extension is for functionals only. Namely the value of this operator is R (or C).
Extension of operators in L (U, V ) when V is not a field, is not obvious. For example,
the derivative operator is an unbounded linear operator from C1([0, 1]) → C([0, 1]). An
extension would be the weak derivative and will be continuous in appropriate Sobolev
spaces.

1.6. Closed Range Theorem. For an operator T : U → V , denoted by R(T ) ⊂ V
the range of T and N(T ) ⊂ U the null space of T . For a matrix Am×n treating as a
linear operator from Rn to Rm, there are four fundamental subspaces R(A), N(Aᵀ) ⊂
Rm, R(Aᵀ), N(A) ⊂ Rn and the following relation (named the fundamental theorem of
linear algebra by G. Strang [4]).

Theorem 1.10 (The fundamental theorem of linear algebra [4]).

R(A)⊕⊥ N(Aᵀ) = Rm,(2)

R(Aᵀ)⊕⊥ N(A) = Rn.(3)

In words, the range space is the orthogonal complement of the null space. Proof is
simply by definition of the adjoint operator

(Ax, y) = (x,Aᵀy), ∀x ∈ Rn, y ∈ Rm.

It is illustrated in the following figure.
We shall try to generalize (2)-(3) to operators T ∈ B(U, V ) between normed/inner

product spaces. For T ∈ B(U, V ), due to the continuity of T , the null space N(T ) :=
{u ∈ U, Tu = 0} is a closed subspace. For a subset S in a Hilbert spaceH , the orthogonal
complement S⊥ := {u ∈ H, (u, v) = 0,∀v ∈ S} is a closed subspace. For Banach spaces,
we do not have the inner product structure but can use the duality pair 〈·, ·〉 : V ′ × V → R
to define an “orthogonal complement” in the dual space which is called annihilator. More
specifically, for a subset S in a normed space V , the annihilator S◦ = {f ∈ V ′, 〈f, v〉 =
0,∀v ∈ S}. Similarly for a subset F ⊂ V ′, we define ◦F = {v ∈ V, 〈f, v〉 = 0,∀f ∈ F}.
Similar to the orthogonal complement, annihilators are closed subspaces.

For a subset (not necessarily a subspace) S ⊂ V , S ⊆ S⊥⊥ if V is an inner product
space or S ⊆ ◦(S◦) if V is a normed space. The equality holds if and only if S is a closed
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FIGURE 1. The fundamental theorem of linear algebra. Extract from G.
Strang. Linear Algebra and Its Applications [5].

subspace (which can be proved using Hahn-Banach theorem). The space S⊥⊥ or ◦(S◦) is
the smallest closed subspace containing S.

The range R(T ) is not necessarily closed even T is continuous. As two closed sub-
spaces, the relation N(T ′) = R(T )◦ can be easily proved by definition. But the relation
R(T ) = ◦N(T ′) may not hold since ◦N(T ′) is closed but R(T ) may not.

Theorem 1.11 (Closed Range Theorem). Let U and V be Banach spaces and let T ∈
B(U, V ). Then the following conditions are equivalent

(1) R(T ) is closed in V .
(2) R(T ′) is closed in U ′.
(3) R(T ) = ◦N(T ′)
(4) R(T ′) = N(T )◦.

Proof. We give a proof from (1) to (3). The relation R(T ) ⊆ ◦N(T ′) can be verified by
definition. Suppose there exists v ∈ ◦N(T ′) but v /∈ R(T ). Then by Corollary 1.6, there
exists a f ∈ V ′ s.t. f(R(T )) = 0 and f(v) = 1. The fact 〈f, Tu〉 = 〈T ′f, u〉 = 0,∀u ∈ U
implies T ′f ∈ N(T ′). The fact v ∈ ◦N(T ′) implies f(v) = 0 which contradicts with
f(v) = 1. �

Closeness is another nice property. An operator is closed if its graph is closed in the
product space. More precisely, let T : U → V be a function and the graph of T is
G(T ) = {(u, Tu) : u ∈ U} ∈ U × V . Then T is closed if its graph G is closed in U × V
in the product topology. One can easily show a linear and continuous operator is closed.
The definition of closed operators only uses the topology of the product space. A closed
operator is not necessarily linear or continuous. When T ∈ L (U, V ) and U, V are Banach
spaces, these two properties are equivalent which is known as the closed graph theorem.

