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1. INF-SUP CONDITIONS

In this section, we shall study the well posedness of the weak formulation of the steady-
state Stokes equations

−µ∆u +∇p = f ,(1)
−divu = 0,(2)

where u can be interpreted as the velocity field of an incompressible fluid motion, and
p is then the associated pressure, the constant µ is the viscosity coefficient of the fluid.
For simplicity, we consider homogenous Dirichlet boundary condition for the velocity, i.e.
u|∂Ω = 0 and µ = 1. The conditions for the well posedness is known as inf-sup condition
or Ladyzhenskaya-Babuška-Breezi (LBB) condition.

Multiplying test function v ∈ H1
0(Ω) to the momentum equation (1) and q ∈ L2(Ω)

to the mass equation (2), and applying integration by part for the momentum equation, we
obtain the weak formulation of the Stokes equations: Find u ∈ H1

0(Ω) and a pressure
p ∈ L2(Ω) such that

(∇u,∇v)− (p,div v) = (f ,v), for all v ∈H1
0(Ω)

−(divu, q) = 0 for all q ∈ L2(Ω).

1.1. Variational problem in the mixed form. We shall consider an abstract mixed vari-
ational problem first. Let V and P be two Hilbert spaces. For given (f, g) ∈ V′ × P′, find
(u, p) ∈ V× P such that:

a(u, v) + b(v, p) = 〈f, v〉, for all v ∈ V,
b(u, q) = 〈g, q〉, for all q ∈ P.

Let us introduce linear operators

A : V 7→ V′, as 〈Au, v〉 = a(u, v)

Date: February 22, 2014.
1



2 LONG CHEN

and
B : V 7→ P′, B′ : P 7→ V′, as 〈Bv, q〉 = 〈v,B′q〉 = b(v, q).

Written in the operator form, the problem becomes

Au+B′p = f,(3)
B u = g,(4)

or

(5)
(
A B′

B 0

)(
u
p

)
=

(
f
g

)
.

We shall study the well posedness of this abstract mixed problem.

1.2. Babuška theory I. Let
a(·, ·) : U× V 7→ R

be a bilinear form on two Hilbert spaces U and V. It will introduce two linear operators

A : U 7→ V′, and A′ : V 7→ U′

by 〈Au, v〉 = 〈u,A′v〉 = a(u, v).

We consider the operator equation: Given a f ∈ V′, find u ∈ U such that

(6) Au = f, in V′,
or equivalently

a(u, v) = 〈f, v〉 for all v ∈ V.
To begin with, we have to assume A is continuous. We skip the subscript of the norm

for different spaces. It should be clear from the context.

(C) The bilinear form a(·, ·) is continuous in the sense that

a(u, v) ≤ C‖u‖‖v‖, for all u ∈ U, v ∈ V.

The minimal constant satisfies the above inequality will be denoted by ‖a‖. With this
condition, it is easy to check thatA andA′ are bounded operators and ‖A‖ = ‖A′‖ = ‖a‖.
The following conditions discuss when A−1 is well defined and the norm of ‖A−1‖.

Existence of a solution to (6) ⇐⇒ A is onto ⇐⇒ A′ is into ⇐⇒

(E) inf
v∈V

sup
u∈U

a(u, v)

‖u‖‖v‖
= αE > 0.

Uniqueness of the solution to (6) ⇐⇒ A is into ⇐⇒ A′ is onto ⇐⇒

(U) inf
u∈U

sup
v∈V

a(u, v)

‖u‖‖v‖
= αU > 0.

The equivalence: A is onto ⇐⇒ A′ is into, can be easily verified using the definition
of the dual operator. The difficulty is to characterize the into by the inf-sup condition.

Let us introduce the notation
• N(A) = ker(A) = {u ∈ U : Au = 0} which forms a linear subspace of U.
• For a subset Z ⊆ U, Z◦ := {f ∈ U′, 〈f, u〉 = 0, for all u ∈ Z}.
• For a subset Z ⊆ U, Z⊥ := {v ∈ U, (v, u) = 0, for all u ∈ Z}.

