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ABSTRACT. We give a brief introduction of Maxwell’s equations on electromagnetism.

1. MAXWELL’S EQUATIONS

Electromagnetism, as its name implies, is the branch of science of electricity and mag-
netism. Electromagnetism is described by the electric field intensity E and magnetic field
intensity H which are determined by the Maxwell’s equations.

We begin with the Gauss’s law for electric flux density D and magnetic flux density
B. It is called a law since it is accepted to be true universally. In a broader sense, the
flux is defined as the amount of ‘flow’ of a field throughout a certain amount of area. In
the integral form, the Gauss’s law for the electric flux density is, for any closed volume
V ⊂ R3,

(1)
∫
∂V

D · n dS =

∫
V

ρ(r) dV,

where ρ is the charge density. Namely the change of boundary flux is equal to the contri-
bution of charge enclosed in this volume. The differential form

(2) divD = ρ.

is obtained by using Gauss theorem.
For magnetic flux B, since there is no monopole of magnet, i.e., no matter how small

the volume is, it always enclose both south and north pole of a magnet. Therefore the
Gauss’s law is simply

(3)
∫
∂V

B · n dS = 0.

or in the differential form:

(4) divB = 0.

The flux (D,B) and the field (E,H) are related by the constitutive equations

D = εE,(5)
B = µH,(6)

where ε is the permittivity and µ is the permeability. The permittivity ε is the measure of the
resistance that is encountered when forming an electric field in a medium. The permeability
is the degree of magnetization of a material in response to a magnetic field. These two are in
general second order tensor functions. For vacuum (free space), µ0 = 4π10−7V ·s/(A·m)
and ε0 = 1/(c20µ0) = 8.85 . . .× 10−12F/m, where c0 is the speed of light.
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FIGURE 1. Gauss’s laws of electric flux and magnetic flux.

The flux (D,B) can be thought as auxiliary fields and can be eliminated by the consti-
tutive equations. In the terminology of differential forms, (E,H) are 1-forms associated
to edges and (D,B) are 2-forms to surfaces. In terms of (E,H), the Gauss’s law becomes

div(εE) = ρ,(7)

div(µH) = 0.(8)

The Gauss’s law can be also thought as a constraint of the field (E,H). The ‘real’
equations are the interplay of electric and magnetic fields/flux. There are based on the
following two facts:

• Changing magnetic field will generate current and consequently electric field.
• Changing electric field will generate magnetic field.

Faraday found that the changing magnetic field will generate electricity in 1831. The fa-
mous experiment of Faraday is that a current is detected for a wire moving in the magnetic
field, which leads to the invention of all kinds of electric generators. See Fig. 2.

In the differential form the Faraday’s law is:

(9) ∇×E = −∂B
∂t

,

and its integral form

(10)
∫
∂Σ

E · tdl = −
∫

Σ

∂B

∂t
· n dS,

where Σ is a surface bounded by the closed contour ∂Σ. So B is also called magnetic
induction. In (10), the orientation of Σ and ∂Σ is chosen according to the right hand rule.
When the flux is changing, a voltage is induced in the wire loop in an attempt by the system
to ‘fight’ the change. Therefore a negative sign is in the equation.

To complete the system, we need one more equation which describes the change of
electricity will generate magnetism. In 1820, Oersted found a compass was deflected when
put on the top of a wire with current and the the needle was perpendicular to the wire; see
Fig. 3. That means there exists a magnetic field surrounding an electric wire. This is the
first time people found that the electricity can generate magnetism.

If two such wires next to each other, then both of them will generate magnetic field and
therefore exert force between them. Just a few months after Oersted’s experiment, Ampère
gave the mathematical description of the force between two electric wires and obtain the
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FIGURE 2. One of Faraday’s 1831 experiments demonstrating induc-
tion. The liquid battery (right) sends an electric current through the small
coil (A). When it is moved in or out of the large coil ( B), its magnetic
field induces a momentary voltage in the coil, which is detected by the
galvanometer (G). The picture and caption is copied from Wiki.