Theorem 1.12 (Closed Graph Theorem). Let U and V be Banach spaces and let T ∈
L (U, V ). Then T is closed if and only if T is continuous.
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The requirement of U and V are Banach is necessary. Namely there exists a closed
operators which is not continuous.

Range is closed is stronger than the operator is closed. Compare the convergence in the
definitions:

• Graph is closed: if (un, Tun)→ (u, v), then v = Tu.
• Range is closed: if Tun → v, then there exists a u such that v = Tu.

The difference is: in the second line, we do not know if un converges or not. But in the
first line, we assume such limit exists.

Closedness is a relative concept depending on the topology. In the closed graph theorem,
the first component of the product topology of U ×V will use the one for U . The sequence
{Tun} is Cauchy in V may not imply {un} is Cauchy in U .

1.7. Open Mapping Theorem. The stability of the equation can be ensured by the open
mapping theorem. An open map is a function between two topological spaces that maps
open sets to open sets.

Theorem 1.13 (Open Mapping Theorem). For T ∈ B(U, V ) and both U and V are
Banach spaces. If T is onto, then T is open.

Usually the proof uses the Baire category theorem, and completeness of both U and V
is essential. Again we skip the proof and consider a special case when T is bijective and
use the closed graph theorem to give a short proof.

Theorem 1.14 (Banach Theorem). For T ∈ B(U, V ) and both U and V are Banach
spaces. If T is into and onto, then T−1 exists and continuous.

Proof. The graph of G(T ) and G(T−1) are reflection of each other. Then T is continuous
⇒ G(T ) is closed ⇐⇒ G(T−1) is closed⇒ T−1 is continuous by closed graph theory.

�

We return to the case T is surjective. Let S ⊂ V be a subspace. We can define a quotient
space V/S using the linear structure only. When V is normed, we can define a quotient
norm

‖u‖V/S = inf
s∈S
‖u− s‖.

But this is only a semi-norm. For example, consider S be the subspace of all polynomials
and Weierstrass approximation theorem says any continuous function can be approximated
arbitrarily close by polynomials in the maximum norm. The polynomial subspace is not
closed w.r.t. ‖ ·‖∞. The quotient norm will be a norm if and only if S is a closed subspace.
If V is a Banach space and S ⊂ V is a closed subspace, then both S and V/S are Banach
spaces.

When T is onto, the induced map

T : U/N(T )→ V

is bijective between two Banach spaces as N(T ) is a closed subspace. So we conclude
T−1 : V → U/N(T ) is continuous and thus T : U/N(T )→ V is open. Now use relation
of topology between U/N(T ) and U , we conclude the original T is also open.

2. INF-SUP CONDITION: BABUŠKA THEORY

The well-posedness of the operator equation Tu = f consists of three questions: exis-
tence, uniqueness, and stability.
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2.1. Operator Equations. For the uniqueness, a useful criterion to check is wether T is
bounded below.

Lemma 2.1. Let U and V be Banach spaces. For T ∈ B(U, V ), the rangeR(T ) is closed
and T is injective if and only if T is bounded below, i.e., there exists a positive constant c
such that

(4) ‖Tu‖ ≥ c‖u‖, for all u ∈ U.
Proof. Sufficient. If Tu = 0, inequality (4) implies u = 0, i.e., T is injective. Choosing
a convergent sequence {Tuk}, by (4), we know {uk} is also a Cauchy sequence and thus
converges to some u ∈ U . The continuity of T shows that Tuk converges to Tu and thus
R(T ) is closed.

Necessary. When the range R(T ) is closed, as a closed subspace of a Banach space,
it is also Banach. As T is injective, T−1 is well defined on R(T ). Apply Open Mapping
Theorem to T : U → R(T ), we conclude T−1 is continuous. Then

‖u‖ = ‖T−1(Tu)‖ ≤ ‖T−1‖‖Tu‖
which implies (4) with constant c = ‖T−1‖−1. �

When T is bounded below, we have R(T ) is closed and T is injective. As a closed
subspace of a Banach space, R(T ) is also Banach, therefore

T : U → R(T ) = ◦N(T ′)

is isomorphism (i.e. T and T−1 are linear and continuous).
A trivial answer to the existence of the solution to (1) is: if f ∈ R(T ), then it is

solvable. When is it solvable for all f ∈ V ? The answer is V = R(T ), i.e., T is surjective.
A characterization can be obtained using the dual of T .

