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1. INF-SUP CONDITIONS

In this section, we shall study the well posedness of the weak formulation of the steady-
state Stokes equations
(1) —pAu+Vp = f,

2) —divu = 0,

where u can be interpreted as the velocity field of an incompressible fluid motion, and
p is then the associated pressure, the constant y is the viscosity coefficient of the fluid.
For simplicity, we consider homogenous Dirichlet boundary condition for the velocity, i.e.
u|go = 0 and p = 1. The conditions for the well posedness is known as inf-sup condition
or Ladyzhenskaya-Babuska-Breezi (LBB) condition.

Multiplying test function v € H{(Q) to the momentum equation (1) and ¢ € L?(Q)
to the mass equation (2), and applying integration by part for the momentum equation, we
obtain the weak formulation of the Stokes equations: Find u € H (1)(9) and a pressure
p € L*(Q) such that

(Vu, Vo) — (p,dive) = (f,v), forall v € H ()
—(divu,q) =0 for all ¢ € L?(Q).
1.1. Variational problem in the mixed form. We shall consider an abstract mixed vari-
ational problem first. Let V and PP be two Hilbert spaces. For given (f,g) € V' x P/, find
(u,p) € V x P such that:
a(u,v) + b(v,p) = (f,v), forallv € V,
b(u,q) = (9,4), forall g € P.
Let us introduce linear operators

A: V=V as (Au,v) = alu,v)
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and
B:V—P B :P—V, as(Bv,q) = (v,B'q) = b(v,q).
Written in the operator form, the problem becomes

3) Au+Bp =
“4) Bu =y,
or

!
® (5 5)()-(2)
We shall study the well posedness of this abstract mixed problem.
1.2. Babuska theory I. Let
a(-,):UxV—=R
be a bilinear form on two Hilbert spaces U and V. It will introduce two linear operators
A: U=V, and A : V=T
by (Au,v) = (u, A'v) = a(u,v).
We consider the operator equation: Given a f € V’, find u € U such that
(6) Au = f, inV’,
or equivalently
a(u,v) = (f,v) forallv e V.

To begin with, we have to assume A is continuous. We skip the subscript of the norm
for different spaces. It should be clear from the context.

(C) The bilinear form a(-, -) is continuous in the sense that

a(u,v) < Cllufl|lv]|, foralluecU,veV.

The minimal constant satisfies the above inequality will be denoted by ||a||. With this
condition, it is easy to check that A and A’ are bounded operators and || A|| = ||A’|| = ||a]|-
The following conditions discuss when A~! is well defined and the norm of ||A~1||.

Existence of a solution to (6) <= Aisonto <= A’isinto <=

a(u,v)

(E) inf sup ——— = ag > 0.
veV yey [lulll|v]l

Uniqueness of the solution to (6) <= Aisinto <= A’isonto <=

) a(u,v)
©) 223 o] =0 >
The equivalence: A is onto <= A’ is into, can be easily verified using the definition
of the dual operator. The difficulty is to characterize the into by the inf-sup condition.

Let us introduce the notation

e N(A) =ker(A) = {u € U: Au = 0} which forms a linear subspace of U.

e Forasubset Z C U, Z° :={f e U, (f,u) =0,forallu € Z}.

e Forasubset Z C U, Z+ := {v € U, (v,u) = 0,forall u € Z}.

Roughly speaking, both Z° and Z= are “orthogonal” to Z. But they are in different spaces.

Exercise 1.1. For a linear and continuous operator B defined on a Hilbert space U, write
the projection operator P : U — ker(B) and P+ : U — ker(B)* in terms of B.
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Theorem 1.2. For a continuous bilinear form a(-,-), the problem (6) is well-posed if and
only if (E) and (U) hold. Furthermore if (E) and (U) hold, then