FIGURE 3. Oersted’s experiment (1820) that when an electric current is
passed through a conducting wire, a magnetic field is produced around
it. The presence of magnetic field at a point around a current carrying
wire can be detected with the help of a compass needle. The picture and
caption is copied from Wiki.

Ampère’s law to characterize the generated magnetic field H

∇×H = J ,

and its integral form

(11)
∫
∂Σ

H · tdl =

∫
Σ

J · n dS,

where J is the current density and again Σ is a surface bounded by the closed contour ∂Σ.
Maxwell found a flaw in the Ampère’s law. In (11), Σ can be an arbitrary surface.

Let us consider a circuit with a capacitor which consists of two conducting plates with
distance d. While the capacitor is charging, positive charge accumulated on one plate and
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(a)
∑
B//∆l = µ0I (b) Force between two wires with currents

FIGURE 4. Ampère’s circuital law (1823) relates the integrated mag-
netic field around a closed loop to the electric current passing through
the loop.

negative accumulated on the other. But there is no conducting current inside the capacitor.
The magnetic field between the plates should be the same as that outside the plates. But
if choosing Σ inside the capacitor in (11), will indicate that there was no magnetic field.
Choosing the Σ containing the the wires connected the capacitor will imply there is a
magnetic field.

FIGURE 5. An electrically charging capacitor with an imaginary cylin-
drical surface surrounding the left-hand plate. Right-hand surface R lies
in the space between the plates and left-hand surface L lies to the left
of the left plate. No conduction current enters cylinder surface R, while
current I leaves through surface L. Consistency of Ampère’s law re-
quires a displacement current ID = I to flow across surface R. The
picture and caption is copied from Wiki.

To fix the gap, Maxwell introduced the concept ‘displacement current’, which is not a
real current but the change of electric field. The displacement current extends the notion of
current beyond a mere transport of charge and is of form Jd = ∂tD. So D is also called
the electric displacement. The form ∂tD is motivated by the symmetry of Faraday’s law
(9): compare ∇ × E = −∂tB and ∇ ×H = ∂tD. The sign difference can be easily
figured out by the physical meaning.

Adding it into Ampère’s law, we obtain the Maxwell-Ampère’s equation∫
∂Σ

H · tdl =

∫
Σ

(
J +

∂D

∂t

)
· ndS,
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and its differential form

∇×H = J +
∂D

∂t
.

Now we summarize the four Maxwell’s equations in terms of (E,H)

∇×E = −∂(µH)

∂t
, (Faraday law)

∇×H = J +
∂(εE)

∂t
, (Ampère-Maxwell’s law)

∇ · (εE) = ρ, (Gauss’s law for electricity)

∇ · (µH) = 0, (Gauss’s law for magnetism).

It is remarkable that using only these four equations it is possible to explain all known
electromagnetic phenomena.

The volume charge density ρ and the electric current density J in the Maxwell’s equa-
tions are refer to external charges. They are related. Let us take a tube with ∆S cut surface
and the charge flow with velocity v inside the tube. Then the flux is J = ∆Q/(∆S∆t) =
∆I/∆S by definition. On the other hand, the total charge ∆Q = ρ∆V = ρ∆Sv∆t.
Therefore J = ρv, which leads to another important law of electricity: Ohm’s law

(12) J = σE,

where σ is called the conductivity:

• σ > 0: conductor;
• σ = 0: dielectric;
• σ =∞: perfect conductor.

When the electric field E is uniform and oriented along the length of the conductor, we
can compute the voltage by V = EL. The current density J = I/∆S. Substituting into
(12), we obtain the most familiar form of Ohm’s law

I =
V

R
, with R =

L

σ∆S
.

If the conductor is moving at velocity v in a magnetic field, an extra term must be added
to account for the current induced by the Lorentz force

J = σ(E + v ×B).

The Ohm’s law is less fundamental than Maxwell’s equations and will break down when
the electric field is too strong. The Ampère-Maxwell’s law becomes

(13) ∇×H = σE +
∂(εE)

∂t
+ Ja.