Lemma 2.2. Let U and V be Banach spaces and let T ∈ B(U, V ). Then T is surjective
if and only if T ′ is injective and R(T ′) is closed.

Proof. Sufficient. By closed range theorem, R(T ) is also closed. Suppose R(T ) 6= V ,
i.e., there exists a v ∈ V but v /∈ R(T ). By Hahn-Banach theorem, there exists a f ∈ V ′
such that f(R(T )) = 0 and f(v) = 1. Then T ′f ∈ U ′ satisfies

(5) 〈T ′f, u〉 = 〈f, Tu〉 = 0, ∀u ∈ U.
So T ′f = 0 which implies f = 0 contradicts with the fact f(v) = 1.

Necessary. When T is surjective, then R(T ) = V is closed. By closed range theorem,
so is R(T ′). To prove T ′ is injective, we then show if T ′f = 0, then f = 0. Indeed by (5),
〈f, Tu〉 = 0. As R(T ) = V , this equivalent to 〈f, v〉 = 0 for all v ∈ V , i.e., f = 0. �

Combination of Lemma 2.1 and 2.2, we obtain a useful criteria for the operator T to be
surjective.

Corollary 2.3. Let U and V be Banach spaces and let T ∈ B(U, V ). Then T is surjective
if and only if T ′ is bounded below, i.e. ‖T ′f‖ ≥ c‖f‖ for all f ∈ V ′.
2.2. Abstract Variational Problems. Let

a(·, ·) : U × V 7→ R
be a bilinear form on two Banach spaces U and V , i.e., it is linear to each variable. It will
introduce two linear operators

A : U 7→ V ′, and A′ : V 7→ U ′

by 〈Au, v〉 = 〈u,A′v〉 = a(u, v).
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We consider the operator equation: given an f ∈ V ′, find u ∈ U such that

(6) Au = f in V ′,

or equivalently
a(u, v) = 〈f, v〉 for all v ∈ V.

To begin with, we assume both A and A′ are continuous which can be derived from the
continuity of the bilinear form.

(C) The bilinear form a(·, ·) is continuous in the sense that

a(u, v) ≤ C‖u‖U‖v‖V , for all u ∈ U, v ∈ V.

The minimal constant satisfies the above inequality will be denoted by ‖a‖. With this
condition, it is easy to check that A and A′ are bounded operators and ‖A‖U→V ′ =
‖A′‖V→U ′ = ‖a‖. Later on, if we do not emphasize the norm dependence, we shall
skip the subscript in ‖ · ‖ which should be clear from the context.

The following conditions discuss the existence and the uniqueness.

(E)

inf
v∈V

sup
u∈U

a(u, v)

‖u‖‖v‖ = αE > 0.

(U)

inf
u∈U

sup
v∈V

a(u, v)

‖u‖‖v‖ = αU > 0.

Theorem 2.4. Assume the bilinear form a(·, ·) is continuous, i.e., (C) holds, the problem
(6) is well-posed if and only if (E) and (U) hold. Furthermore if (E) and (U) hold, then

‖A−1‖ = ‖(A′)−1‖ = α−1U = α−1E = α−1,

and thus for the solution to Au = f

‖u‖U ≤
1

α
‖f‖V ′ .

Proof. We can interpret (E) as ‖A′v‖ ≥ αE‖v‖ for all v ∈ V which is equivalent to A
is surjective. Similarly (U) is ‖Au‖ ≥ αU‖u‖ which is equivalent to A is injective. So
A : U → V is bijective and by open mapping theorem, A−1 is bounded and it is not hard
to prove the norm is α−1U . Proof for A′ is similar. �

Let us take the inf-sup condition (E) as an example to show how to verify (E). It is easy
to show that (E) is equivalent to

(7) for any v ∈ V, there exists u ∈ U, s.t. a(u, v) ≥ α‖u‖‖v‖.
We shall present a slightly different characterization of (E). With this characterization, it is
transformed to a construction of a suitable function.