Roughly speaking, both Z◦ and Z⊥ are “orthogonal” to Z. But they are in different spaces.

Exercise 1.1. For a linear and continuous operator B defined on a Hilbert space U, write
the projection operator P : U→ ker(B) and P⊥ : U→ ker(B)⊥ in terms of B.
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Theorem 1.2. For a continuous bilinear form a(·, ·), the problem (6) is well-posed if and
only if (E) and (U) hold. Furthermore if (E) and (U) hold, then

‖A−1‖ = ‖(A′)−1‖ = α−1
U = α−1

E = α−1,

and thus

‖u‖ ≤ 1

α
‖f‖V′ .

Proof. We will prove the following conditions are equivalent.

(1) (E)

(2) ‖A′v‖U′ ≥ αE‖v‖, for all v ∈ V.
(3) A′ : V 7→ N(A)◦ is an isomorphism.

(4) A : N(A)⊥ 7→ V′ is an isomorphism.

(1) ⇐⇒ (2). It can be proved by the definition of the dual norm

‖A′v‖U ′ = sup
u∈U

〈u,A′v〉
‖u‖

= sup
u∈U

a(u, v)

‖u‖
.

(2) =⇒ (3). An obvious consequence of (2) is A′ is an injection. We now prove that (2)
also implies that the rangeR(A′) is closed and thus form a linear subspace of U′. Choosing
a convergent sequence {A′vk}, by (2), we know {vk} is also a Cauchy sequence and thus
converges to some v ∈ V. The continuity of A′ shows that A′vk converges to A′v and thus
R(A′) is closed.

We can then conclude thatA′ : V 7→ R(A′) is an isomorphism. Next we proveR(A′) =
N(A)◦. For a subset Z ⊆ U, let us recall the definition Z◦ := {f ∈ U′, 〈f, u〉 =
0, for all u ∈ Z}. Using the definition of A′

〈u,A′v〉 = 〈Au, v〉,

we see that R(A′) ⊆ N(A)◦. If R(A′) ⊂ N(A)◦, i.e. there exists f ∈ N(A)◦\R(A′).
Since R(A′) is closed, by Hahn-Banch theorem and Risez representation theorem, there
exists u ∈ U such that 〈u,A′v〉 = 0, for all v ∈ V and 〈u, f〉 = 1. But 〈u,A′v〉 =
〈Au, v〉 = 0, for all v ∈ V implies that Au = 0, i.e. u ∈ N(A) and thus 〈u, f〉 = 0 for
f ∈ N(A)◦. Contradiction.

(3) =⇒ (2). By the assumption, (A′)−1 : N(A)◦ 7→ V is a well defined and bounded
linear operator. Thus

‖v‖ = ‖(A′)−1A′v‖ ≤ C‖A′v‖U ′ .

(3) ⇐⇒ (4). Obviously (4) ⇐⇒ A′ : V 7→ (N(A)⊥)′ is an isomorphism. Thus
we only need to show the isomorphism (N(A)⊥)′ ∼= N(A)◦. For any f ∈ (N(A)⊥)′,
we define f̄ such that 〈f̄ , v〉 := 〈f, P⊥v〉 for all v ∈ V, where P⊥ : U → N(A)⊥ is
the projection. Then f̄ ∈ N(A)◦. One can easily prove f → f̄ defines an isometric
isomorphism.

The uniqueness is obtained by the dual argument. If both (E) and (U) hold, then

‖A−1‖ = ‖(A′)−1‖ = α−1
U = α−1

E = α−1.
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Let us take the inf-sup condition (E) as an example to show how to verify it. To verify
(E), one way is

(7) for all v ∈ V, find u ∈ U, s.t. a(u, v) ≥ α‖u‖‖v‖.