A7 = [1(A) Ml = ag' =ap' =a™,
and thus

1
[[ull < = f[lv-
(0%

Proof. We will prove the following conditions are equivalent.
1 (E)
2) |Av||ur > ag|lv||, forallve V.
(3) A" : Vi N(A)° is an isomorphism.
(4) A: N(A)t — V' is an isomorphism.
(1) <= (2). It can be proved by the definition of the dual norm
(u, A’'v) a(u,v)

|A'v|yr = sup =su :
wev  lull wew ull

(2) = (3). An obvious consequence of (2) is A’ is an injection. We now prove that (2)
also implies that the range R(A’) is closed and thus form a linear subspace of U’. Choosing
a convergent sequence { A’vy }, by (2), we know {v} is also a Cauchy sequence and thus
converges to some v € V. The continuity of A’ shows that A’vj, converges to A’v and thus
R(A") is closed.

We can then conclude that A’ : V — R(A’) is an isomorphism. Next we prove R(A’) =
N(A)°. For a subset Z C U, let us recall the definition Z° := {f € U, (f,u) =
0, for all w € Z}. Using the definition of A’

(u, A'v) = (Au,v),

we see that R(A") C N(A)°. If R(A") C N(A)°, i.e. there exists f € N(A)°\R(A’).
Since R(A’) is closed, by Hahn-Banch theorem and Risez representation theorem, there
exists u € U such that (u, A’v) = 0, forallv € V and (u, f) = 1. But (u, A'v) =
(Au,v) = 0, forallv € V implies that Au = 0, i.e. u € N(A) and thus (u, f) = 0 for
f € N(A)°. Contradiction.

(3) => (2). By the assumption, (A’)~! : N(A)° — V is a well defined and bounded
linear operator. Thus

loll = lI(A) = A" < CllAv ]y

(3) <= (4). Obviously (4) <= A’ :V > (N(A)') is an isomorphism. Thus
we only need to show the isomorphism (N(A)*+)" = N(A)°. Forany f € (N(A)*),
we define f such that (f,v) := (f, Pv) for all v € V, where P+ : U — N(A)* is

the projection. Then f € N(A)°. One can easily prove f — f defines an isometric
isomorphism.

The uniqueness is obtained by the dual argument. If both (E) and (U) hold, then

JA7 = 1A) | = ot = 0! = a7,
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Let us take the inf-sup condition (E) as an example to show how to verify it. To verify
(E), one way is

@) forallv € V, findu € U, s.t. a(u,v) > aful|||v].

We shall present a slightly different characterization of (E). With this characterization, the
verification is then transformed to a construction of a suitable function.

Theorem 1.3. The inf-sup condition (E) is equivalent to that for any v € V, there exists
u € U, such that

®) a(u,v) > Ci|lvl*,  and |u]| < Colfv].

Proof. Obviously (8) will imply (7) with « = Cy/C5. We now prove (E) implies (8).
Recall that (E) is equivalent to A : N(A)* + V' is an isomorphism. We identify V as V'
by the Riesz map J : V +— V' such that (Jv,v) = (v,v) = ||v||?. Then for a givenv € V,
we can find u € U such that Au = Jv and thus a(u,v) = (Au,v) = (Jv,v) = |jv|>
Since u € N(A)+, we also have A~ is bounded and thus |lu| = [|[A~'v|| < Cllv|. O

In (8) u could dependent on v in a subtle way. A special case is u = v when U = V. It
is known as the corcevity

alu,u) > afjul|?.
The corresponding result is known as Lax-Milgram Theorem.
Corollary 1.4 (Lax-Milgram). For a bilinear form a(-,-) on'V x V, if it satisfies

(1) Continuity: a(u,v) < C|lull||v
(2) Corcevity: a(u,u) > Calul?,

then for any f € V', there exists a unique u € V such that

a(ua U) = <f> U>7

s

and

[ull < C1/Cal| fllv-

The most simplest case is the bilinear form a(-, ) is symmetric and positive definite.
Then a(-, -) defines a new inner product. Lax-Milgram theorem is simply the Riesz repre-
sentation theorem.

1.3. Brezzi theory I. We consider the mixed problem

©) Au+Bp = f,

(10) Bu = g,

First we assume all bilinear forms are continuous.