Proposition 2.5. The inf-sup condition (E) is equivalent to that for any v ∈ V , there exists
u = u(v) ∈ U , such that

(8) a(u, v) ≥ C1‖v‖2, and ‖u‖ ≤ C2‖v‖.
Proof. Obviously (8) will imply (7) with α = C1/C2. We now prove (E) implies (8). For
any v ∈ V , by Corollary 1.7, there exists f ∈ V ′ s.t. f(v) = ‖v‖2 and ‖f‖ = ‖v‖. Since
A is onto, we can find u s.t. Au = f and by open mapping theorem, we can find a u with
‖u‖ ≤ α−1E ‖f‖ = α−1E ‖v‖ and a(u, v) = 〈Au, v〉 = f(v) = ‖v‖2. �
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For a given v, the desired u satisfying (8) could dependent on v in a subtle way. A
special and simple case is u = v when U = V . The corresponding result is known as
Lax-Milgram Theorem.

Lemma 2.6 (Lax-Milgram). For a bilinear form a(·, ·) on V × V , if it satisfies
(1) Continuity: a(u, v) ≤ β‖u‖‖v‖;
(2) Coercivity : a(u, u) ≥ α‖u‖2,

then for any f ∈ V ′, there exists a unique u ∈ V such that

a(u, v) = 〈f, v〉,
and

‖u‖ ≤ 1/α‖f‖.
The simplest case is the bilinear form a(·, ·) is symmetric and positive definite on V .

Then a(·, ·) defines a new inner product. Lax-Milgram theorem is simply the Riesz repre-
sentation theorem.

When a(·, ·) is symmetric not necessary positive definite, we can simplify the condi-
tions.

Corollary 2.7 (Symmetric Operator Equation). When the bilinear form a(·, ·) : V × V →
R is symmetric, i.e. a(u, v) = a(v, u). Then if

(9) α‖u‖V ≤ ‖Au‖V ′ ≤ β‖u‖V ,
then for any f ∈ V ′, there exists a unique u ∈ V such that

a(u, v) = 〈f, v〉,
and

‖u‖ ≤ 1/α‖f‖.
2.3. Conforming Discretization of Variational Problems. We consider conforming dis-
cretizations of the variational problem

(10) a(u, v) = 〈f, v〉
in the finite dimensional subspaces Uh ⊂ U and Vh ⊂ V . Find uh ∈ Uh such that

(11) a(uh, vh) = 〈f, vh〉, for all vh ∈ Vh.
The existence and uniqueness of (11) is equivalent to the following discrete inf-sup

conditions:

(D) inf
u∈Uh

sup
v∈Vh

a(uh, vh)

‖uh‖‖vh‖
= inf

v∈Vh

sup
u∈Uh

a(uh, vh)

‖uh‖‖vh‖
= αh > 0.

With appropriate choice of basis, (11) has a matrix form. To be well defined, first of
all the matrix should be square. Second the matrix should be non- singular. For a squared
matrix, two inf-sup conditions are merged into one. To be uniformly stable, the constant
αh should be uniformly bounded below.

An abstract error analysis can be established using inf-sup conditions. The key property
for the conforming discretization is the following Galerkin orthogonality

a(u− uh, vh) = 0, for all vh ∈ Vh.
Theorem 2.8. If the bilinear form a(·, ·) satisfies (C), (E), (U) and (D), then there exists a
unique solution u ∈ U to (10) and a unique solution uh ∈ Uh to (11). Furthermore

‖u− uh‖ ≤
‖a‖
αh

inf
vh∈Uh

‖u− vh‖.
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Proof. With those assumptions, we know for a given f ∈ V ′, the corresponding solutions
u and uh are well defined. Let us define a projection operator Ph : U 7→ Uh by Phu = uh.
Note that Ph|Uh

is identity. In operator form Ph = A−1h QhA, where Qh : V ′ → V ′h is
the natural inclusion of dual spaces. We prove that Ph is a bounded linear operator and
‖Ph‖ ≤ ‖a‖/αh as the following:

‖uh‖ ≤
1

αh
sup

vh∈Vh

a(uh, vh)

‖vh‖

=
1

αh
sup

vh∈Vh

a(u, vh)

‖vh‖

≤ 1

αh
sup
v∈V

a(u, v)

‖v‖

≤ ‖a‖
αh
‖u‖.