We shall present a slightly different characterization of (E). With this characterization, the
verification is then transformed to a construction of a suitable function.

Theorem 1.3. The inf-sup condition (E) is equivalent to that for any v ∈ V, there exists
u ∈ U, such that

(8) a(u, v) ≥ C1‖v‖2, and ‖u‖ ≤ C2‖v‖.

Proof. Obviously (8) will imply (7) with α = C1/C2. We now prove (E) implies (8).
Recall that (E) is equivalent to A : N(A)⊥ 7→ V′ is an isomorphism. We identify V as V′
by the Riesz map J : V 7→ V′ such that 〈Jv, v〉 = (v, v) = ‖v‖2. Then for a given v ∈ V,
we can find u ∈ U such that Au = Jv and thus a(u, v) = 〈Au, v〉 = 〈Jv, v〉 = ‖v‖2.
Since u ∈ N(A)⊥, we also have A−1 is bounded and thus ‖u‖ = ‖A−1v‖ ≤ C‖v‖. �

In (8) u could dependent on v in a subtle way. A special case is u = v when U = V. It
is known as the corcevity

a(u, u) ≥ α‖u‖2.
The corresponding result is known as Lax-Milgram Theorem.

Corollary 1.4 (Lax-Milgram). For a bilinear form a(·, ·) on V× V, if it satisfies
(1) Continuity: a(u, v) ≤ C1‖u‖‖v‖;
(2) Corcevity: a(u, u) ≥ C2‖u‖2,

then for any f ∈ V′, there exists a unique u ∈ V such that

a(u, v) = 〈f, v〉,

and
‖u‖ ≤ C1/C2‖f‖V′ .

The most simplest case is the bilinear form a(·, ·) is symmetric and positive definite.
Then a(·, ·) defines a new inner product. Lax-Milgram theorem is simply the Riesz repre-
sentation theorem.

1.3. Brezzi theory I. We consider the mixed problem

Au+B′p = f,(9)
B u = g,(10)

First we assume all bilinear forms are continuous.

(C) The bilinear form a(·, ·), and b(·, ·) are continuous

a(u, v) ≤ C‖u‖‖v‖, for all u, v ∈ V,
b(v, q) ≤ C‖v‖‖q‖, for all v ∈ V, q ∈ P.

We use the decomposition V = N(B) ⊕ N(B)⊥ to write u = u0 + u1, u0 ∈ N(B)
and u1 ∈ N(B)⊥. Then (10) becomes Bu1 = g. Since u1 ∈ N(B)⊥, the existence
and uniqueness of u1 is equivalent to B is onto or B′ is into, i.e. the following inf-sup
condition
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(B) inf
q∈P

sup
v∈V

b(v, q)

‖v‖‖q‖
= β > 0

After we get a unique u1, to determine a unique u0, we restrict the test function space
of (9) to N(B). Since 〈v,B′q〉 = 〈Bv, q〉 = 0 for v ∈ N(B), we get the following
variational form: find u0 ∈ N(B) such that

(11) a(u0, v) = 〈f, v〉 − a(u1, v), for all v ∈ N(B).

The existence and uniqueness of u0 is then equivalent to the two inf-sup conditions for
a(u, v) on space Z = N(B).

(A)

inf
u∈Z

sup
v∈Z

a(u, v)

‖u‖‖v‖
= inf

v∈Z
sup
u∈Z

a(u, v)

‖u‖‖v‖
= α > 0.

After we determine a unique u in this way, we solve

(12) B′p = f −Au

to get p. Since u0 is the solution to (11), the right hand side f − Au ∈ N(B)◦. Thus we
require B′ : V 7→ N(B)◦ is an isomorphism which is also equivalent to the condition (B).

Theorem 1.5. The continuous variational problem (5) is well-posed if and only if (A) and
(B) hold. When (A) and (B) hold, we have the stability result

‖u‖V + ‖p‖P . ‖f‖V′ + ‖g‖P′ .