The source Ja is for another type of current density independent of E.
From the Maxwell’s equations, we can also derive the conservation of charges. Take

divergence of Ampère-Maxwell’s equation and substitute the Gauss’s law for electricity.
We get the charge conservation law

∂tρ+∇ · J = 0.
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Bibliography remark. Here is a list of important work by Maxwell.
• 1855. On Faraday’s Lines of Force.
• 1862. On Physical Lines of Force.
• 1865. A Dynamical Theory of the Electromagnetic Field.
• 1873. Treatise on Electricity and Magnetism.

The book A Dynamical Theory of the Electromagnetic Field is a great book comparable
to Newton’s Philosophy of Nature and Darwin’s Origin of Species. The original equations
formulated by Maxwell contains 20 equations for 20 variables. The current form is simpli-
fied by Heaviside using vectors notation. It can be further simplified in terms of differential
forms:

dF = 0, ?d ? F = J .

A comprehensive but yet concise introduction of Maxwell’s equations can be found at
the website www.maxwells-equations.com.

2. VARIANT FORMULATIONS OF MAXWELL’S EQUATIONS

When further properties are assumed, e.g. time periodic, we obtain different formula-
tions of Maxwell’s equations.

2.1. Wave Equations. For wave propagation problems, ρ and J are localized, e.g., re-
stricted inside the cellular tower. The generated electric and magnetic fields will then
radiated away from the source. The self-perpetuating waves of oscillating electric and
magnetic fields and each field will drive the other. Mathematically in source-free space,
Maxwell’s equations are simplified to

∇×E = −∂tB, ε0∇ · E = 0, ∇×B = µ0ε0∂tE, ∇ ·B = 0.

We can eliminate E in the following way

∂ttB = −∇× ∂tE = − 1

µ0ε0
∇×∇×B =

1

µ0ε0
∆B.

In the last step, we use the identity for vector Laplacian

∆ = ∇∇ · −∇×∇×,
and the constrain∇ ·B = 0. We could obtain the same equation for E.

Let c0 = 1/
√
µ0ε0. Then both E and B will satisfy the wave equation

∂ttu− c20∆u = 0.

The speed c0 happens to be the speed of light. From the derivation the displacement cur-
rent in Maxwell-Ampère’s equation is essential in predicting the existence of propagating
electromagnetic waves.

‘The agreement of the results seems to show that light and magnetism are affections of
the same substance, and that light is an electromagnetic disturbance propagated through
the field according to the electromagnetic laws.’ – Maxwell 1865.

2.2. Plane Wave Solutions. We begin with a simple cosine function in 1-D to explain
terminology of waves. Consider the function

A(x, t) = A0 cos(kx− ωt+ ϕ)

where x and t are space and time variables and others are:
• A0 is the amplitude of the wave.

http://www.maxwells-equations.com
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1
Maxwell’s Equations

1.1 Maxwell’s Equations

Maxwell’s equations describe all (classical) electromagnetic phenomena:

∇∇∇× E = −∂B
∂t

∇∇∇×H = J+ ∂D
∂t

∇∇∇ ·D = ρ

∇∇∇ · B = 0

(Maxwell’s equations) (1.1.1)

The first is Faraday’s law of induction, the second is Ampère’s law as amended by
Maxwell to include the displacement current ∂D/∂t, the third and fourth are Gauss’ laws
for the electric and magnetic fields.

The displacement current term ∂D/∂t in Ampère’s law is essential in predicting the
existence of propagating electromagnetic waves. Its role in establishing charge conser-
vation is discussed in Sec. 1.7.

Eqs. (1.1.1) are in SI units. The quantities E and H are the electric and magnetic
field intensities and are measured in units of [volt/m] and [ampere/m], respectively.
The quantities D and B are the electric and magnetic flux densities and are in units of
[coulomb/m2] and [weber/m2], or [tesla]. D is also called the electric displacement, and
B, the magnetic induction.

The quantities ρ and J are the volume charge density and electric current density
(charge flux) of any external charges (that is, not including any induced polarization
charges and currents.) They are measured in units of [coulomb/m3] and [ampere/m2].
The right-hand side of the fourth equation is zero because there are no magnetic mono-
pole charges. Eqs. (1.3.17)–(1.3.19) display the induced polarization terms explicitly.