(C) The bilinear form a(-, -), and b(+, -) are continuous
a(u,v) < Clullljv]|, forallu,v €V,
bv,q) < CJv|lgll, forallveV,geP.

We use the decomposition V = N(B) @ N(B)* to write u = ug + uy, ug € N(B)
and u; € N(B)*. Then (10) becomes Bu; = g. Since u; € N(B)', the existence
and uniqueness of u; is equivalent to B is onto or B’ is into, i.e. the following inf-sup
condition
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, b(v,q)
(B) inf sup =5>0
a€® vev [|v]l[l]|

After we get a unique w1, to determine a unique ug, we restrict the test function space
of (9) to N(B). Since (v,B’q) = (Bv,q) = 0 for v € N(B), we get the following
variational form: find ug € N(B) such that

(11) a(ug,v) = (f,v) —a(uy,v), forallv e N(B).

The existence and uniqueness of wg is then equivalent to the two inf-sup conditions for
a(u,v) on space Z = N(B).

(A)

a(wv) _ oo aww)
u€Zyez, |[ullllvl]  vezuez ||ull|v]|
After we determine a unique w in this way, we solve
(12) B'p=f— Au

to get p. Since uy is the solution to (11), the right hand side f — Au € N(B)°. Thus we
require B’ : V — N(B)° is an isomorphism which is also equivalent to the condition (B).

Theorem 1.5. The continuous variational problem (5) is well-posed if and only if (A) and
(B) hold. When (A) and (B) hold, we have the stability result

lullv + llplle < [1fllv + llglle-

The following characterization of the inf-sup condition for the operator B is useful. The
verification is again transfered to a construction of a suitable function. The proof is similar
to that in Theorem 1.3 and thus skipped here.

Theorem 1.6. The inf-sup condition (B) is equivalent to that: for any q € P, there exists
v €'V, such that

(13) b(v,q) > Cillqll*>,  and ||v]] < Callq]l.

Note that v = v(g) and the construction of v may not be straightforward for some
problems.

1.4. Application to Stokes equations. Let us return to the Stokes equations. The setting
for the Stokes equations:

e Spaces:
V= HY®), P= L) = {g € I*@), [ a=0}.
o Bilinear form:
a(u,v) = u/ Vu : Vo, b(v,q) = —/(divv) q.
e Operator: " )
A=—-A:H}Q) — H '(Q), (Au,v) = a(u,v) = u(Vu, Vo),

B = —div: H}(Q) — L3(Q), (Bv,q) = b(v,q) = —(divv, q),
B' =V :L3Q)— H'(Q), (v,Vq) = —(divo, q).
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Remark 1.7. A natural choice of the pressure space is L?(€2). Note that

/divvda:z/ v-ndS =0
Q o0

due to the boundary condition. Thus div operator will map H é(Q) into the subspace
L3(€). In L3(2) the pressure of the Stokes equations is unique. But in L?(12), it is unique
up to a constant.

Remark 1.8. By the same reason, for Stokes equations with non-homogenous Dirichlet
boundary condition u|gq = g, the data g should satisfy the compatible condition

/ g-ndS= divudx = 0.
o0 0

The continuity of a(-,-) is trivial. The continuity of b(-,-) can be proved using the
identity in the following exercise.

Exercise 1.9. Prove
—A = —grad div +curl curl

holds as an operator from H (1) — H~'. Namely for all w,v € H (1J
(Vu, Vo) = (div u,div v) + (curl u, curl v).
We need to verify two inf-sup conditions. (A) is easy by the Poincére inequality.

Lemma 1.10. Inf-sup conditions (A) is satisfied since the following inequality
/ Vu:Vu > C|uly, forallue H(Q).
Q

The key is the inf-sup condition (B) which is equivalent to either

o div : H}(Q) — LZ(9) is onto, or

e grad : L3(Q) — H'(Q) is into.
Exercise 1.11. Define the Sobolev space

Hy(div; Q) = {v € L*(Q),dive € L*(Q),v - n|sq = 0}.
Prove div : Ho(div; Q) — LZ(€) is onto, i.e., the inf-sup condition holds for a weaker
norm ||v|aiv = ([[v]|* + || divv|[*)!/2
b(va Q) 2

inf sup —— = 3> 0.
q€L3(Q) ve Ho(div;) [vllaiv /gl

The inf-sup condition holds for a weaker norm ||v||giv = (||v]|? + || div v||?)*/2. The
difficulty is to control the tangential trace. In view of Theorem 1.6, we shall construct a
suitable function to verify the inf-sup condition.