The following characterization of the inf-sup condition for the operator B is useful. The
verification is again transfered to a construction of a suitable function. The proof is similar
to that in Theorem 1.3 and thus skipped here.

Theorem 1.6. The inf-sup condition (B) is equivalent to that: for any q ∈ P, there exists
v ∈ V, such that

(13) b(v, q) ≥ C1‖q‖2, and ‖v‖ ≤ C2‖q‖.

Note that v = v(q) and the construction of v may not be straightforward for some
problems.

1.4. Application to Stokes equations. Let us return to the Stokes equations. The setting
for the Stokes equations:

• Spaces:

V = H1
0(Ω), P = L2

0(Ω) = {q ∈ L2(Ω),

∫
Ω

q = 0.}.

• Bilinear form:

a(u,v) = µ

∫
Ω

∇u : ∇v, b(v, q) = −
∫

Ω

(divv) q.

• Operator:

A = −∆ : H1
0(Ω) 7→H−1(Ω), 〈Au, v〉 = a(u, v) = µ(∇u,∇v),

B = −div : H1
0(Ω) 7→ L2

0(Ω), 〈Bv, q〉 = b(v, q) = −(divv, q),

B′ = ∇ : L2
0(Ω) 7→H−1(Ω), 〈v,∇q〉 = −(divv, q).
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Remark 1.7. A natural choice of the pressure space is L2(Ω). Note that∫
Ω

div v dx =

∫
∂Ω

v · n dS = 0

due to the boundary condition. Thus div operator will map H1
0(Ω) into the subspace

L2
0(Ω). In L2

0(Ω) the pressure of the Stokes equations is unique. But in L2(Ω), it is unique
up to a constant.

Remark 1.8. By the same reason, for Stokes equations with non-homogenous Dirichlet
boundary condition u|∂Ω = g, the data g should satisfy the compatible condition∫

∂Ω

g · n dS =

∫
∂Ω

divu dx = 0.

The continuity of a(·, ·) is trivial. The continuity of b(·, ·) can be proved using the
identity in the following exercise.

Exercise 1.9. Prove
−∆ = −grad div +curl curl

holds as an operator from H1
0 →H−1. Namely for all u,v ∈H1

0

(∇u,∇v) = (divu,div v) + (curlu, curlv).

We need to verify two inf-sup conditions. (A) is easy by the Poincáre inequality.

Lemma 1.10. Inf-sup conditions (A) is satisfied since the following inequality∫
Ω

∇u : ∇u ≥ C‖u‖1, for all u ∈H1
0(Ω).

The key is the inf-sup condition (B) which is equivalent to either
• div : H1

0(Ω)→ L2
0(Ω) is onto, or

• grad : L2
0(Ω)→H−1(Ω) is into.

Exercise 1.11. Define the Sobolev space

H0(div; Ω) = {v ∈ L2(Ω),div v ∈ L2(Ω),v · n|∂Ω = 0}.
Prove div : H0(div; Ω) → L2

0(Ω) is onto, i.e., the inf-sup condition holds for a weaker
norm ‖v‖div = (‖v‖2 + ‖div v‖2)1/2

inf
q∈L2

0(Ω)
sup

v∈H0(div;Ω)

b(v, q)

‖v‖div‖q‖
= β̃ > 0.

The inf-sup condition holds for a weaker norm ‖v‖div = (‖v‖2 + ‖ div v‖2)1/2. The
difficulty is to control the tangential trace. In view of Theorem 1.6, we shall construct a
suitable function to verify the inf-sup condition.

Lemma 1.12. For any q ∈ L2
0(Ω), there exists a v ∈H1

0(Ω) such that

div v = q, and ‖v‖1 . ‖q‖0.
Consequently the inf-sup condition (B) holds.