The charge and current densities ρ, J may be thought of as the sources of the electro-
magnetic fields. For wave propagation problems, these densities are localized in space;
for example, they are restricted to flow on an antenna. The generated electric and mag-
netic fields are radiated away from these sources and can propagate to large distances to

2 1. Maxwell’s Equations

the receiving antennas. Away from the sources, that is, in source-free regions of space,
Maxwell’s equations take the simpler form:

∇∇∇× E = −∂B
∂t

∇∇∇×H = ∂D
∂t

∇∇∇ ·D = 0

∇∇∇ · B = 0

(source-free Maxwell’s equations) (1.1.2)

The qualitative mechanism by which Maxwell’s equations give rise to propagating
electromagnetic fields is shown in the figure below.

For example, a time-varying current J on a linear antenna generates a circulating
and time-varying magnetic field H, which through Faraday’s law generates a circulating
electric field E, which through Ampère’s law generates a magnetic field, and so on. The
cross-linked electric and magnetic fields propagate away from the current source. A
more precise discussion of the fields radiated by a localized current distribution is given
in Chap. 14.

1.2 Lorentz Force

The force on a charge q moving with velocity v in the presence of an electric and mag-
netic field E,B is called the Lorentz force and is given by:

F = q(E+ v× B) (Lorentz force) (1.2.1)

Newton’s equation of motion is (for non-relativistic speeds):

m dv
dt
= F = q(E+ v× B) (1.2.2)

where m is the mass of the charge. The force F will increase the kinetic energy of the
charge at a rate that is equal to the rate of work done by the Lorentz force on the charge,
that is, v · F. Indeed, the time-derivative of the kinetic energy is:

Wkin =
1
2
m v · v ⇒ dWkin

dt
=m v · dv

dt
= v · F = q v · E (1.2.3)

We note that only the electric force contributes to the increase of the kinetic energy—
the magnetic force remains perpendicular to v, that is, v · (v× B)= 0.

FIGURE 6. Electromagnetic waves propagating from a localized source.
Extracted from [1].
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FIGURE 7. A wave function

• k is the wave number. One wave is one period of the cos function. The number k
will be equal to how many waves in (0, 2π).

• λ = 2π/k is the wavelength.
• ω is the angular frequency (thinking of a rotated plate). Let T be the period of the

wave. Then ω = 2π/T .
• ϕ is the phase shift. A positive phase shift will shifts the wave in the negative
x-axis direction.

So A(x, t) is the magnitude of the wave at a given point in space and time. To satisfy
the wave equation, a dispersion relation ω = ω(k) is needed. For speed c, the dispersion
relation is ω = ck and with such relation the plane wave becomes

A(x, t) = A0 cos(k(x− ct) + ϕ).

The graph of this function will be a wave propagate from the left to right (the direction of
x-axis) with speed c.

Now we describe a wave propagate in an arbitrary direction in space R3:

A(x, t) = A0 cos(k · x− ωt+ ϕ).

The only difference is the wave vector k. The magnitude |k| = k is still called the wave
number. The direction of k is the wave direction. One can easily rotate the coordinate such
that k is along the x-axis and thus we return to the scalar case. Again to satisfy the wave
equation utt = c∆u, ω = ck.

We can separate the magnitude and direction by denoting k = kd with d being a unit
vector and thus rewrite the plane wave

A(x, t) = A0 cos(k(d · x− ct) + ϕ).

It is called plane wave because the wave is propagate along the normal direction d of the
plane and all wave front in the plane orthogonal to d are the same.

These waves are scalar functions. For electromagnetic waves, one can simply replace
the scalar amplitude A0 by a constant vector A0. A transverse wave is one in which
A0 · d = 0 and a longitudinal wave is one in which A0//d. The electromagnetic waves is
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a transverse wave while acoustic waves in gas or fluid is longitudinal. Therefore

E(x, t) = E0 cos(k(d · x− c0t) + ϕ)

will be a solution of the electromagnetic waves equation in the free space ∂ttE = c20∆E
provided E0 · d = 0. The orthogonality is from the constrain ∇ · E = 0. Physically it
means the oscillations of the waves is perpendicular to the propagate direction.