Then for any wh ∈ Uh, note that Phwh = wh,

‖u− uh‖ = ‖(I − P )(u− wh)‖ ≤ ‖I − Ph‖‖u− wh‖.

Since P 2
h = Ph, we use the identity in [6]:

‖I − Ph‖ = ‖Ph‖,

to get the desired result. �

3. INF-SUP CONDITIONS FOR SADDLE POINT SYSTEM: BREZZI THEORY

3.1. Variational problem in the mixed form. We shall consider an abstract mixed varia-
tional problem first. Let V and P be two Banach spaces. For given (f, g) ∈ V ′ × P ′, find
(u, p) ∈ V × P such that:

a(u, v) + b(v, p) = 〈f, v〉, for all v ∈ V,(12)

b(u, q) = 〈g, q〉, for all q ∈ P.(13)

Let us introduce linear operators

A : V 7→ V ′, as 〈Au, v〉 = a(u, v)

and

B : V 7→ P ′, B′ : P 7→ V ′, as 〈Bv, q〉 = 〈v,B′q〉 = b(v, q).

Written in the operator form, the problem becomes

Au+B′p = f,(14)
B u = g,(15)

or in the block matrix form

(16)
(
A B′

B 0

)(
u
p

)
=

(
f
g

)
.
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3.2. inf-sup conditions. We shall study the well posedness of this abstract mixed problem
(16). First we assume all bilinear forms are continuous so that all operators A,B,B′ are
continuous.

(C) The bilinear form a(·, ·), and b(·, ·) are continuous

a(u, v) ≤ C‖u‖‖v‖, for all u, v ∈ V,
b(v, q) ≤ C‖v‖‖q‖, for all v ∈ V, q ∈ P.

The solvable of the second equation (15) is equivalent toB is surjective orB′ is injective
and R(B′) closed which is equivalent to the following inf-sup condition
(B)

inf
q∈P

sup
v∈V

b(v, q)

‖v‖‖q‖ = β > 0

With condition (B), we have B : V/N(B) → P is an isomorphism. So given g ∈ P ′,
we can chose u1 ∈ V/N(B) such that Bu1 = g and ‖u1‖V ≤ β−1‖g‖P ′ .

After we get a unique u1, we restrict the test function v in (12) to N(B). Since
〈v,B′q〉 = 〈Bv, q〉 = 0 for v ∈ N(B), we get the following variational form: find
u0 ∈ N(B) such that

(17) a(u0, v) = 〈f, v〉 − a(u1, v), for all v ∈ N(B).

The existence and uniqueness of u0 is then equivalent to the two inf-sup conditions for
a(u, v) on space Z = N(B). That is, A can be singular but restricted to N(B), A is
well-posed.

(A)

inf
u∈Z

sup
v∈Z

a(u, v)

‖u‖‖v‖ = inf
v∈Z

sup
u∈Z

a(u, v)

‖u‖‖v‖ = α > 0.

After we determine a unique u = u0 + u1 in this way, we solve

(18) B′p = f −Au
to get p. Since u0 is the solution to (17), the right hand side f − Au ∈ N(B)◦. Thus we
require B′ : V 7→ N(B)◦ is an isomorphism which is also equivalent to the condition (B).

Theorem 3.1. Assume the bilinear forms a(·, ·), b(·, ·) are continuous, i.e., (C) holds. The
mixed variational problem (16) is well-posed if and only if (A) and (B) hold. When (A) and
(B) hold, we have the stability result

‖u‖V + ‖p‖P . ‖f‖V ′ + ‖g‖P ′ .
The following characterization of the inf-sup condition for the operatorB is useful. The

verification is again transferred to a construction of a suitable function. The proof is similar
to that in Theorem 2.5 and thus skipped here.