Lemma 1.12. For any q € L}(RQ), there exists a v € H}(Q) such that
dive =g, and |[v]1 < [lgllo-
Consequently the inf-sup condition (B) holds.

Proof. We first consider the case when 2 is smooth or convex. We can solve the Poisson
equation

Ay =g¢q in Q

oy

%:0 on 0.
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The equation is well posed since ¢ € L3(£2). If we set v = V1, then dive = Ay = ¢
and ||v]|1 = ||¥]l2 < |Ipl|o by the regularity result.

The remaining part is to verify the boundary condition. First v - = V1) - = 0 by the
construction. To take care of the tangential component v - ¢, we invoke the trace theorem
for H2(2) to conclude that: there exist ¢ € H?(f2) such that ¢|pp = 0and Vo-n =v -t
and ||¢]|2 < ||v||1. Let © = curl ¢. We have

diveo =0,
v-n=curl¢-n=grad¢ -t =0,
and v-t = —grady -n=—-v-t.
Then we set v, = v + v to obtain the desired result.
If the domain is not smooth, we can still construct such v; see [1, 4, 3]. U

Remark 1.13. Since
(divw, g) < [|divoll[ql| < [[Volllgll,

we have a upper bound on the inf-sup constant

(divw, q)
B =infsup — <
a€P pev || Vol|[|q]]
We shall also sketch the other approach to prove grad is into which can be derived from
the generalized Poincare inequality

(14) lgradpl|—1 > Blp|| forany p € LG(€).

The natural domain of the gradient operator is H'(Q),i.e. V : H1(Q) — L*(Q). We
can continuously extend the gradient operator from H'(Q2) to L?(Q2) and prove the range
grad (L?) is a closed subspace of H ~1. The most difficult part is the following norm
equivalence.

Theorem 1.14. Let X(Q) = {v|v € H~1(Q),gradv € (H~1(Q))"} endowed with the
norm ||v||% = ||[v||2; + |lgrad v||%,. Then for Lipschitz domains, X (Q) = L*(Q).

Proof. The proof for ||v]|x < |v|, consequently L?(Q2) C X (), is trivial (using the
definition of the dual norm). The non-trival part is to prove the inequality

ov
(15) ol < llvll?y + llgrad o||2, = [|v]1%,

The difficulty is associated to the non-computable dual norm. We only present a special
case {2 = R”™ and refer to [5, 2] for general cases.

We use the characterization of H ~! norm using Fourier transform. Let 4(¢) = .7 (u)
be the Fourier transform of «. Then

i = llallge = 111/(v/1 + [€)?)a

2 + Z 1€/ (/1 + €]?)al 3

R» = ||UHX

[[ul

O

Exercise 1.15. Use the fact L? is compactly embedded into H ! and the inequality (15)
to prove the Poincaré inequality (14).
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Exercise 1.16. For Stokes equations, we can solve u = A~1(f — B’p) and substitute into
the second equation to get the Schur complement equation

(16) BA™'B'p=BA7lf —g.
Define a bilinear form on P x P as

s(p,q) = (A™'B'p, B'q).
Prove the well-posedness of (16) by showing:
e the continuity of s(-,-) on L3 x LZ;
e the coercivity s(p, p) > c||p||* for any p € LZ.

e relate the constants in the continuity and coercivity of s(-, -) to the inf-sup condi-
tion of A and B.

In summary, we have established the well-posedness of Stokes equations.

Theorem 1.17. There exists a unique solution (u,p) € Hy(Q) x L3(Q) to the weak
Sformulation of the Stokes equations and

[l + oIl < N f 111
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