The complex form of plane waves is

U(x, t) = U0e
ik·x−iωt = e−iωtU0e

iω
c d·x.

Here U0 = A0e
iϕ could be a complex valued amplitude. Then Re(U(x, t)) = A(x, t). A

plane wave solution of the time-harmonic Maxwell’s equations will be

E = P e−iωx·d, H = −d× P e−iωx·d,

where d ∈ S2, P ∈ C3 and d ·P = 0. It can be easily verify that (E,H) is the solution to

∇×E = iωH, ∇×H = −iωE, ∇ ·E = ∇ ·H = 0.

the time-harmonic Maxwell’s equations in free space (after normalization) µ = ε = 1 and
ρ = 0,J = 0.

Nice plot of plane wave solutions can be found at stack exchange website: How do I
plot a plane EM wave?

2.3. Time-harmonic Maxwell’s Equations. Assume the vector fields are periodic in time
such that we can apply Fourier transform in time. The partial derivative to t will become a
multiplication. More precisely, let X(x, t) = e−iωtX̂(x). Then ∂tX = −iωX . Here ω is
a positive constant called the frequency.

Remark 2.1. In the engineering literature, ejωt is used while e−iωt is more often in the
physics literature. This could be a source of confusion on the signs. Using e−iωt, the sign
of time-harmonic Maxwell’s equations will be different with original Maxwell’s equations.

With such change, the Maxwell-Faraday and Maxwell-Ampère equations is changed to

∇×E = iωµH(14)

∇×H = −iωεE + σE + Ja = −iω(ε+ iσ/ω)E + Ja.(15)

We denote by ε̃ = (ε + iσ/ω) and call it effective permittivity. The Gauss’s laws remains
the same since they do not involve time derivatives.

Next we do some normalization. Let

εr =
1

ε0
(ε+ iσ/ω), µr =

µ

µ0
, k = ω

√
ε0µ0,

and
Er =

√
ε0E, Hr =

√
µ0H, F = ik

√
µ0Ja

The rescaled k is called the wave number and εr, µr are relative permittivity and relative
permeability, respectively.

Then we rewrite Maxwell-Faraday and Maxwell-Ampère equations as

∇×Er = ikµrHr,(16)

∇×Hr = −ikεrE +
1

ik
F.(17)

After normalization, for vacuum, the relative permittivity and permeability is 1. Note
that (16)-(17) are just change of notation of (14)-(15). So we shall still use the original
formulation (14)-(15) to keep the physical meaning of parameters.

http://mathematica.stackexchange.com/questions/1987/how-do-i-plot-a-plane-em-wave
http://mathematica.stackexchange.com/questions/1987/how-do-i-plot-a-plane-em-wave
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We can further eliminate one variable to get just one equation. Divide µ in (14) and take
∇× to get

∇× (µ−1∇×E) = iω∇×H = iω(−iω(ε+ iσ/ω)E + Ja) = ω2ε̃E + J̃ .

The source term J̃ in the normalized equation is F , a complex function. Similarly divide ε̃
and take curl to get the equation of H:

∇× (ε̃−1∇×H) = −iω∇×E +∇× (
1

ε̃
Ja) = ω2µH +∇× J̃ .

In the normalized equation J̃ =
√
µ0/εrJa.

In summary the time-harmonic Maxwell equation for E is

∇× (µ−1∇×E)− ω2ε̃E = J̃

∇ · (εE) = ρ.

The time-harmonic Maxwell equation for H is

∇× (ε̃−1∇×H)− ω2µH = ∇× J̃

∇ · (µH) = 0.

The divergence constrain is usually skipped in the discretization and imposed weakly.

3. PHYSICAL PROPERTIES OF MAXWELL’S EQUATIONS

3.1. Energy. The ohmic power losses per unit volume is
dPloss

dV
= J ·E.

Electromagnetic energy flowing into a region will partially increase the stored energy in
that region and partially dissipate into heat in the form of J ·E.

More physics in this section.
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