Theorem 3.2. The inf-sup condition (B) is equivalent to that: for any q ∈ P , there exists
v ∈ V , such that

(19) b(v, q) ≥ C1‖q‖2, and ‖v‖ ≤ C2‖q‖.
Note that in general a construction of desirable v = v(q), especially the control of norm

‖v‖, may not be straightforward.
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3.3. Conforming Discretization. We consider finite element approximation to the mixed
problem: Find uh ∈ Vh and ph ∈ Ph such that

a(uh, vh) + b(vh, ph) = 〈f, vh〉, for all vh ∈ Vh,(20)

b(uh, qh) = 〈g, qh〉, for all qh ∈ Ph.(21)

We shall mainly consider the conforming case Vh ⊂ V and Ph ⊂ P . We denote Bh :
Vh → P ′h which can be written as Bh = QhBIh with natural embedding Ih : Vh ↪→ V
and Qh : P ′ ↪→ P ′h, and denote Zh = N(Bh). Recall that Z = N(B). In the application
to Stokes equations B = −div, the null space Z is called the divergence free space and
Zh is the discrete divergence free space. Discrete divergence free may not be divergence
free.

Remark 3.3. In general Zh 6⊂ Z. Namely a discrete divergence free function may not be
exactly divergence free. Just compare the meaning of Bhuh = 0 in (Ph)′

〈Bhuh, qh〉 = 0, for all qh ∈ Ph,

with Buh = 0 in P ′

〈Buh, q〉 = 0, for all q ∈ P.
If we can identify P = P ′ and Ph = (Ph)′ using Riesz representation theorem, then
N(Bh) ∈ (Ph)⊥ which may contains non-trivial elements in P . Namely it is possible that
Buh ∈ ker(Qh) ∩ B(Vh). To enforce Zh ⊂ Z, it suffices to have B(Vh) ⊂ Ph. Indeed
when B(Vh) ⊂ Ph, QhBuh = Buh and thus Bhuh = 0 implies Buh = 0. �

The discrete inf-sup conditions for the finite element approximation will be
(D)

(Ah) inf
uh∈Zh

sup
vh∈Zh

a(uh, vh)

‖uh‖V ‖vh‖V
= αh > 0,

(Bh) inf
qh∈Ph

sup
vh∈Vh

b(vh, qh)

‖vh‖V ‖qh‖P
= βh > 0.

Theorem 3.4. If (A), (B), (C) and (D) hold, then the discrete problem is well-posed and

‖u− uh‖V + ‖p− ph‖P ≤ C inf
vh∈Vh,qh∈Ph

‖u− vh‖V + ‖p− qh‖P .

Exercise 3.5. Let U = V × P and rewrite the mixed formulation using one bilinear form
defined on U . Then use Babuška theory to prove the above theorem. Write explicitly how
the constant C depends on the constants in all inf-sup conditions.

3.4. Fortin operator. Note that the inf-sup condition (B) in the continuous level implies:
for any qh ∈ Ph, there exists v ∈ V such that b(v, qh) ≥ β‖v‖V ‖qh‖P and ‖v‖ ≤ C‖qh‖.
For the discrete inf-sup condition, we need a vh ∈ Vh satisfying such property. One
approach is to use the so-called Fortin operator [3] to get such a vh from v.

Definition 3.6 (Fortin operator). A linear operator Πh : V → Vh is called a Fortin opera-
tor if

(1) b(Πhv, qh) = b(v, qh) for all qh ∈ Ph

(2) ‖Πhv‖V ≤ C‖v‖V .

Theorem 3.7. Assume the inf-sup condition (B) holds and there exists a Fortin operator
Πh, then the discrete inf-sup condition (Bh) holds.



INF-SUP CONDITIONS FOR OPERATOR EQUATIONS 15

Proof. The inf-sup condition (B) in the continuous level implies: for any qh ∈ Ph, there
exists v ∈ V such that b(v, qh) ≥ β‖v‖‖qh‖ and ‖v‖ ≤ C‖qh‖. We choose vh = Πhv.