Proof. We first consider the case when Ω is smooth or convex. We can solve the Poisson
equation

∆ψ = q in Ω

∂ψ

∂n
= 0 on ∂Ω.
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The equation is well posed since q ∈ L2
0(Ω). If we set v = ∇ψ, then div v = ∆ψ = q

and ‖v‖1 = ‖ψ‖2 . ‖p‖0 by the regularity result.
The remaining part is to verify the boundary condition. First v ·n = ∇ψ ·n = 0 by the

construction. To take care of the tangential component v · t, we invoke the trace theorem
for H2(Ω) to conclude that: there exist φ ∈ H2(Ω) such that φ|∂Ω = 0 and∇φ ·n = v · t
and ‖φ‖2 . ‖v‖1. Let ṽ = curlφ. We have

div ṽ = 0,

ṽ · n = curlφ · n = gradφ · t = 0,

and ṽ · t = −gradψ · n = −v · t.

Then we set vq = v + ṽ to obtain the desired result.
If the domain is not smooth, we can still construct such ψ; see [1, 4, 3]. �

Remark 1.13. Since

(div v, q) ≤ ‖div v‖‖q‖ ≤ ‖∇v‖‖q‖,

we have a upper bound on the inf-sup constant

β = inf
q∈P

sup
v∈V

(divv, q)

‖∇v‖‖q‖
≤ 1.

We shall also sketch the other approach to prove grad is into which can be derived from
the generalized Poincare inequality

(14) ‖grad p‖−1 ≥ β‖p‖ for any p ∈ L2
0(Ω).

The natural domain of the gradient operator is H1(Ω), i.e. ∇ : H1(Ω) → L2(Ω). We
can continuously extend the gradient operator from H1(Ω) to L2(Ω) and prove the range
grad (L2) is a closed subspace of H−1. The most difficult part is the following norm
equivalence.

Theorem 1.14. Let X(Ω) = {v | v ∈ H−1(Ω), grad v ∈ (H−1(Ω))n} endowed with the
norm ‖v‖2X = ‖v‖2−1 + ‖grad v‖2−1. Then for Lipschitz domains, X(Ω) = L2(Ω).

Proof. The proof for ‖v‖X . ‖v‖, consequently L2(Ω) ⊆ X(Ω), is trivial (using the
definition of the dual norm). The non-trival part is to prove the inequality

(15) ‖v‖2 . ‖v‖2−1 + ‖grad v‖2−1 = ‖v‖2−1 +

d∑
i=1

‖ ∂v
∂xi
‖2−1.

The difficulty is associated to the non-computable dual norm. We only present a special
case Ω = Rn and refer to [5, 2] for general cases.

We use the characterization of H−1 norm using Fourier transform. Let û(ξ) = F (u)
be the Fourier transform of u. Then

‖u‖2Rn = ‖û‖2Rd = ‖1/(
√

1 + |ξ|2)û‖2Rn +

d∑
i=1

‖ξi/(
√

1 + |ξ|2)û‖2Rn = ‖u‖2X .

�

Exercise 1.15. Use the fact L2 is compactly embedded into H−1 and the inequality (15)
to prove the Poincaré inequality (14).
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Exercise 1.16. For Stokes equations, we can solve u = A−1(f −B′p) and substitute into
the second equation to get the Schur complement equation

(16) BA−1B′p = BA−1f − g.
Define a bilinear form on P× P as

s(p, q) = 〈A−1B′p,B′q〉.
Prove the well-posedness of (16) by showing:

• the continuity of s(·, ·) on L2
0 × L2

0;
• the coercivity s(p, p) ≥ c‖p‖2 for any p ∈ L2

0.
• relate the constants in the continuity and coercivity of s(·, ·) to the inf-sup condi-

tion of A and B.

In summary, we have established the well-posedness of Stokes equations.

Theorem 1.17. There exists a unique solution (u, p) ∈ H1
0(Ω) × L2

0(Ω) to the weak
formulation of the Stokes equations and

‖u‖1 + ‖p‖ . ‖f‖−1.
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