By the definition of Fortin operator

b(vh, qh) = b(v, qh) ≥ β‖v‖V ‖qh‖P ≥ βC‖vh‖V ‖qh‖P .
The discrete inf-sup condition then follows. �

3.5. General saddle point systems. Consider L := (A,B′;B,−C), where A : V → V ′

and C : Q→ Q′ are symmetric and semi-positive definite.

Theorem 3.8. The well-posedness of the operator equation L(u, p) = (f, g)

(22) µ‖(u, p)‖V×Q ≤ ‖L(u, p)‖V ′×Q′ ≤ L‖(u, p)‖V×Q,
is equivalent to: there are constants µV , LV , µQ, LQ > 0 s.t.

µV ‖u‖2V ≤ 〈(A+B′I−1Q B)u, u〉 ≤ LV ‖u‖2V ,(23)

µQ‖p‖2Q ≤ 〈(C +BI−1V B′)p, p〉 ≤ LQ‖p‖2Q,(24)

where I−1V and I−1Q is the Riesz representation of the inner product of V and Q respec-
tively.

Proof. Necessary condition is easy. Namely going from (22) to (23)-(24) can simply set
p = 0 or u = 0. We now prove they are also sufficient, i.e., from (23)-(24) to (22).

The upper bound ‖L(u, p)‖V ′×Q′ ≤ L‖(u, p)‖V×Q is from the triangle inequality. The
difficulty is the coercivity µ‖(u, p)‖V×Q ≤ ‖L(u, p)‖V ′×Q′ . The approach we are going
to use is based on Proposition 2.5.

First of all, we have the upper bound A ≤ LV IV from (23). By rescaling IV , we can
assume A ≤ IV . Consider the block transformation(

I O
2BI−1V I

)(
A B′

−B C

)
=

(
A B′

−B + 2BI−1V A 2BI−1V B′ + C

)
=: L̃.

As (L̃x, x) = (symL̃x, x), we calculate the symmetric part and split the matrix of opera-
tors as

symL̃ =

(
AI−1V A BI−1V A
BI−1V A BI−1V B′

)
+

(
A−AI−1V A O

O BI−1V B′ + C.

)
The first matrix is SPD as it corresponds to the quadratic form ‖I−1V Au+I−1V B′p‖2IV . As
A ≤ IV , A−AI−1V A ≥ 0. And (24)implies BI−1V B′ + C ≥ µQIQ.

Given x = (u, p), we choose y1 = T ′V x, where TV =

(
I O

2BI−1V I

)
. Then

(Lx, y1) = (TV Lx, x) = (L̃x, x) = (symL̃x, x) ≥ µQ‖p‖2IQ .
And by the triangle inequality and (24),

‖y1‖V×Q ≤ ‖u‖V + (2LQ + 1)‖p‖Q.

By the symbolical change, we can choose y2 = T ′Qx, where TQ =

(
I 2B′I−1Q
O I

)
to

obtain
(Lx, y2) ≥ µV ‖u‖2IV , ‖y2‖V×Q ≤ (2LV + 1)‖u‖V + ‖p‖IQ .

Now set y = y1 + y2. We get

(Lx, y) ≥ µV ‖u‖2IV + µQ‖p‖2IQ , ‖y‖V×Q . ‖x‖V×Q.
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Then

‖Lx‖V ′×Q′ = sup
y

(Lx, y)

‖y‖V×Q
& ‖x‖V×Q.

�

4. EXERCISE

1. Consider the case A is symmetric and positive definite (SPD). Define S = BA−1B′

which is the Schur complement of A.
(a) Prove that if B is surjective, S is also SPD and λmin(S) = β2 where

β = inf
q∈P

sup
v∈V

b(v, q)

‖v‖A‖q‖
.

(b) Estimate the eigenvalue of L := (A,B′;B,O) in the inner product defined by
A = (A, I) of V × P . That is consider generalized eigenvalue problem for the
saddle point system

Ax+B′y = λAx,(25)
Bx = λy.(26)

and give bound for λ in term of the constant β in the inf-sup condition.
(c) The stability can be given by the spectral radius of L as L is symmetric. Prove that

the solution (u, p) to the saddle point system L(u, p) = (f, g) satisfies

(27) ‖(u, p)‖A ≤
2√

1 + 4β2 − 1
‖(f, g)‖A−1 .
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